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Pseudoautomorphisms of Bru
kloops and their generalizationsMark Greer, Mi
hael KinyonAbstra
t. We show that in a weak 
ommutative inverse property loop, su
h as aBru
k loop, if � is a right [left℄ pseudoautomorphism with 
ompanion 
, then 
[
2℄ must lie in the left nu
leus. In parti
ular, for any su
h loop with trivial leftnu
leus, every right pseudoautomorphism is an automorphism and if the squaringmap is a permutation, then every left pseudoautomorphism is an automorphismas well. We also show that every pseudoautomorphism of a 
ommutative inverseproperty loop is an automorphism, generalizing a well-known result of Bru
k.Keywords: pseudoautomorphism, Bru
k loop, weak 
ommutative inverse pro-pertyClassi�
ation: 20N05A loop (Q; �) 
onsists of a set Q with a binary operation � : Q �Q ! Q su
hthat (i) for all a; b 2 Q, the equations ax = b and ya = b have unique solutionsx; y 2 Q, and (ii) there exists 1 2 Q su
h that 1x = x1 = x for all x 2 Q.We denote these unique solutions by x = anb and y = b=a, respe
tively. Forx 2 Q, de�ne the right and left translations by x by, respe
tively, yRx = yx andyLx = xy for all y 2 Q. That these mappings are permutations of Q is essentiallypart of the de�nition of loop. Standard referen
e in loop theory are [7℄, [13℄.A triple (�; �; 
) of permutations of a loop Q is an autotopism if for all x; y 2 Q,x� � y� = (xy)
. The set Atp(Q) of all autotopisms of Q is a group under
omposition. Of parti
ular interest here are the three subgroupsAtp�(Q) = f(�; �; 
) 2 Atp(Q) j 1� = 1g;Atp�(Q) = f(�; �; 
) 2 Atp(Q) j 1
 = 1g;Atp�(Q) = f(�; �; 
) 2 Atp(Q) j 1� = 1g:For instan
e, say, (�; �; 
) 2 Atp�(Q). For all x 2 Q, x� = x� � 1 = x� � 1� =(x1)
 = x
. Thus � = 
. Set a = 1�. For all x 2 Q, x� = (1x)� = 1��x� = a�x�Thus � = �La, and so every element of Atp�(Q) has the form (�La; �; �La) forsome a 2 Q. Conversely, it is easy to see that if a triple of permutations of thatform is an autotopism, then 1� = 1.



384 M. Greer, M. KinyonBy similar arguments for the other two 
ases, we have the following 
hara
ter-izations: Atp�(Q) = Atp(Q) \ f(�La; �; �La) j � 2 Sym(Q); a 2 Qg;Atp�(Q) = Atp(Q) \ f(
R�1
n1; 
L�1
 ; 
) j 
 2 Sym(Q); 
 2 Qg;Atp�(Q) = Atp(Q) \ f(�; �Rb; �Rb) j � 2 Sym(Q); b 2 Qg:Sin
e these spe
ial types of autotopisms are entirely determined by a single per-mutation and an element of the loop, it is 
ustomary to fo
us on those instead ofon the autotopisms themselves. This motivates the following de�nitions.Let Q be a loop. If � 2 Sym(Q) and a 2 Q satisfy(1) a � (xy)� = (a � x�)(y�)for all x; y 2 Q, then � is 
alled a left pseudoautomorphism with 
ompanion a. If
 2 Sym(Q) and 
 2 Q satisfy(2) (xy)
 = [(x
)=(
n1)℄[
n(y
)℄for all x; y 2 Q, then 
 is 
alled a middle pseudoautomorphism with 
ompanion 
.Finally, if � 2 Sym(Q) and b 2 Q satisfy(3) (xy)� � b = (x�)(y� � b)for all x; y 2 Q, then � is 
alled a right pseudoautomorphism with 
ompanion b.Pseudoautomorphisms 
an also be viewed as isomorphisms between loop iso-topes where the isotopy is determined by the 
ompanion. Sin
e this perspe
tivewill not play a role in what follows, we leave the details to the literature [7℄.There are some spe
ializations of the notion of pseudoautomorphism worthmentioning expli
itly. First, re
all that the left , middle and right nu
leus of aloop Q are the setsN�(Q) = fa 2 Q j ax � y = a � xy; 8x; y 2 Qg;N�(Q) = f
 2 Q j x
 � y = x � 
y; 8x; y 2 Qg;N�(Q) = fb 2 Q j xy � b = x � yb; 8x; y 2 Qg;respe
tively.We denote the identity mapping on Q by �.
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k loops and their generalizations 385Lemma 1. Let Q be a loop. The nu
lei are 
hara
terized as follows:N�(Q) = fa 2 Q j (�La; �; �La) 2 Atp(Q)g= fa 2 Q j � is a left pseudoautomorphism with 
ompanion ag;N�(Q) = f
 2 Q j (�R
; �L�1
 ; �) 2 Atp(Q)g= f
 2 Q j � is a middle pseudoautomorphism with 
ompanion 
g;N�(Q) = fb 2 Q j (�; �Rb; �Rb) 2 Atp(Q)g= fb 2 Q j � is a right pseudoautomorphism with 
ompanion bg:Proof: Perhaps the only 
laim whi
h is not immediately obvious is the 
hara
-terization of the middle nu
leus. Suppose � is a middle pseudoautomorphism with
ompanion 
. Then for all x; y 2 Q, xy = [x=(
n1)℄[
ny℄. Repla
e y with 
y to getx � 
y = [x=(
n1)℄y. Set y = 1 so that x
 = x=(
n1). Thus x � 
y = x
 � y, that is,
 2 N�(Q). The reverse in
lusion is similarly straightforward. �Note that all three of the nu
lei are subloops. This 
an be proved dire
tly fromtheir de�nitions, but perhaps the easiest proof uses the autotopi
 
