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Left MQQs whose left parastrophe is also quadratiSimona Samardjiska, Danilo GligoroskiAbstrat. A left quasigroup (Q; q) of order 2w that an be represented as a vetorof Boolean funtions of degree 2 is alled a left multivariate quadrati quasigroup(LMQQ). For a given LMQQ there exists a left parastrophe operation qn de�nedby: qn(u; v) = w , q(u;w) = v that also de�nes a left multivariate quasigroup.However, in general, (Q; qn) is not quadrati. Even more, representing it in asymboli form may require exponential time and spae. In this work we investi-gate the problem of �nding a sublass of LMQQs whose left parastrophe is alsoquadrati (i.e. is also an LMQQ), and in the same time an be easily onstruted.These LMQQs are aÆne in the seond argument, and their left parastrophe anbe easily expressed from the quasigroup operation. We give neessary and suf-�ient onditions for an LMQQ of this type to have a left parastrophe that isalso an LMQQ. Based on this, we distinguish a speial lass that satis�es ourrequirements and whose onstrution is deterministi and straightforward.Keywords: left multivariate quadrati quasigroup, left parastrophe, algebrai de-gree, matrix of Boolean polynomialsClassi�ation: 20N05, 11T55, 11T711. IntrodutionThe potential and usefulness of quasigroups (or equivalently Latin squares)in the design of di�erent types of ryptographi primitives and odes has beenaddressed in numerous works, beginning with the seminal work of Shannon [21℄more than half a entury ago. Sine then, quasigroups were inorporated in thedesign of many di�erent ryptographi shemes as well as odes. We an mentionsome of them:{ Seret sharing shemes: Cooper et al. [7℄ designed a seret sharing shemearising from Latin squares,{ Blok Ciphers: A version of the blok ipher DES that uses Latin squareswas proposed by Carter et al. [4℄,{ Hash funtions: The need of using quasigroups in the design of rypto-graphi hash funtions was disussed by Shnorr and Vaudenay in [20℄,and later, in the SHA-3 hash ompetition, at least three funtions hadquasigroups or left quasigroups in their design (Edon-R [11℄, NaSHA [14℄and Blue Midnight Wish [12℄),{ Stream Ciphers: The fast software stream ipher CryptMT by Matsumotoet al. [15℄ atually uses quasigroups that belong to the lass of polynomialquasigroups analyzed by Rivest in [17℄,



398 S. Samardjiska, D. Gligoroski{ Hardware stream ipher: A hardware stream ipher Edon80 using fourdi�erent quasigroups of order 4 was proposed in [8℄,{ Coding theory: Latin squares were used for designing LDPC odes in [23℄,[16℄.Reently, in [9℄, a new lass of quasigroups alledMultivariate Quadrati Quasi-groups (MQQs) was introdued. The distintive property of these quasigroups isthat when represented as Boolean funtions in their algebrai normal form, theyare multivariate quadrati. MQQs have found an appliation [9℄, [10℄ in the �eldof Multivariate ryptography, or MQ (multivariate quadrati) ryptography. MQshemes have performane advantages over the lassial publi key shemes basedon integer fatorization (RSA) and on the disrete logarithm problem in the addi-tive group of points de�ned by ellipti urves over �nite �elds (ECC). Additionally,they are onsidered as one of the post-quantum alternatives to the most popu-lar RSA and ECC shemes, sine there are no known quantum algorithms thatwould break MQ shemes. However, they have one disadvantage | the size of thepubli/private key pair is muh bigger than in the urrently used ryptosystems.The authors of [9℄ onstruted only MQQs of lower orders (up to 25). In [2℄,a randomized algorithm was proposed to generate MQQs of higher orders, but justup to 214. In [5℄, a method for onstrution of bilinear MQQs was proposed. A de-tailed survey on the properties and onstrution of multivariate quadrati loopsand quasigroups was given in [6℄. In [19℄, an approah was taken to onstrutquasigroups based on T-funtions de�ned by Klimov and Shamir [13℄. Thesequasigroups were alled T-multivariate quasigroups, and an be (but are not ex-lusively limited to be) quadrati. An extension of the algorithms from [5℄ and[19℄ to arbitrary Galois �elds Fpk was reently given in [18℄.In this paper we ontinue the analysis of MQQs, by investigating the wider lassof Left MQQs (LMQQs), and distinguishing sublasses that are of speial interestfor ryptographi use in multivariate publi key shemes. More onretely, sinein general a parastrophe of an LMQQ is not quadrati and representing it in asymboli form may require exponential time and spae, it is a hallenging problemto �nd a sublass of LMQQs whose parastrophes are also quadrati, and in thesame time an be easily onstruted.1.1 Contribution and organization of the paper. We �rst introdue andgive a general onstrution of left multivariate quasigroups (LMQs) of any order2w and any degree, and afterwards fous on the properties of a sublass of thelass of all LMQs of order 2w that onsists of left quasigroups aÆne in the seondargument, whose left parastrophe an be easily expressed.We then distinguish a speial family of LMQQs and give the neessary andsuÆient onditions for these LMQQs to have a left parastrophe that has degree 2,i.e., is also an LMQQ. As this haraterization does not provide an algorithmionstrution of this type of LMQQs, we further re�ne the requirements at severalstages, to �nally reah very simple suÆient onditions for an LMQQ to have aquadrati left parastrophe and provide an espeially easy onstrution proedure.



Left MQQs whose left parastrophe is also quadrati 399The paper is organized as follows: The preliminaries are given in Setion 2; inSetion 3 we investigate LMQs of several di�erent types, give e�etive onstru-tions, and determine the relations between them; Setion 4 is devoted to �ndingand analyzing di�erent suÆient onditions for an LMQQ to have a quadrati leftparastrophe in order to �nd suitable ones that give a simple and easy algorithmiproedure for their onstrution. The onlusions are given in Setion 5.2. Preliminaries2.1 Quasigroups. The following de�nitions and basi properties an be foundin lassi textbooks on quasigroup theory, suh as Belousov's [3℄, or Smith's [22℄.Let (Q; q) be a groupoid and let a be a �xed element of Q. The mappingsLq;a; Rq;a : Q! Q, alled left and right translations (translation mappings), arede�ned by: Lq;a(x) = q(a; x); Rq;a(x) = q(x; a);for every x 2 Q.De�nition 1. The groupoid (Q; q) is alled a left (right) quasigroup if the map-ping Lq;a (Rq;a) is a permutation of Q for every a 2 Q.If (Q; q) is both left and right quasigroup, then it is simply alled a quasigroup.If a quasigroup (Q; q) has a unit element e, then (Q; q) is alled a loop.A �nite (left/right) quasigroup of n elements is said to be a (left/right) quasi-group of order n.De�nition 2. Given a (left) quasigroup (Q; q) a new (left) quasigroup operationqn an be de�ned on the set Q byqn(u; v) = w , q(u;w) = v;alled a left parastrophe operation. The two operations satisfy the identities(1) q(u; qn(u; v)) = v; qn(u; q(u; v)) = v;for all u; v 2 Q.Let Qn be a set of all left quasigroup operations over the set Q of n elements,and let SQ be the symmetri group upon Q. Sine a left quasigroup from Qnan be onsidered as a olletion of n permutations from SQ, the de�nition ofomposition of permutations from SQ an be naturally extended to Qn.Let q1; q2 2 Qn. A omposition of q1 and q2 is de�ned by:(q1 Æ q2)(u; v) = q1(u; q2(u; v)); for all u; v 2 Q:Moreover, it is not hard to see that the following holds.Proposition 1. (Qn; Æ) is a group isomorphi to (SQ)n. �



