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Abelian di�erential modes are quasi-aÆneDavid Stanovsk�yAbstrat. We study a lass of strongly solvable modes, alled di�erential modes.We haraterize abelian algebras in this lass and prove that all of them arequasi-aÆne, i.e., they are subreduts of modules over ommutative rings.Keywords: di�erential modes, abelian algebras, quasi-aÆne algebras, subredutsof modulesClassi�ation: 08A05, 15A781. IntrodutionModes are idempotent algebras where every pair of operations ommutes, or, inother terms, idempotent algebras where all operations are homomorphisms fromthe respetive diret power (see Setion 3 for a formal de�nition). One of themajor open problems in the theory of modes is, to �nd an abstrat harateriza-tion of modes that are subreduts of a module over a ommutative ring (see themonograph [11℄ or the survey paper [9℄). The problem has been addressed in sev-eral papers, the omplete list of referenes an be found in a reent ontribution[15℄, and many results are summarized in [11℄. Abelianess is an obvious neessaryondition and it seems plausible to onjeture that it is also suÆient. We on-�rm the onjeture for di�erential modes. (We onsider abelian algebras in theabstrat sense of universal algebra; they are alled diagonally normal in [11℄).Our result also has some appeal to the \abelian implies quasi-aÆne" problem[17℄. A mode is quasi-aÆne if and only if it is a subredut of a module over aommutative ring (see Setion 2 for explanation). All quasi-aÆne algebras areabelian, but not the other way around. One of the major projets in universalalgebra is to determine abstrat onditions that make abelian algebras quasi-aÆne. There was a signi�ant progress over the years, from the initial resultsof H.P. Gumm [1℄ and J.D.H. Smith [12℄ proving the impliation for ongruenepermutable varieties, to the strongest result so far, for varieties satisfying a non-trivial idempotent Mal'tsev ondition [4℄ by K. Kearnes and �A. Szendrei. The fullstory is overed by the survey paper [17℄, or in a shorter way by the introdutorynotes of the most reent ontribution [16℄.The present paper settles the impliation for the lass of di�erential modes [5℄,onsisting of modes with a single n-ary operation that possess a ongruene suhThe work was partly supported by the grant GA�CR 201/08/P056.



462 D. Stanovsk�ythat all its bloks and the fator are left projetion algebras (instead of left, weould have hosen any position to be the distinguished one). The main idea of theproof is, to syntatially verify the axioms of quasi-aÆne algebras reently foundby M. Stronkowski and the author in [16℄.Despite the fat the lass we study is rather small, I �nd the result interestingfor two reasons. First, all previous theorems on embedding modes into modulesassumed some sort of anellativity. But there are no anellative di�erentialmodes (we an only have anellativity in one oordinate). Seond, the resultsof K. Kearnes [2℄, [3℄ indiate that modes ome in three substantially di�erentfamilies. For �nite modes, the families are: strongly solvable modes, aÆne modesand semilattie modes. AÆne modes are trivially quasi-aÆne, and non-trivialsemilattie modes are never abelian, so the interesting ase is the strongly solvableone. It is natural to start with di�erential modes: they posses a strongly solvablehain of length 2. The lass was investigated in a reent of papers [5℄, [7℄, [14℄(and muh earlier in the binary ase, see [11℄), providing tools and insight for ourwork.The paper is organized as follows. In Setion 2, we reall the folklore fat thatquasi-aÆne modes are subreduts of modules over ommutative rings. Setion 3ontains an introdution to Szendrei modes and the observation that abelianmodes are Szendrei modes. In the next setion, we introdue a framework forSzendrei di�erential modes, to be used in Setion 5 to haraterize abelian di�er-ential modes, and in Setion 6 to prove our main result. The �nal setion ontainsremarks on di�erential modes that are reduts of modules.2. Quasi-aÆne modesAn algebra A is alled a redut of an algebra B, if they have the same universeand the operations of A an be expressed as term operations of B. Subredutmeans a subalgebra of a redut. Two similar types of representation appear inliterature:� Quasi-linear algebras are subreduts of modules; it means their operationsan be expressed as module termsr1x1 + � � �+ rnxn:� Quasi-aÆne algebras are subreduts of modules with additional onstantsfor every element of the universe; it means their operations an be ex-pressed as module polynomialsr1x1 + � � �+ rnxn + ;with a onstant .It has been shown reently [16℄ that, for algebras without nullary operations, thetwo notions oinide. It means that every quasi-aÆne algebra with no onstantsadmits a quasi-linear representation. This is not an easy proof. However, it is