hara
terizationof Lemma 1.A permutation � of a loop Q is an automorphism of Q if (xy)� = (x�)(y�)for all x; y 2 Q. Observe that a permutation � is an automorphism if and onlyif it is a pseudoautomorphism of any of the three types with 
ompanion 1. Thefollowing is also 
lear from Lemma 1.Lemma 2. Let Q be a loop. If � 2 Sym(Q) is a left [middle, right℄ pseudoau-tomorphism with 
ompanion 
 2 Q then � is an automorphism if and only if
 2 N�(Q) [N�(Q), N�(Q)℄.A loop Q is said to be a (right) Bru
k loop if it satis�es the Bol identity[(xy)z℄y = x[(yz)y℄ for all x; y; z 2 Q and the automorphi
 inverse property (AIP):(AIP) (xy)�1 = x�1y�1for all x; y 2 Q. (Bru
k loops have also been 
alled \K-loops" [10℄ or \gyro
om-mutative gyrogroups" [14℄. Note that mu
h of the literature works with the dualnotion of left Bru
k loop.) In a Bru
k loop Q, inverses are two-sided, that is,1=x = xn1 = x�1, and the right inverse property (RIP) holds:(RIP) xy � y�1 = x or equivalently R�1y = Ry�1for all x; y 2 Q. Bru
k loops have been intensively studied in re
ent years [1℄, [2℄,[3℄, [4℄, [5℄, [8℄, [10℄, [12℄.The interest in Bru
k loops is partly be
ause they are a naturally o

urring
lass. As an example, 
onsider the set S+n (R) of all n� n positive de�nite, sym-metri
 matri
es. By the polar de
omposition, the produ
t AB of two su
h ma-tri
es de
omposes uniquely as AB = UP where U is an orthogonal matrix and



386 M. Greer, M. KinyonP 2 S+n (R). De�ne A�B = P . Then it is straightforward to show that (S+n (R);�)is a Bru
k loop (see, e.g., [10℄).Bru
k loops are the motivation for our main result below, but we will stateand prove it in mu
h more generality (hen
e the generalizations mentioned in thetitle). The 
lass of loops we will 
onsider are those with two-sided inverses su
hthat the following identity holds:(WCIP) (xy)�1y = x�1for all x; y. These were introdu
ed by Johnson and Sharma [9℄ who 
alled themweak 
ommutative inverse property loops (WCIP loops). It is 
lear that any loopwith the RIP and AIP satis�es WCIP. This applies in parti
ular to Bru
k loopsor even to the more general 
lass of Kikkawa loops [10℄. In fa
t, it is evident thatany two of the properties RIP, AIP and WCIP imply the third.Lemma 3. A loop Q has the WCIP if and only if for all x; y 2 Q,(WCIP2) y�1nx�1 = xny:Proof: Repla
ing y in (WCIP) with xny and rearranging, we obtain (WCIP2).Repla
ing y in (WCIP2) with xy and rearranging, we obtain (WCIP). �In parti
ular, Lemma 3 shows that a loop Q has the WCIP if and only if theisotrophi
 loop [13℄ (Q; Æ) de�ned by x Æ y = x�1ny is 
ommutative.Before turning to our main result, we will show that in the present setting we
an dispense with the notion of middle pseudoautomorphism. In a loop Q withtwo-sided inverses, we will denote the inversion map by J : Q! Q;x 7! x�1.Lemma 4. Let Q be loop with WCIP. If (�; �; 
) 2 Atp(Q), then (J
J; �; J�J)2 Atp(Q).Proof: Sin
e (�; �; 
) 2 Atp(Q), we have x� � y� = (xy)
 for all x; y 2 Q. Thus(xy)
J � y� = (x� � y�)J � y� = x�J using the WCIP. Repla
e x with (xy)�1and use the WCIP again to get xJ
J � y� = (xy)J�J for all x; y 2 Q. Thus(J
J; �; J�J) 2 Atp(Q). �Lemma 5. Let Q be a loop with WCIP and let � 2 Sym(Q). Then � is amiddle pseudoautomorphism with 
ompanion 
 if and only if J�J is a rightpseudoautomorphism with 
ompanion 
�1.Proof: Suppose � is a middle pseudoautomorphism with 
ompanion 
 so that(�R�1
�1 ; �L�1
 ; �) is an autotopism. By Lemma 4, (J�J; �L�1
 ; J�R�1
�1J)2Atp(Q).Sin
e the �rst 
omponent �xes 1, this autotopism lies in Atp�(Q), and so the se
-ond and third 
omponents 
oin
ide and have the form J�JRd for some d. Todetermine d, we 
ompute d = 1J�R�1
�1J = 
�1. Thus (J�J; J�JR
; J�JR
) 2Atp�(Q), that is, � is a right pseudoautomorphism with 
ompanion 
�1. The
onverse is similar. �



Pseudoautomorphisms of Bru
k loops and their generalizations 387As an aside, we mention that a similar result holds for loops with the rightinverse property: � is a middle pseudoautomorphism with 
ompanion 
 if and onlyif � is a right pseudoautomorphism with 
ompanion 
. In pla
e of Lemma 4, theargument uses the fa
t that in RIP loops, (�; �; 
) 2 Atp(Q) implies (
; J�J; �) 2Atp(Q) [10℄.As a 
orollary of Lemmas 1 and 5, we re-obtain a fa
t from [9℄.Corollary 6. In a loop Q with WCIP, N�(Q) = N�(Q).Our main result is the following.Theorem 7. Let Q be a WCIP loop, let � be a permutation of Q and let 
 2 Q.(1) If � is a right pseudoautomorphism of Q with 
ompanion 
, then 
 2N�(Q).(2) If � is a left pseudoautomorphism of Q with 
ompanion 
, then 
�1 isalso a 
ompanion of � and 
2 2 N�(Q).Proof: (1) Sin
e 1 = yy�1 = y � x(xny�1), we have
 = 1� � 
 = y� � ((x(xny�1))� � 
) = y� � [x� � ((xny�1)� � 
)℄:Thus(4) x�n(y�n
) = (xny�1)� � 
:Ex
hanging the roles of x and y, we also have(5) y�n(x�n
) = (ynx�1)� � 
:By (WCIP2), the right sides of (4) and (5) are equal, and so(6) x�n(y�n
) = y�n(x�n
):Repla
ing x with x��1 and y with y��1 in (6), we have xn(yn
) = yn(xn
), andso(7) x(yn(xn
)) = yn
:Setting x = 
 in (7), we obtain(8) yn
 = 
y�1:Using (8) in (7), we have(9) x(yn(
x�1)) = 
y�1:Taking y = 
x�1 in (9), we get(10) 
(
x�1)�1 = x:



388 M. Greer, M. KinyonNow in (9), repla
e x with 
x�1 and use (10) and (WCIP2) to obtain(11) 
x�1 � (x�1ny�1) = 
y�1:Finally, in (11), repla
e x with x�1 and y with y�1, and then repla
e y with xyto get 
x � y = 
 � xy;whi
h shows 
 2 N�(Q), as 
laimed.(2) Sin
e (�L
; �; �L
) 2 Atp(Q), we have (J�L
J; �; J�L
J) 2 Atp(Q) byLemma 3. Sin
e 1� = 1, this autotopism lies in Atp�(Q). Thus J�L
J = �Ldwhere d = 1J�L
J = 
�1. Hen
e (�L
�1 ; �; �L
�1) 2 Atp(Q), whi
h shows that� has 
�1 as a 
ompanion. We have(L�1
�1��1; ��1; L�1
�1��1)(�L
; �; �L
) = (L�1
�1L
; �; L�1
�1L
) 2 Atp(Q):Therefore L�1
�1L
 = Le where e = 1L�1
�1L
 = 
2. Thus (L
2 ; �; L
2) 2 Atp(Q),that is, 
2 2 N�(Q). �Corollary 8. Let Q be a WCIP loop with trivial left nu
leus. Then every rightpseudoautomorphism is an automorphism. If, in addition, every element of Q hasa unique square root, then every left pseudoautomorphism is an automorphism.Example 9. The relativisti
 Bru
k loop (or relativisti
 gyro
ommutative gyro-group) is the set of relativisti
 velo
ity ve
tors with Einstein's velo
ity additionas the operation [14℄. This is isomorphi
 to the natural Bru
k loop stru
ture onthe set of positive de�nite symmetri
 Lorentz transformations [10, Chapter 10℄.The left nu
leus is trivial, be
ause it is pre
isely the set of �xed points of thea
tion of the spe
ial orthogonal group. In addition, every element of the loophas a unique square root. Thus we obtain: In the relativisti
 Bru
k loop, everypseudoautomorphism is an automorphism.Finally, we generalize a well-known result of Bru
k [6℄, who proved the followingfor 
ommutative Moufang loops.Corollary 10. Every pseudoautomorphism of a 
ommutative, inverse propertyloop is an automorphism.Proof: In an inverse property loop, all nu
lei 
oin
ide, so by Theorem 7 andits left/right dual, the 
ompanion of any pseudoautomorphism lies in the nu
leusof Q. By Lemma 2, we have the desired result. �A
knowledgment. Our investigations were aided by the automated dedu
tiontool Prover9 developed by M
Cune [11℄. The problem of the existen
e of pseu-doautomorphisms of the relativisti
 Bru
k loop whi
h are not automorphisms wassuggested to the se
ond author several years ago by Anton Greil.
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