400 S. Samardjiska, D. GligoroskiDe�nition 3. Two (left) quasigroups (Q; q1) and (Q; q2) are said to be isotopi,if there exist permutations �; �;  2 SQ suh that(q1(u; v)) = q2(�(u); �(v)); for all u; v 2 Q:We denote the isotopy by (�; �; ). If � = � =  we say that the (left) quasigroupsare isomorphi.Using the de�nition, we an eÆiently onstrut new (left) quasigroups isotopito a known one.Proposition 2 ([1℄). Given a binary (left) quasigroup (Q; q), and permutations�; �;  2 SQ, the operation q0 de�ned byq0(u; v) = �1(q(�(u); �(v))); for all u; v 2 Q;de�nes a (left) quasigroup (Q; q0) isotopi to (Q; q). (�; �; ) is an isotopy from(Q; q) to (Q; q0).In the rest of the paper we will be mainly interested in properties of �nite leftquasigroups.2.2 Left Multivariate Quasigroups. We will use the following notations.Let F2 denote the Galois �eld of order 2, and F2 [x1; x2; : : : ; x� ℄ the ring ofpolynomials in the variables x1; x2; : : : ; x� over the �eld F2 .We will all the elements of the quotient ring F2 [x1; x2; : : : ; x� ℄=(x21 � x1; x22 �x2; : : : ; x2� � x�) Boolean polynomials.We will onsider the elements (u1; u2; : : : ; uw) 2 Fw2 as olumn vetors and usethe notation u = (u1; u2; : : : ; uw). Furthermore, for (u1;u2; : : : ;um) 2 (Fw2 )m wedenote by us;j the s-th bit of the j-th omponent uj .Let f : (Fw2 )m ! Fw2 be a mapping, and let f(u1;u2; : : : ;um)s denote thes-th bit of f(u1;u2; : : : ;um). The funtion f an be represented as a w-tupleof Boolean funtions as f = (f (1); f (2); : : : ; f (w)), where f (s) : (Fw2 )m ! F2for every s = 1; : : : ; w, and f (s)(u1;u2; : : : ;um) = f(u1;u2; : : : ;um)s for every(u1;u2; : : : ;um) 2 (Fw2 )m.It is a well known fat that every Boolean funtion g : (Fw2 )m ! F2 an be rep-resented uniquely by its Algebrai Normal Form (ANF) as a Boolean polynomialin mw variables ĝ 2 F2 [x1;1; x2;1; : : : ; xw;1; x1;2; : : : ; x1;m; : : : ; xw;m℄. Hene, f (s)an be represented by a polynomial of the formf̂ (s)(x1;1; : : : ; xw;m) = Xi=(i1;1 ;:::;iw;m)2Fmw2 ai Y1 � j � w1 � k � m xij;kj;k ;where ai 2 Z2, x0j;k = 1 and x1j;k = xj;k. The algebrai degree of a Booleanfuntion g is the number of variables in the longest term of ĝ.Here, we will be interested in the ase when m � 2. For simpliity, we will usethe variables x1; x2; : : : ; xw for the ase ofm = 1, and x1; x2; : : : ; xw; y1; y2; : : : ; yw



Left MQQs whose left parastrophe is also quadrati 401for the ase of m = 2. We will denote by x and y the w� 1 matries [xi℄w�1 and[yi℄w�1 over F2 [x1; : : : ; xw; y1; : : : ; yw℄, respetively.For better readability, we will also use the notations M(x) and M(x;y) formatries over F2 [x1; : : : ; xw; y1; : : : ; yw℄ whose elements are polynomials in thevariables x1; : : : ; xw and x1; : : : ; xw; y1; : : : ; yw, respetively.Reall that an n� n matrix M over a ommutative ring is alled nonsingularor invertible if there exists an n � n matrix T suh that MT = TM = In.Furthermore M is nonsingular if and only if its determinant is invertible. Inthe ase of a square matrix M(x;y) over the ring F2 [x1; : : : ; xw; y1; : : : ; yw℄, thismeans that M(x;y) is nonsingular if and only if det(M(x;y)) = 1, if and only ifdet(M(a;b)) = 1 over F2 for every a;b 2 Fw2 .In the rest of this text, we will not distinguish between a Boolean funtion gand its polynomial ANF form ĝ, i.e., we will onsider them equivalent, and usesimply the notation g.Let (Q; q) be a left quasigroup of order 2w. We �x a bijetion � : Q! Fw2 andidentify u 2 Q by the Boolean vetor �(u) = u. Now, the binary operation q onQ an be viewed as a mapping q� : F2w2 ! Fw2 de�ned by:q�(u;v) = z() q(u; v) = z:Hene, without loss of generality, all left quasigroups of order 2w an be viewedas mappings q = (q(1); q(2); : : : ; q(w)) : F2w2 ! Fw2 represented in their ANF formover F2 [x1; x2; : : : ; xw; y1; y2; : : : ; yw℄.We will all these quasigroups Left Multivariate Quasigroups (LMQ). If thealgebrai degree of an LMQ is 2, we will all it Left Multivariate Quadrati Quasi-group (LMQQ). Note that this is in aordane with the naming onvention from[9℄ where the notion of Multivariate Quadrati Quasigroups (MQQ) was intro-dued.3. Constrution of left multivariate quasigroupsIn [19℄, the authors give neessary and suÆient onditions for a T-funtion(de�ned in [13℄) to de�ne a permutation or a quasigroup. This haraterizationprovides a deterministi onstrution of multivariate quasigroups.For left multivariate quasigroups it is possible to give a simpler form than theone in [19℄. We will need the following straightforward result.Theorem 1 ([19℄). A mapping p = (p(1); p(2); : : : ; p(w)) : Fw2 ! Fw2 suh that forevery s = 1; : : : ; w, the omponent p(s) is a Boolean polynomial of the formp(s)(x1; : : : ; xw) = xs + Xj=(js+1;:::;jw)2Fw�s2 �(s)j xjs+1s+1 xjs+2s+2 : : : xjww ;de�nes a permutation on the set Fw2 . �It is an easy onsequene that the following holds.



402 S. Samardjiska, D. GligoroskiTheorem 2. A mapping q = (q(1); q(2); : : : ; q(w)) : F2w2 ! Fw2 suh that for everys = 1; : : : ; w, the omponent q(s) is a Boolean polynomial of the form(2) q(s)(x1; : : : ; xw; y1; : : : ; yw)= ys + Xk=(k1;::;kw)2Fw2j=(js+1;:::;jw)2Fw�s2 �(s)k;jxk11 xk22 : : : xkww yjs+1s+1 yjs+2s+2 : : : yjww ;de�nes an LMQ of order 2w.Proof: Clearly, for any (a1; : : : ; aw) 2 Fw2 , q(s)(a1; : : : ; aw; y1; : : : ; yw) is a per-mutation by Theorem 1, hene (2) de�nes an LMQ. �The form given in Theorem 2 an be rewritten in an equivalent matrix form.Theorem 3. Let A(x) = [ai(x)℄w�1 and B(x;y) = [bij(x;y)℄w�w be matriesof Boolean polynomials in the variables x1; : : : ; xw; y1; : : : ; yw, suh that ai(x)depends only on the variables x1; : : : ; xw, for all i, 1 � i � w, and B(x;y) is anupper triangular matrix with 1s on the diagonal, and bij(x;y) depends only onthe variables x1; : : : ; xw; yj+1; : : : ; yw, for all i; j, 1 � i < j � w.Then the mapping(3) q(x;y) = A(x) +B(x;y) � yde�nes a left multivariate quasigroup of order 2w.Proof: We show that the forms (2) and (3) are equivalent.Let an LMQ q be given by the form (2). Then the omponent q(s) is of theform q(s)(x1; : : : ; xw; y1; : : : ; yw) = 0� Xk = (k1; ::; kw)2 Fw2�(s)k;0xk11 xk22 : : : xkww 1A+ ys ++ 0BBB� Xk = (k1; ::; kw)2 Fw2j = (1; js+2; : : : ; jw)2 Fw�s2�(s)k;jxk11 xk22 : : : xkww yjs+2s+2 : : : yjww 1CCCA� ys+1 + � � �++ 0BBB� Xk = (k1; ::; kw)2 Fw2j = (0; : : : ; 0; 1; jw)2 Fw�s2�(s)k;jxk11 : : : xkww yjww 1CCCA� yw�1 ++ 0BBB� Xk = (k1; ::; kw)2 Fw2j = (0; : : : ; 0; 1)2 Fw�s2�(s)k;jxk11 : : : xkww 1CCCA� yw:



Left MQQs whose left parastrophe is also quadrati 403As this is true for every omponent q(s) of q, q an be rewritten in the matrixform (3). �Form (3) allows reation of left quasigroups of any order and degree. If we takethe Boolean polynomials in A(x) to be of degree d, and the Boolean polynomialsinB(x;y) to be of degree d�1, then the left quasigroup q will have degree d. Usingisotopy we an reate new left quasigroups, and if the isotopy is (�; �; ), suh that�(x) = D1x + 1; �(x) = D2x + 2; �1(x) = D3x + 3, where D1;D2;D3 arenonsingular w � w matries over F2 and 1; 2; 3 2 Fw2 , the degree is preserved,i.e. the newly obtained left quasigroups are again of degree d. Throughout therest of the text we will all suh isotopies linear.Finding the parastrophe qn of q for a given LMQ an in general be a task ofgreat spae and time omplexity. That is also true for the speial lass of leftquasigroups de�ned in Theorem 3. However, if (3) is of the form(4) q(x;y) = A(x) +B(x) � y;i.e., B(x) depends only on the variables x1; : : : ; xw, then the left parastrophe qn,an be easily found, using one of the identities (1), to be:(5) qn(x;y) = B�1(x)A(x) +B�1(x) � y:Even more, we have the following.Proposition 3. Let T LQ2w be the set of all left quasigroups of order 2w of theform (4). Then (T LQ2w ; Æ) is a subgroup of (Q2w ; Æ).Proof: Let q1; q2 2 T LQ2w . Then q1(x;y) = A1(x) +B1(x) � y and q2(x;y) =A2(x) +B2(x) � y, for some matries A1(x);A2(x) of Boolean polynomials, andsome upper triangular matries B1(x);B2(x) of Boolean polynomials, with 1s onthe diagonal. Then,q1 Æ q2(x;y) = q1(x; q2(x;y)) = A1(x) +B1(x) � (A2(x) +B2(x) � y)= (A1(x) +B1(x) �A2(x)) +B1(x) �B2(x) � y:Sine B1(x) and B2(x) are upper triangular, their produt B1(x) �B2(x) is againupper triangular, and has 1s on the diagonal. So q1 Æ q2 2 T LQ2w . The identityelement of (Q2w ; Æ) is e(x;y) = y, and it is learly in T LQ2w as well.The inverse of a quasigroup q is its left parastrophe qn, and from (5) it is learthat qn 2 T LQ2w . Hene, the laim follows. �Example 1. We give an example of a onstrution of an LMQQ of order 24obtained by applying isotopi transformation to an LMQQ from T LQ24 .We �rst onstrut q in the form (4).Let A(x) be a 4� 1 matrix of quadrati Boolean polynomials in the variablesx1; x2; x3; x4, given by:



404 S. Samardjiska, D. GligoroskiA(x) =264 x1 + x3 + x1x3 + x2x3 + x1x4 + x2x4 + x3x41 + x1 + x2 + x3 + x1x3 + x2x3 + x1x4x2 + x1x2 + x3 + x1x3 + x1x4 + x3x4x1x2 + x1x3 + x2x3 + x4 + x1x4 + x2x4 + x3x4 375:Let B(x) be a 4� 4 upper triangular matrix of linear Boolean polynomials inthe variables x1; x2; x3; x4, with 1s on the diagonal given by:B(x) =264 1 x2 + x3 1 + x2 1 + x40 1 1 + x4 1 + x1 + x2 + x30 0 1 x2 + x30 0 0 1 375:Then q(x;y) = A(x) +B(x) � y isq(x;y) =2666664 x1 + x3 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4 + y1++x2y2 + x3y2 + y3 + x2y3 + y4 + x4y41 + x1 + x2 + x3 + x1x3 + x2x3 + x1x4 + y2 + y3++x4y3 + y4 + x1y4 + x2y4 + x3y4x2 + x1x2 + x3 + x1x3 + x1x4 + x3x4 + y3 + x2y4 + x3y4x1x2 + x1x3 + x2x3 + x4 + x1x4 + x2x4 + x3x4 + y4
3777775:The matrix B�1(x) is given byB�1(x) =266664 1 x2 + x3 1 + x3 + x2x4 + x3x4 1 + x2 + x1x2 + x1x3++x2x3 + x4 + x2x4 + x3x40 1 1 + x4 1 + x1 + x2x4 + x3x40 0 1 x2 + x30 0 0 1 377775;and the parastrophe qn(x;y) = B�1(x)A(x) +B�1(x) � y by:qn(x;y) =26666664 x1 + x2 + x1x2 + x3 + x1x3 + x2x3 + x1x2x3 + x3x4 + x1x2x3x4++y1 + x2y2 + x3y2 + y3 + x3y3 + x2x4y3 + x3x4y3 + y4 + x2y4++x1x2y4 + x1x3y4 + x2x3y4 + x4y4 + x2x4y4 + x3x4y41 + x1 + x1x2 + x1x2x3 + x4 + y2 + y3 + x4y3++y4 + x1y4 + x2x4y4 + x3x4y4x2 + x3 + x1x4 + x1x2x4 + x3x4 + x1x3x4 + y3 + x2y4 + x3y4x1x2 + x1x3 + x2x3 + x4 + x1x4 + x2x4 + x3x4 + y4

37777775:Next we apply to q a linear isotopy de�ned by the nonsingular matries:D1 =2664 1 0 1 01 1 1 11 1 0 00 0 1 0 3775; D2 =2664 0 1 1 01 1 0 00 0 0 10 1 0 1 3775; D3 =2664 0 0 1 10 1 0 11 0 1 01 0 0 0 3775;and by the vetors: 1 = (1; 1; 0; 1), 2 = (0; 1; 1; 0), 3 = (0; 0; 1; 1).