Abelian di�erential modes are quasi-aÆne 463very easy to prove it for idempotent algebras, and indeed this fat had been verywell known before.Proposition 2.1. Every quasi-aÆne algebra ontaining an idempotent elemente is a subredut of a module suh that e = 0.Proof: Assume A = (A;FA) admits a quasi-aÆne representation in a moduleM over a ring R. It means, A �M and for every basi operation fA 2 FA,fA(a1; : : : ; an) = rf1a1 + � � �+ rfnan + ffor some rf1; : : : ; rfn 2 R and f 2M . Consider the set B = fa� e : a 2 Ag anda olletion FB of operationsfB(a1; : : : ; an) = rf1a1 + � � �+ rfnan:The mapping ' : A ! B, a 7! a � e, is bijetive, maps e onto 0 and it is anisomorphism of (A;FA) ' (B;FB), sinefB('(a1); : : : ; '(an)) = fB(a1 � e; : : : ; an � e)= rf1(a1 � e) + � � �+ rfn(an � e)= (rf1a1 + � � �+ rfnan + f )� (rf1e+ � � �+ rfne+ f )= fA(a1; : : : ; an)� fA(e; : : : ; e)= fA(a1; : : : ; an)� e = '(fA(a1; : : : ; an))for every operation f and every tuple a1; : : : ; an 2 A. �Another folklore result says that, for modes, we an always assume the ring isommutative.Proposition 2.2. Every quasi-aÆne mode is a subredut of a module over aommutative ring.Proof: Aording to Proposition 2.1, we an assume that the mode A = (A;F )is a subredut of a module M over a ring R suh that 0 2 A. Letf(a1; : : : ; an) = rf1a1 + � � �+ rfnanbe the linear representation of the basi operations. We an assume that themodule M is generated by the set A, that the ring R ats faithfully on M andthat R is generated by the set G = frf1; : : : ; rfn : f 2 Fg of all oeÆientsthat appear in the linear representation. Let G� denote the set of all produts ofelements from G. We start with a proof thatstu � a = tsu � afor every s; t 2 G, u 2 G� and every a 2 A. Assume s = rfi, t = rgj andu = u1 � � �up, where u1 = rh1k1 ; : : : ; up = rhpkp . The fat that an m-ary operation



464 D. Stanovsk�yf and an n-ary operation g ommute is expressed by the identityf(g(x11; : : : ; x1n); : : : ; g(xm1; : : : ; xmn))= g(f(x11; : : : ; xm1); : : : ; f(x1n; : : : ; xmn)):Replae xij with a term w1 onstruted in the following way: wp+1 = y, andwq = hq(x; : : : ; x; wq+1; x; : : : ; x) for every q = p; : : : ; 1, where wq+1 sits at thekq-th oordinate. Now, evaluate y with a and all other variables with zero. Itresults in the desired identity.An easy indution show that in fat stu � a = tsu � a for every s; t; u 2 G� andevery a 2 A. The next step is to prove thatstu � a = tsu � afor every s; t; u 2 R and every a 2 A. Sine every element of a ring is a sum ofproduts of generators, we an write s = P si, t = P ti, u = Pui, where allsi; ti; ui 2 G�. Now, stu � a = (Pi;j;k sitjuk) � a = Pi;j;k(sitjuk � a), and we anuse the previous fat.Finally, we show that st �m = ts �mfor every s; t 2 R and every m 2 M . Write m = P ri � ai for ri 2 R and ai 2 A.Then st �m = st � (P ri � ai) =P(stri � ai), and we an use the previous fat.Consequently, sine R ats faithfully, we have st = ts for every s; t 2 R. �The approah from the proof an be used for an arbitrary idempotent variety.For subvarieties of modes, one obtains the onept of the aÆnization ring of avariety, studied thoroughly in [11℄.Example 2.3 ([10℄). Consider the variety of binary di�erential modes. It isde�ned (relatively to modes) by the identityx � (y � z) = x � y:Let A = (A; �) be a quasi-aÆne binary di�erential mode and a � b = (1� r)a+ rbits linear representation in a module M over a ommutative ring R. We anassume that 0 2 A, that M is generated by A, that R ats faithfully on M andthat R is generated by f1; rg. Hene, R is a quotient of the polynomial ring Z[x℄.The identity x � (y � z) = x � y translates into the equality(1� r)a+ r(1� r)b+ r2 = (1� r)a + rbfor every a; b;  2 A. Setting a = b = 0, we obtain r2 = 0 for every  2 A, henealso for every  2M , and so r2 = 0. In this ase, the equality is always satis�ed.Consequently, for every quasi-aÆne binary di�erential mode, we an always takea module over the ring R = Z[x℄=(x2).