Left MQQs whose left parastrophe is also quadrati 405We obtain the left quasigroupq0(x;y) = D3(A(D1x+ 1) +B(D1x+ 1) � (D2y + 2)) + 3 given byq0(x;y) =26666664 1 + x1 + x1x2 + x3 + x1x3 + x2x4 + x2y1 + x3y1 + x4y1 + y2++x3y2 + y3 + y4 + x2y4 + x3y41 + x1 + x1x2 + y2 + x2y2 + x3y2 + x4y2 + x2y4 + x3y4 + x4y4x2 + x1x2 + x1x4 + y1 + x2y1 + x3y1 + x4y1 + y2 + x1y2++x2y2 + y3 + x3y4 + x4y41 + x1x2 + x3 + x1x3 + x2x3 + x4 + x2x4 + y1 + y2 + x1y2++x2y2 + x3y2 + x2y4 + x4y4
37777775:Sine the left quasigroups in the lass T LQ2w are quite easy to onstrut, theywill be our main fous in the next setion. In the rest of this setion we will pointout the relationship with the bigger lass of left quasigroups aÆne in the seondargument y.De�nition 4. A left multivariate quasigroup (Fw2 ; q) is said to be left aÆne, iffor every a 2 Fw2 , Lq;a(y) is an aÆne mapping.We denote the set of all LMQs of order 2w that are left aÆne by LLQ2w .Proposition 4. A mapping q : F2w2 ! Fw2 is in LLQ2w if and only if it has theform(6) q(x;y) = A(x) +B0(x) � y;whereA(x) = [ai(x)℄w�1 is a w�1 matrix of Boolean polynomials in the variablesx1; : : : ; xw, and B0(x) = [bij(x)℄w�w is a w � w nonsingular matrix of Booleanpolynomials in the variables x1; : : : ; xw.Proof: If q has the form (6) then learly it is a left quasigroup, and it is inLLQ2w . Conversely, let q 2 LLQ2w . Then, using a vetor notation, it an berepresented in the general form: q(x;y) = A(x) +A1(x;y) +A2(y) where thes-th omponent isq(s)(x;y) = A(s)(x) +A(s)1 (x;y) +A(s)2 (y) = Xk=(k1;::;kw)2Fw2 �(s)k xk11 xk22 : : : xkww ++ Xk=(k1;::;kw)2Fw2j=(j1;:::;jw)2Fw2k;j 6=0 �(s)k;jxk11 : : : xkww yj11 : : : yjww + Xk=(k1;::;kw)2Fw2k 6=0 (s)k yk11 yk22 : : : ykww(7)

Now, for every a 2 Fw2 ,Lq;a(y) = A(a) +A1(a;y) +A2(y)is an aÆne mapping, so A1(a;y) +A2(y) = B0(a) � y



406 S. Samardjiska, D. Gligoroskihas to be a linear mapping, i.e. B0(a) is a nonsingular w � w matrix for everya 2 Fw2 . Hene, q has the form (6). �Similarly as for Proposition 3 it is straightforward that the following is true.Proposition 5. (LLQ2w ; Æ) is a subgroup of (Q2w ; Æ), and also (T LQ2w ; Æ) is asubgroup of (LLQ2w ; Æ). �Proposition 6. Let q 2 LLQ2w be given in the form (6). If B0(x) an bedeomposed as B0(x) = D1 � B(x) � D2, where D1;D2 are w � w nonsingularBoolean matries, and B(x) is an upper triangular matrix of Boolean polynomialsin x1; : : : ; xw, with 1s on the diagonal, then q an be onstruted using a linearisotopy from a quasigroup in T LQ2w with the same degree.Proof: Let q be as de�ned. Thenq(x;y) = A(x) +B0(x) � y = A(x) +D1 �B(x) �D2 � y= D1 � (D1�1 �A(x) +B(x) � (D2 � y))= D1 � (A0(x) +B(x) � (D2 � y)):Let q0(x;y) = A0(x) + B(x) � y. Clearly, q0 2 T LQ2w . Now, q(x;y) = D1 �q0(x;D2 � y), i.e., q an be obtained from q0 using the isotopy (I;D2;D1�1). �Proposition 7. Let q be a quadrati loop of order 2w. Then q 2 LLQ2w .Proof: First, let q be a quadrati loop of order 2w with a unit element 0 =(0; 0; : : : ; 0) 2 Fw2 . Then from [6℄,q(x;y) = x+ �(x;y) + ywhere � is a bilinear Boolean map. Clearly, q is left aÆne i.e., q 2 LLQ2w .Now, let q be an arbitrary quadrati loop of order 2w. Then, q is linearlyisomorphi to a loop with unit element 0. The linear isomorphism does nothange the degree of y, hene, again q 2 LLQ2w . �4. LMQQs whose left parastrophe is also quadratiIn this setion we will fous on the left quasigroups from T LQ2w that have analgebrai degree 2, i.e. on LMQQs that an be represented in the form (4). Thenthe left parastrophe of the LMQQ q is given by (5).The possibility of expressing qn using a short formula is a neat property ofthese LMQQs. But this does not imply that it is always eÆient to use qn in suha form. In general, although q is quadrati, qn an be of any degree d, 2 � d � 2w(see Example 1). Hene for a random q, the average number of terms in qn isexponential in the number of variables.Here, we will fous on �nding a lass of suh LMQQs in the group T LQ2w ,with the additional property of eÆient algorithmi onstrution.From (5) it is straightforward that:



Left MQQs whose left parastrophe is also quadrati 407Proposition 8. An LMQQ that an be written in the form (4) has a left para-strophe that is also an LMQQ (i.e., it is also of degree 2) if and only if B�1(x) isa w�w upper triangular matrix of linear Boolean polynomials, and B�1(x)A(x)is a w � 1 matrix of Boolean polynomials of degree 2. �Next we want to �nd under what onditions the elements of B�1(x) are linearpolynomials.We introdue the following notations.Let B0(x) be an upper triangular matrix of linear Boolean polynomials in thevariables x1; x2; : : : ; xw, with 1s on the diagonal. We denote the elements of thematries B(x) and B0(x) by bij(x) and b0ij(x), respetively, and represent themin the following form:(8) bij(x) = x> � bij + bij and b0ij(x) = x> � b0ij + b0ij ;where bij ;b0ij 2 Fw2 , and bij ; b0ij 2 F2 . (Note that bii(x) = bii = 1.)In other words, we represent the matries B(x) and B0(x) as sums of uppertriangular matries(9) B(x) = B1(x) +B2; and B0(x) = B01(x) +B02;where the Boolean polynomials x> � bij and x> � b0ij are the elements of B1(x)and B01(x), respetively, and bij 2 F2 and b0ij 2 F2 are the elements of B2 andB02, respetively.It is straightforward to verify the following:Proposition 9. Let the matries B(x) and B0(x), given in the form (9), satisfythe onditions: 1: B1(x) �B01(x) = 0;2: B1(x) �B02 +B2 �B01(x) = 0;3: B02 = B�12 :Then, B0(x) = B�1(x). �The onditions 1., 2., and 3. from Proposition 9 an be rewritten in a simplerequivalent form given in the next proposition.Proposition 10. The matrix B(x) given in the form (9), satis�es the ondition:B1(x) �B�12 �B1(x) = 0(10)if and only if there exists a matrix B0(x) = B01(x) +B02 of the form (9) suh thatthe onditions 1., 2., and 3., are satis�ed for B(x) and B0(x).Furthermore, if B(x) satis�es (10), then B�1(x) = B�12 �B1(x) �B�12 +B�12 .Proof: Let the matrix B(x) satisfy (10). Let B01(x) = B�12 � B1(x) � B�12 andB02 = B�12 . It is easy to verify that the onditions 1., 2., and 3., from Proposition 9hold for the matries B(x) and B0(x) = B01(x) +B02.



408 S. Samardjiska, D. GligoroskiConversely, let there exist a matrix B0(x) suh that 1., 2., and 3. hold. Thenfrom Proposition 9, B0(x) = B�1(x) and thus B01(x) �B1(x) +B01(x) �B2+B�12 �B1(x) = 0. NowB1(x) �B�12 �B1(x) = B1(x)(B01(x) �B1(x) +B01(x) �B2) = 0;i.e., (10) holds.Now it is lear that if B(x) satis�es (10), then B�1(x) = B�12 �B1(x) �B�12 +B�12 . �The next proposition provides an equivalent expliit form of (10).Proposition 11. The matrix B(x) given in the form (9), satis�es ondition (10)if and only if for every i; j, j � i � 2,Xi=r0<���<rm=j br0r1br1r2 � � � brm�2rm�1b>rm�1rm = 0:(11)Furthermore, if (11) holds, then the elements b0ij(x) of B�1(x) are linearBoolean polynomials and b0ij(x) = x> � b0ij + b0ij , where:b0ij = Xi = r0 < � � � < rm = jt 2 f0; : : : ;m� 1g br0;r1 � � �brtrt+1 � � �brm�1;rm ;(12) b0ij = Xi=r0<���<rm=j br0r1br1r2 � � � brm�1;rm :(13)Proof: We will expand the ondition (10). First we need an expliit form forB�12 , i.e. a formula for the elements of the inverse of an upper triangular Booleanmatrix with 1s on the diagonal.From elementary linear algebra, B�12 = [det(Bij)℄w�w, whereBij = [�ijsr℄(w�1)�(w�1) is obtained from B2 by removing its j-th row and i-tholumn. Clearly, for i > j det(Bij) = 0, and det(Bii) = 1.For i < j,(14) �ijsr =8>>><>>>:bs;r; for s < j; r < i;bs+1;r; for s � j; r < i;bs;r+1; for s < j; r � i;bs+1;r+1; for s � j; r � i:In general, det(Bij) = P�2Sw�1 �ij1;�(1)�ij2;�(2) : : : �ijw�1;�(w�1). From (14), theterms in the sum are 0, exept for permutations � 2 Sw�1 suh that s+1 � �(s),for every s, 1 � s � w � 1. The permutations that satisfy this ondition arepermutations with yli deomposition to yles of the form (s; s� 1; : : : ; s� t).



Left MQQs whose left parastrophe is also quadrati 409Again, from (14), �ijr+1;r = (br+1;r+1; for i � r < j � 1;0; otherwise:Hene, det(Bij) =Pi=r0<���<rm=j br0r1br1r2 � � � brm�1;rm .Now (10) is equivalent tojXt=i+1 ( tXk=i+1 x>bik det(Bkt))btjx = 0; for every i < j;whih in turn is equivalent tojXt=i+1 tXk=i+1bik det(Bkt)btj = 0; for every i < j:If we expand the last expression using the above formula for det(Bkt), we obtain(11).The rest of the proposition follows diretly from Proposition 9 if we apply theformula for B�12 . �Having found suÆient onditions for the matrix B(x) to have an inverse thatis a matrix of linear polynomials over F2 , we an state the following.Proposition 12. Let the matrix B(x) satisfy ondition (10). Then an LMQQq(x;y) of the form (4) has a left parastrophe of degree 2 if and only if there existsa w � 1 matrix of homogeneous quadrati Boolean polynomials A02(x) suh thatB1(x)A02(x) is a w � 1 matrix of homogeneous quadrati Boolean polynomials.Proof: Let A02(x) satisfy the given onditions. Let A01(x) be a w � 1 matrixof linear Boolean polynomials. Put A(x) = B2(A01(x) +A02(x)). From Proposi-tion 10,B�1(x)A(x) = (B�12 �B1(x) �B�12 +B�12 ) �B2 � (A01(x) +A02(x))= B�12 �B1(x) �A01(x) +A01(x) +A02(x) +B�12 �B1(x) �A02(x);whih is a w � 1 matrix of homogeneous quadrati Boolean polynomials. FromProposition 8, the left parastrophe of q is of degree 2.Conversely, let q(x;y) have a quadrati left parastrophe. Then from Propo-sition 8, B�1(x)A(x) is quadrati. Represent A(x) as A(x) = A1(x) + A2(x)where A1(x) is w � 1 matrix of linear Boolean polynomials and A2(x) is w � 1matrix of homogeneous quadrati Boolean polynomials. Then, it is not hard tosee that the matrix A02(x) = B�12 A2(x) satis�es the onditions. �



410 S. Samardjiska, D. Gligoroski4.1 Algorithms for onstrution of the matries B(x) and A(x). Next,we give a proedure for onstrution of a matrix B(x) that satis�es the givenrequirements.In fat, we will �rst desribe an algorithm that �nds all the possible matriesB(x) that satisfy the onstraints (11), for every i; j, where j � i � 2. Thealgorithm is in essene a searh algorithm in a tree that uses depth-�rst searhand baktraking tehniques and �nds all the possible solutions of the system ofequations (11) for all j � i � 2, with unknowns bs;t 2 Fw2 and bs;t 2 F2 .Then we modify this algorithm by randomizing the value (suessor) seletionheuristis, to obtain a new but equivalent algorithm. However, the introdutionof the heuristis enables the algorithm to be adapted to �nd a single matrix B(x)that satis�es the onditions, and is randomly drawn from the set of all possiblematries that satisfy the onditions.First, we reate the tree using the next proedure.TreeSetup:(1) We de�ne an ordering \�"on the set of indies I = f(i; j)j 2 � i + 1 <j � wg that orrespond to the appropriate indies of the matrix B(x) by:(i; j) � (i0; j0) if j � i < j0 � i0; or if j � i = j0 � i0 and i < i0:It is not hard to see that \�" is a total strit ordering.With every index (i; j) 2 I we assoiate the equation (11).(2) We de�ne a rooted tree of depth jIj = (w�2)(w�1)2 by assoiating theindies (i; j) 2 I in asending order to eah level of the tree, startingfrom the level at depth 0, i.e. starting from the root node. Note that wedo not assoiate indies to the last level, i.e. to the leafs. We label eahlevel with the assoiated index.The suessors of eah node are determined by the new unknownsappearing in (11) assoiated to the urrent level. At this point, we are notinterested in the solutions of the assoiated equations, but rather in thenew unknowns appearing in the equations. All the possible assignmentsfor the new unknowns de�ne a suessor for the node. In more details,the suessors are de�ned in the following way:(i) The assoiated equation to level (1; 3) (the root of the tree) isb1;2b>2;3 = 0. We assign eah possible value of (b1;2;b2;3) 2 F2w2 toa di�erent suessor of the root node. Thus, the root node has 22wsuessors. We order the suessors lexiographially.(ii) The assoiated equation to level (2; 4) is b2;3b>3;4 = 0. The new un-known appearing in the equation is b3;4. Hene, every possible valueof b3;4 2 Fw2 is assigned to 2w di�erent, lexiographially orderedsuessors of eah of the nodes in the urrent level.(iii) In a similar manner, for eah of the nodes in the levels (3; 5); : : : ; (w�2; w) we de�ne 2w di�erent, lexiographially ordered suessors.