Abelian di�erential modes are quasi-aÆne 4653. Szendrei and abelian modesThe property that two operations f; g ommute an be expressed by the soalled entropi law :f(g(x11; : : : ; x1n); : : : ; g(xm1; : : : ; xmn))=g(f(x11; : : : ; xm1); : : : ; f(x1n; : : : ; xmn)):If f = g, we an write it asf(f(x11; : : : ; x1n); : : : ; f(xn1; : : : ; xnn)) = f(f(x ~11; : : : ; x ~1n); : : : ; f(x ~n1; : : : ; x ~nn))where ~ij = ji for every i; j. However, subreduts of modules over ommutativerings satisfy a more restritive set of onditions:f(f(x11; : : : ; x1n); : : : ; f(xn1; : : : ; xnn)) = f(f(x �11; : : : ; x �1n); : : : ; f(x �n1; : : : ; x �nn))whenever � is an involution on indies that ips a single pair of indies ij; jiand leaves the other pairs still. The onditions will be alled Szendrei identities ,and modes satisfying Szendrei identities for every basi operation will be alledSzendrei modes . Note that binary modes are always Szendrei modes, beausethe binary Szendrei identity is atually the entropi law. The importane of thisonept is given by the following theorem [13℄, [15℄: A mode satis�es Szendreiidentities if and only if it is a subredut of a semimodule over a ommutativesemiring.An algebra A is alled abelian if the diagonal is a blok of a ongruene of thesquare A�A. Equivalently, if the quasi-identityt(x; u1; : : : ; uk) = t(x; v1; : : : ; vk)! t(y; u1; : : : ; uk) = t(y; v1; : : : ; vk)is satis�ed in A for every term t. Modules are obviously abelian, and so is everyquasi-aÆne algebra.The following observation is an obvious onsequene of the onjeture thatabelian modes are quasi-aÆne, and supports my belief in the onjeture.Proposition 3.1. Abelian modes are Szendrei modes.Proof: Let t = f(f(x11; : : : ; x1n); : : : ; f(xn1; : : : ; xnn)). Thent(x11; : : : ; xnn) = t(x ~11; : : : ; x ~nn)is the entropi law for an n-ary operation f . Fix i < j and replae all variables,exept xij and xji, by x. We obtaint(x; : : : ; x; xij ; x; : : : ; x; xji; x; : : : ; x) = t(x; : : : ; x; xji; x; : : : ; x; xij ; x; : : : ; x):Using (n2 � 2)-times abelianess, we an replae the �rst ourrene of x by x11,the seond ourrene by x12, and so on. The result is a Szendrei identity thatips ij $ ji. �



466 D. Stanovsk�y(A more general result an be found in [6℄: abelian entropi algebras with asingle n-ary operation satisfy all equations true in every algebra (R; f), where fis an n-ary linear form.)Remark 3.2. Neither abelian modes, nor quasi-aÆne modes, form a variety. Hereis an example from [9℄. The mode (Z4; Æ), where a Æ b = �a + 2b, is a redut ofthe Z-moduleZ4, but its fator over the ongruene 0j13j2 is not abelian, beause[1℄ Æ [1℄ = [1℄ Æ [2℄, but [0℄ Æ [1℄ 6= [0℄ Æ [2℄.4. Szendrei di�erential modesWe desribe a framework for Szendrei di�erential modes, useful for our argu-ments in the next two setions. It is similar to the one developed in [7℄, but we usea di�erent notation. To avoid any onfusion, we start from the very beginning.We reall from [5℄ that (left, n-ary) di�erential modes are axiomatized by thefollowing identities: f(x; x; : : : ; x) = x(I) f(f(x; y2; : : : ; yn); z2; : : : ; zn) = f(f(x; z2; : : : ; zn); y2; : : : ; yn)(E) f(x; f(y21; : : : ; y2n); : : : ; f(yn1; : : : ; ynn)) = f(x; y21; : : : ; yn1)(R)Using (R), every term is equivalent to a term in the redued formf(: : : (f(f(x; y12; : : : ; y1n); y22; : : : ; y2n) : : : ); ym2; : : : ; ymn):It is easy to hek (or �nd in [7℄) that the Szendrei identities are equivalent, indi�erential modes, to a single identityf(x; y2; : : : ; yn) = f(: : : (f(f(x; y2; x; : : : ; x); x; y3; x; : : : ; x) : : : ); x; : : : ; x; yn):We see that the ation of every argument y2; : : : ; yn is in a sense independent of theation of the other ones, so instead of an algebra with a single n-ary operation,it is more onvenient to onsider a term equivalent algebra with n � 1 binaryoperations, de�ned by x �i y = f(x; : : : ; x| {z }i�1 ; y; x; : : : ; x| {z }n�i ):Using (R), the operation f an be reovered byf(x; y2; : : : ; yn) = (: : : ((x �2 y2) �3 y3) : : : ) �n yn:We just proved the following statement.Proposition 4.1. Let (A; f) be a Szendrei di�erential mode. Then it is termequivalent to the algebra (A; �2; : : : ; �n).



Abelian di�erential modes are quasi-aÆne 467It is easy to hek that the original set of identities (I) (E) (R) is equivalent tothe following set, to be denoted in the same way.x �i x = x for every i(I) (x �i y) �j z = (x �j z) �i y for every i; j(E) x �i (y �j z) = x �i y for every i; j(R)It follows that every term is equivalent to a term in the redued form(((x �i1 y1) �i2 y2) : : :) �im ym;(y)for somem, some i1; : : : ; im 2 f2; : : : ; ng and some hoie of variables x; y1; : : : ; ym.Using (I) and (E), we an �nd an equivalent term where x ours only at the left-most plae; suh expression is unique up to a permutation of the right ations(the proof is easy and an be found in [5℄).We shall use the following short notation for terms in the redued form. LetW (A) be the set of words over the alphabet f2; : : : ; ng�A. The term (y) will bedenoted shortly x �w, where �w = (i1; y1)(i2; y2) : : : (im; ym) is a word from W (A).We will always use overlined letters for words. Conatenation of words will bedenoted by juxtaposition, so x�u�v means the term x �w, where �w = �u�v. Aordingto (E), x�u�v = x�v�ufor every �u; �v 2 W (A), hene we are going to ommute subwords freely withoutany expliit notie. Aording to (R),(x�u) �i (y�v) = x�u(i; y):We shall need the following two tehnial notions. We say that two words�u = (i1; y1) : : : (ik; yk), �v = (j1; z1) : : : (jl; zl) are similar , and write �u � �v, ifk = l and there is a permutation � of the indies suh that im = j�(m) for everym = 1; : : : ; k. We say that they are equivalent , and write �u � �v, if there is apermutation � suh that im = j�(m) and ym = z�(m) for every m = 1; : : : ; k, itmeans if the two words are equal up to a permutation of letters.5. Abelian di�erential modesProposition 5.1. A Szendrei di�erential mode A is abelian if and only if thefollowing two onditions are satis�ed:(A1) every operation �i is right anellative;(A2) for every a; b 2 A and words �; �d 2 W (A) with � � �d, if a� = a �d, thenb� = b �d.Proof: ()) (A1) Let � = �i and assume a �  = b � . Using abelianess, a � b =b � b = b. Consequently, b = a � b = a � (a � b) = a � a = a, using (R) in thethird step. (A2) is a speial ase of abelianess for t(x; y1; : : : ; ym) = x �w, where�w = (i1; y1) : : : (im; ym) suh that �w � � � �d.