Left MQQs whose left parastrophe is also quadrati 411(iv) For level (1; 4), the assoiated equation isb1;2b>2;4 + b1;3b>3;4 + b1;2b2;3b>3;4 = 0:The new unknowns appearing in the equation are b1;3;b2;4 and b2;3.For eah of the nodes in the level, we de�ne 22w+1 suessors (foreah possible value of (b1;3;b2;4; b2;3) 2 F2w+12 ) to whih we assignthe elements of F2w+12 in a lexiographi order.(v) For eah of the levels (i; i + 3); i 2 f2; : : : ; w � 3g, the assoiatedequation is(15) bi;i+1b>i+1;i+3 + bi;i+2b>i+2;i+3 + bi;i+1bi+1;i+2b>i+2;i+3 = 0:The new unknowns are bi+1;i+3 and bi+1;i+2. Hene, for eah of thenodes in the level, we de�ne 2w+1 suessors (for every(bi+1;i+3; bi+1;i+2) 2 Fw+12 ) to whih we assign the elements of Fw+12in a lexiographi order.(vi) We ontinue in the same manner, and for the level (1; 1 + k), 3 <k < w the assoiated equation isX1=r0<���<rm=1+k b1;r1br1r2 � � �brm�2rm�1b>rm�1;1+k = 0:(16) The only new unknowns appearing in the equation are b1;k, b2;k+1and b2;k. Every possible value of (b1;k;b2;k+1; b2;k) 2 F2w+12 is as-signed to 22w+1 di�erent lexiographially ordered suessors of eahof the nodes in the urrent level.(vii) The assoiated equation for eah of the levels (i; i+k), i 2 f2; : : : ; w�kg, 3 < k < w � 1 isXi=r0<���<rm=i+k bi;r1br1r2 � � � brm�2rm�1b>rm�1;i+k = 0:(17) Sine the new unknowns appearing are bi+1;i+k and bi+1;i+k�1, foreah of the nodes of level (i; i + k), we de�ne 2w+1 suessors (foreah (bi+1;i+k ; bi+1;i+k�1) 2 Fw+12 ) to whih we assign the elementsof Fw+12 in a lexiographi order.We should point out several properties of the tree we have just onstruted.{ There is a one-to-one orrespondene between the paths from the root tothe leaves and all the possible assignments to the unknowns appearing inthe system of equations (11) for all j � i � 2.{ An exhaustive searh for solutions of the system (11), j � i � 2, orre-sponds to an exhaustive searh through the tree. Thus all the solutionsto the system are present in the tree, in the form of paths.Trying out all the possible assignments of the unknowns bs;t 2 Fw2 and bs;t 2 F2appearing in the system of equations (11), j � i � 2, and heking whether the



412 S. Samardjiska, D. Gligoroskisystem is satis�ed, learly will lead to �nding all the solutions. However, theproedure an be made more eÆient using the onstruted tree and introduinga pruning tehnique. The pruning an be done based on a test for onsisteny ofa partial assignment of the unknowns. We de�ne the following depth-�rst searhalgorithm.FindAllSolutions:(1) Initiate an empty \history list" to keep trak of the visited nodes. Weassume that the list is being maintained throughout the algorithm. Inessene it ontains all the predeessors of the urrent node.(2) At the root node solve the assoiated equation b1;2b>2;3 = 0. Create alexiographially ordered list of all the solutions (b1;2;b2;3) 2 F2w2 of theequation. Prune all the suessors that are not in the list of solutions.Move to the leftmost suessor, i.e. the one that orresponds to the �rstsolution in the list of solutions. Update the history list by adding thehosen solution of the urrent equation.(3) Move depth-�rst throughout the tree. At eah node that is not a leaf{ If the node is being visited for the �rst time (i.e. there is no list ofsolutions assoiated to it), use the history list to assign the values ofbs;t 2 Fw2 and bs;t 2 F2 hosen in the previous steps in the equationthat is assoiated to the urrent level. Solve the urrent equation,and put the solutions in a lexiographially ordered list. Prune allthe suessors that are not in the list of solutions.� If the list of solutions is not empty, move to the suessor thatorresponds to the �rst solution in the list of solutions, i.e. tothe leftmost suessor. Update the history list by adding thehosen solution to the urrent equation.� If the list of solutions is empty, go up to the predeessor.{ If the node has been visited before, the urrent visit is due to movingup the tree. Read the last entry from the history list, and loate itin the solution list.� If it is not the last in the solution list, move to the sues-sor node that is next in the solution list. Update the historylist by deleting the last entry, and adding the solution thatorresponds to the hosen suessor node.� If the read entry is last in the solution list, go up to the pre-deessor. Update the history list by deleting the last entry.(4) When the algorithm reahes a leaf, save the history list as one solution ofthe system (11), j � i � 2 in a list Sol. Go up to the predeessor.(5) The algorithm ends when the root is reahed again and the urrent so-lution list has been exhausted. In fat, at this point there are no morepossible moves.(6) Output the list Sol.



Left MQQs whose left parastrophe is also quadrati 413It is lear that sine the algorithm FindAllSolutions traverses all the nodesthat satisfy the equations assoiated to them, the list Sol ontains all the solutionsof the system (11), j � i � 2.Note that, not all bs;t and bs;t that de�ne the elements of the matrix B(x)appear in the equations (11). In partiular, b1;i, bi;w, 1 < i < w, as well as b1;wdo not appear in (11). This means that there are no speial onstraints for themand an take any value.The algorithm FindAllSolutions an be modi�ed to an equivalent one byhanging the suessor seletion heuristis. In FindAllSolutions, at eah �rstvisit of a node a solution list is reated with solutions to the assoiated equations.The solutions are ordered lexiographially, and this list is used for hoosing thesuessors in this visit and all other subsequent visits of the node.Let FindAllSolutionsRand be an algorithm that is the same as FindAllSo-lutions, exept the solutions in the solution list at eah node are being permutedusing a random permutation one at the time of reation of the solution list. Af-ter that, this list is used in the same manner as in FindAllSolutions, and isnot being permuted again. The output of the algorithm is a list SolRand thatontains all the solutions of the system (11), j � i � 2.It is not hard to see that the two algorithms are equivalent and in the samenumber of steps �nd all the solutions of the system (11), j � i � 2. The onlydi�erene is that SolRand is a permutation of the entries in Sol.We introdue the algorithm FindAllSolutionsRand beause it an be natu-rally modi�ed for the purpose of �nding a single random solution of the system(11), j � i � 2. Let FindOneSolutionRand be the subalgorithm of FindAll-SolutionsRand that ontains all the steps of FindAllSolutionsRand from thebeginning until the �rst entry is written down in SolRand. In other words, werun FindAllSolutionsRand until one solution is found, and then we terminatethe algorithm.We note that a similar modi�ation to FindAllSolutions is not useful inthis setting, sine the �rst solution that this algorithm �nds is always the same.Instead, if we want to use FindAllSolutions to �nd a random solution, we wouldhave to �nd all solutions �rst, i.e. run the omplete algorithm, and then pik onebased on some probability distribution, for example the uniform distribution.This is, however, a highly ineÆient method of �nding a random solution.We should point out that the random solution the algorithm FindOneSolu-tionRand �nds is not uniformly distributed in the set of all solutions. Indeed,at eah node the solution list is permuted using a random permutation, thus allsolutions have an equal probability to be �rst after the permutation is applied.However, if the pruned subtree of the node is not balaned, then some of thepartial solutions in the solution list will yield more global solutions than others.As a onsequene, the random permutation atually reates bias in the proess.This an be overome if the permutation used at eah node is not drawn fromthe uniform distribution, but rather from the distribution of the partial solutions



414 S. Samardjiska, D. Gligoroskiof the suessors with regards to the global solutions. However, without theknowledge of the nature of the pruned tree, or equivalently the set of globalsolutions SolRand, this an not be done. Charaterizing ompletely the solutionsSolRand is an interesting but nontrivial open problem.Next, we present a proedure for onstruting the w� 1 matrix A(x) one thematrix B(x) is known.We will use Proposition 12, and �rst onstrut a w� 1 matrix of homogeneousquadrati Boolean polynomials A02(x) suh that B1(x)A02(x) is a w� 1 matrix ofhomogeneous quadrati Boolean polynomials.Let the elements of A02(x) be denoted by a0k(x) = P1�i;j�w a(k)ij xixj , where1 � k � w.ConstrutA(x):(1) For a given B(x) = B1(x) +B2, alulate T(x) = B1(x)A02(x).(2) Represent T(x) as T(x) = T2(x)+T3(x) where T2(x) onsists of homo-geneous quadrati polynomials, and T3(x) onsists of homogeneous ubipolynomials.(3) Solve T3(x) = 0 in the unknowns a(k)ij ; 1 � i; j; k � w. Let SolA be theset of solutions.(4) For s 2 SolA onstrut A02(x).(5) Let A01(x) be a w � 1 matrix of linear Boolean polynomials.(6) Construt A(x) = B2(A01(x) +A02(x)).4.2 EÆient onstrution of LMQQs whose parastrophe is also qua-drati. Although the algorithms FindAllSolutions and FindAllSolutions-Rand �nd all matries B(x) with the desired properties, they are extremelyineÆient. Even the algorithm FindOneSolutionRand requires solving equa-tions of the form (11) at least (w�2)(w�1)2 times (at least one for every level),that are in essene systems of equations over F2 , and possibly many baktrakingsteps.Next we present a very simple suÆient ondition for a matrix B(x) to satisfythe onditions (11). This result provides a very simple, straightforward algorith-mi onstrution of the matrix B(x), that does not require solving systems ofequations, nor baktraking strategy, nor any kind of tests during the onstru-tion. Thus, it is very suitable for implementation.Proposition 13. Let for i < j, the elements bij(x) = x> � bij +bij of the w�wupper triangular matrixB(x) of linear Boolean polynomials satisfy the onditions:b2k1+1;2k2+1 = 0;b2k1+2;2k2+1 = 0;b2k1+2;2k2+2 = 0; and(18) b2k1+2;2k2+1 = 0;(19)where k1; k2 2 f0; : : : ; �w2 �� 1g, and bii(x) = 1.Then, the elements of B�1(x) are linear Boolean polynomials.



Left MQQs whose left parastrophe is also quadrati 415The vetors b2k1+1;2k2+2, and the onstants b2k1+1;2k2+1, b2k1+1;2k2+2,b2k1+2;2k2+2 an be hosen at random.Proof: We prove the lemma formally, i.e. we show that the ondition fromProposition 11 holds.First, let i be even, i.e., let i = 2k1 + 2, for some k1 2 f0; : : : ; �w2 �� 1g. Thenbi;j = 0, for any j, and (11) is learly satis�ed.Similarly, for j odd, bi;j = 0 for any i, and again (11) holds.What is left is to analyze the ase when i = 2k1 +1 and j = 2k2 +2, for somek1; k2 2 f0; : : : ; �w2 ��1g. Using the same argument as for the previous two ases,(11) turns into: Xi=r0<���<rm=j br0r1br1r2 � � � brm�2rm�1b>rm�1rm= Xi = r0 < r1 < � � � < rm�1 < rm = jr0; rm�1 � odd; r1; rm � even br0r1br1r2 � � � brm�2rm�1b>rm�1rm :(20)Now, in any of the terms in the sum (20), the produt br1r2 � � � brm�2rm�1 is suhthat r1 is even and rm�1 is odd. No matter the parity of r2; : : : ; rm�2, there existsbrsrt , r1 � s < t � rm�1, suh that rs is even and rt is odd. But then, brsrt = 0,and the term in question is equal to 0. Sine this holds for every term, the sum(20) is equal to 0.Again, we onlude that (11) holds.Hene, from Proposition 11, the elements of B�1(x) are linear Boolean poly-nomials. �We now turn to �nding a similar proedure for the onstrution of the vetorA(x), suh that B�1(x)A(x) is a vetor of Boolean polynomials of degree 2.We �rst need to �nd the form of B�1(x).Lemma 1. Let the elements of the w � w upper triangular matrix B(x) oflinear Boolean polynomials satisfy the onditions (18) and (19). Then the matrixB�1(x) has the same form asB(x), i.e. for i < j, the elements b0ij(x) = x>�b0ij+b0ijof B�1(x) satisfy:b02k1+1;2k2+1 = 0;b02k1+2;2k2+1 = 0;b02k1+2;2k2+2 = 0;(21) b02k1+2;2k2+1 = 0(22)and b0ii(x) = 1.



416 S. Samardjiska, D. GligoroskiProof: From Proposition 11,b0ij = Xi = r0 < � � � < rm = jt 2 f0; : : : ;m� 1g br0;r1 � � �brtrt+1 � � �brm�1;rm ;(23) b0ij = Xi=r0<���<rm=j br0r1br1r2 � � � brm�1;rm :(24)First we prove (21).Let i and j be both odd. We analyze one term br0;r1 � � �brtrt+1 � � �brm�1;rmfrom (23).If every rs, 0 � s � m is odd, then rt and rt+1 are odd as well, and from(18), brtrt+1 = 0. Hene, br0;r1 � � �brtrt+1 � � � brm�1;rm = 0. If there is at leastone rl that is even, 0 < l < m, then either l = t, when from (18), brtrt+1 = 0,or l 6= t and rl+1 is odd, when from (19), brlrl+1 = 0. In both ases, again,br0;r1 � � �brtrt+1 � � � brm�1;rm = 0. Hene b0ij = 0.Let i and j be both even. Again we look at one term from (12). If every rs,0 � s � m is even, then rt and rt+1 are even, and thus from (18), brtrt+1 = 0.If at least one rl is odd, 0 < l < m, then either l = t + 1, when from (18),brtrt+1 = 0, or l 6= t+ 1 and rl�1 is even, when from (19), brl�1rl = 0. Again, allthe ases infer br0;r1 � � �brtrt+1 � � � brm�1;rm = 0. Hene b0ij = 0.Let i be even and j be odd. Then there exists rs, 0 � s � m suh that rs iseven, and rs+1 is odd. If s = t, from (18), brtrt+1 = 0, and if s 6= t, then from(19), brsrs+1 = 0. Similarly as above, we onlude that b0ij = 0.From the above it follows that (21) holds.The last reasoning an also be diretly applied to onlude that b0i;j = 0 wheni is even and j is odd, i.e. that (22) holds. �Let the elements of the vetor A(x) of Boolean polynomials be denoted byai(x), 1 � i � w. For the vetor A(x) we have the following lemma.Lemma 2. Let for all odd i, ai(x) be a quadrati Boolean polynomial, and for alleven i let ai(x) be a linear Boolean expression. Let B(x) be an upper triangularmatrix of linear Boolean polynomials with 1s on the diagonal, suh that (18) and(19) are satis�ed.Then B�1(x)A(x) is a vetor of quadrati Boolean polynomials.Proof: From Lemma 1, the only elements in the matrix B�1(x) that an belinear Boolean polynomials are b02k1+1;2k2+2(x), for some k1; k2. The others areall onstants. The elements of the vetorB�1(x)A(x) are of the formPwi=1 b0k;i(x)ai(x) so for odd i, b0k;i(x)ai(x) is quadrati sine b0k;i(x) is a onstant and ai(x)is quadrati, and also for even i, sine b0k;i(x) is at most linear and ai(x) is linear,b0k;i(x)ai(x) is again quadrati.Thus, the elements of the vetor B�1(x)A(x) are quadrati Boolean polyno-mials. �



Left MQQs whose left parastrophe is also quadrati 417Finally, we are ready to state the main theorem in this part, that gives suÆientonditions for a left quasigroup from T LQ2w of algebrai degree 2, to have aparastrophe that is again of degree 2.Theorem 4. Let q(x;y) be a left quasigroups from T LQ2w of algebrai degree 2,i.e. let q be of the form q(x;y) = A(x) +B(x) � ywhere A(x) is a vetor of Boolean polynomials ai(x) suh that:{ for all odd i, ai(x) is a quadrati Boolean polynomial, and{ for all even i, ai(x) is a linear Boolean polynomial,and B(x) is an upper triangular matrix of linear Boolean polynomials bij(x) with1s on the diagonal, suh that:{ for all odd i, and all odd j, bij(x) = bij , where bij 2 F2 ,{ for all even i, and all even j, bij(x) = bij , where bij 2 F2 ,{ for all odd i, and all even j, bij(x) is a linear Boolean polynomial, and{ for all even i, and all odd j, bij(x) = 0.Then q has a left parastrophe qn that is again of degree 2.Proof: The laim follows diretly from Proposition 13, Lemma 2 and Proposi-tion 8. �If an LMQQ has a left parastrophe that is again of degree 2, then this propertywill be preserved under linear isotopy, i.e. the following holds.Proposition 14. Let q be a left quasigroups from T LQ2w of algebrai degree 2,that has a left parastrophe again of degree 2. Then every linearly isotopi quasi-group q0 has also a left parastrophe of degree 2.Proof: Let q0 be linearly isotopi to q, i.e., letq0(x;y) = D3 � q(D1x+ 1;D2y + 2) + 3:Then from the identity q0(x; q0n(x;y)) = y we have:D3 � q(D1x+ 1;D2q0n(x;y) + 2) + 3 = y, A(D1x+ 1) +B(D1x+ 1) � (D2q0n(x;y) + 2) = D3�1y +D3�13, q0n(x;y) = D2�1B�1(D1x+ 1) �A(D1x+ 1)+D2�1B�1(D1x+ 1) �D3�1y+D2�1B�1(D1x+ 1) �D3�13 +D2�12:Sine the form of A(D1x + 1) is the same as the one of A(x), and the formof B�1(D1x + 1) is the same as the one of B�1(x), we an onlude that thealgebrai degree of q0n is 2. �



418 S. Samardjiska, D. GligoroskiWe onlude this part with an example of the desribed onstrution of anLMQQ that has a quadrati left parastrophe.Example 2. We will onstrut an LMQQ of order 24 obtained by applying iso-topi transformation to an LMQQ from T LQ24 that satis�es Theorem 4.We �rst onstrut q.Let A(x) be a vetor of quadrati Boolean polynomials in x = (x1; x2; x3; x4),given by:A(x) =264 1 + x1 + x2 + x1x3 + x2x3 + x4 + x1x4 + x3x41 + x1 + x2x1x2 + x3 + x4 + x1x4 + x3x41 + x3 + x4 375:Let B(x) be an upper triangular matrix of linear Boolean polynomials inx = (x1; x2; x3; x4), with 1s on the diagonal given by:B(x) =264 1 x1 + x2 + x3 1 x2 + x3 + x40 1 0 10 0 1 1 + x20 0 0 1 375;B�1(x) =264 1 x1 + x2 + x3 1 1 + x1 + x2 + x40 1 0 10 0 1 1 + x20 0 0 1 375:Then q(x;y) = A(x) +B(x) � y isq(x;y)=266664 1 + x1 + x2 + x1x3 + x2x3 + x4 + x1x4 + x3x4 + y1 + x1y2++x2y2 + x3y2 + y3 + x2y4 + x3y4 + x4y41 + x1 + x2 + y2 + y4x1x2 + x3 + x4 + x1x4 + x3x4 + y3 + y4 + x2y41 + x3 + x4 + y4 377775:The parastrophe qn(x;y) = B�1(x)A(x) +B�1(x) � y isqn(x;y)=266664 x1x2 + x3 + x1x3 + x2x3 + x4 + x1x4 + x2x4 + x3x4 + y1 + x1y2++x2y2 + x3y2 + y3 + y4 + x1y4 + x2y4 + x4y4x1 + x2 + x3 + x4 + y2 + y41 + x2 + x1x2 + x2x3 + x1x4 + x2x4 + x3x4 + y3 + y4 + x2y41 + x3 + x4 + y4 377775:We next apply linear isotopy to q de�ned by the nonsingular matries:D1 =2664 0 0 0 11 0 1 00 1 1 00 0 1 1 3775; D2 =2664 0 1 0 11 0 0 10 1 0 00 0 1 0 3775; D3 =2664 0 1 0 00 1 0 10 0 1 11 0 1 0 3775;



Left MQQs whose left parastrophe is also quadrati 419and the vetors: 1 = (0; 1; 0; 0), 2 = (0; 0; 1; 0), 3 = (1; 1; 0; 1).We obtain the quasigroupq0(x;y) = D3(A(D1x+ 1) +B(D1x+ 1) � (D2y + 2)) + 3:q0(x;y) =26666664 x1x2 + x1x3 + x2x4 + x3y1 + y2 + x4y2 + x3y3 + y4 + x3y4x2 + x3 + x2x3 + x1x4 + x2y1 + x3y1++y3 + x2y3 + x3y3 + x2y4 + x3y41 + x1 + x1x2 + x1x3 + x4 + x2x4++y1 + x3y1 + x4y2 + y3 + x3y3 + x3y4x1 + x3 + x2x3 + x1x4 + x2y1 + x3y1++y2 + y3 + x2y3 + x3y3 + x2y4 + x3y4
37777775:The parastrophe q0n(x;y) is:q0n(x;y) =2666666664 x2 + x3 + x4 + x1x4 + x2x4 + x3x4++y1 + x2y3 + x3y3 + y4 + x2y4 + x3y4x1 + x2 + x1x2 + x1x3 + x2x3 + x1x4 + x3x4++y1 + y2 + y3 + x3y3 + x4y3 + y4 + x3y41 + x1x2 + x3 + x1x3 + x2x3 + x2x4++y2 + y3 + x2y3 + x4y3 + y4 + x2y4x3 + x1x4 + x2x4 + x3x4 + y1 + y3++x2y3 + x3y3 + x2y4 + x3y4

3777777775:5. ConlusionsIn this paper, we investigated Left Multivariate Quasigroups, with a partiularfous on Left Multivariate Quadrati Quasigroups (LMQQs). We provided aneÆient onstrution of general LMQQs of any order and degree, as well as ofmore partiular ones that are aÆne in the variable y, and whose parastrophe iseasy to express. The main goal was to distinguish a lass of suh LMQQs thathave, even more, a left parastrophe that is again an LMQQ, and thus has a shortsymboli form. First, we determined suÆient onditions for the parastrophe tobe quadrati, and then presented a general baktraking algorithm that �nds allLMQQs that satisfy these onditions. Sine the baktraking nature of the al-gorithm makes it rather ineÆient, we provide additional very simple suÆientonditions. These suÆient onditions provide an easy, eÆient and straightfor-ward onstrution of LMQQs whose left parastrophe is quadrati.As the simpli�ation of the suÆient onditions was driven by the main premiseto �nd an eÆient algorithmi onstrution of LMQQs whose left parastrophe isquadrati, and thus led to a narrow lass of suh LMQQs, the authors an setapart two open problems: Can a di�erent strategy lead to eÆient onstrutionalgorithm of a broader lass of LMQQs whose left parastrophe is quadrati andthat are left aÆne, and, an the same be aomplished for LMQQs that arequadrati in y. In either ase, a speial attention must be paid to their suitabilityfor use in multivariate ryptosystems.
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