468 D. Stanovsk�y(() Let t be a term, we an assume it is in the redued form t(x1; : : : ; xm) =xk �w for a word �w 2W (fx1; : : : ; xmg). Using (E) and (I), we an also assume thatxk does not appear in �w. We want to prove that t(a; 2; : : : ; m) = t(a; d2; : : : ; dm)implies t(b; 2; : : : ; m) = t(b; d2; : : : ; dm), for every a; b; i; di 2 A.For k = 1, this is exatly ondition (A2). For k 6= 1, using (E), we an furtherassume that �w = �u�v suh that �u does not ontain the variable x1 and �v 2W (fx1g).Now, if t(a; 2; : : : ; m) = t(a; d2; : : : ; dm), anel from the right using (A1), andobtain s(2; : : : ; m) = s(d2; : : : ; dm), where s = xk�u. Then, multiply bak fromthe right, and obtain t(b; 2; : : : ; m) = t(b; d2; : : : ; dm). �Conditions (A1) and (A2) are independent for general di�erential modes, but(A2) implies (A1) for the �nite ones. To show independene, we present twobinary examples. (Binary modes are always Szendrei modes.)Example 5.2. The following table shows a non-abelian binary di�erential modesatisfying (A1) and failing (A2): 2 � 2 = 2 � 1, but 0 � 2 6= 0 � 1.0 1 20 0 0 11 1 1 02 2 2 2In the terminology of [14℄, this is the smallest oyli subdiretly irreduiblebinary di�erential mode and, in fat, all oyli SI's satisfy (A1) and fail (A2).Example 5.3. The following onstrution shows a non-abelian binary di�erentialmode satisfying (A2) and failing (A1). Let X = N [ fÆ; �g and let f(x) = x + 1for x 2 N and f(Æ) = f(�) = 1. Put A = X�f0; 1g and de�ne a binary operationby (x; a) � (y; a) = (x; a) for both a = 0; 1, and by (x; a) � (y; b) = (f(x); a) fora 6= b. The operation is obviously not right anellative, but we omit a rathertehnial proof that this is a di�erential mode satisfying (A2).There is no suh �nite example, as asserted by the following proposition. Analgebra is alled loally �nite, if every �nitely generated subalgebra is �nite.Proposition 5.4. A loally �nite Szendrei di�erential mode is abelian if and onlyif ondition (A2) holds.Proof: Let A be a loally �nite Szendrei di�erential mode satisfying (A2). Weprove that every operation �i is right anellative. Let � be a ongruene of Asuh that all bloks of � and the fator A=� are left projetion algebras (see [5℄).Let Ra denote the right translation by a, it means Ra(x) = x �i a. Sine A=� isa left projetion algebra, we have Ra(x) � x for every a; x.Now, �x a 2 A and a � blok B, and onsider the subalgebra ha; bi, generatedby a and any element of B. Sine A is loally �nite, the subalgebra ha; bi is �nite,so there is k and x 2 ha; bi \ B suh that Rka(x) = x. Write it as Rka(x) = Rkx(x)and use (A2) to obtain that Rka(y) = Rkx(y) = y for every y 2 B, the latterequality following from the fat that the bloks of � are left projetion algebras.



Abelian di�erential modes are quasi-aÆne 469Consequently, the restrition of every right translation Ra on every blok of � is abijetion. But A=� is a left projetion algebra, hene Ra is a bijetion on A. �Our �nal example shows that there indeed are (�nite) abelian di�erentialmodes.Example 5.5 ([11℄). Let (Zk2; �) with a � b = (1 � k)a + kb. This is a binarydi�erential mode, it is a redut of a module, hene abelian. All right translationsare permutations of order k: we have Rna(x) = (1�nk)x+nka, and so Rna (x) = xi� nk = 0.Remark 5.6. Neither abelian di�erential modes, nor quasi-aÆne di�erentialmodes, form a variety. Example 5.2 is a fator of (Z4; �) over the ongruene0j1j23.6. Quasi-aÆne representation of di�erential modesThroughout the setion, we impliitly use Proposition 4.1 and onsider Szendreidi�erential modes as algebras (A; �2; : : : ; �n). In partiular, all terms are in thelanguage of �2; : : : ; �n. The notions of being abelian, or quasi-aÆne, are invariantwith respet to term equivalene.Theorem 6.1. A di�erential mode is abelian if and only if it is quasi-aÆne.Our proof is based on a syntati veri�ation of an axiomatization of quasi-aÆne algebras, found by M. Stronkowski and the author in [16℄. First, we needto explain the axiomatization. A multiset is a generalization of a set in whihmembers are allowed to appear more than one.If T is a multiset of terms, let B(T ) denote the multiset of branhes of termsfrom T . A branh of a term is de�ned for every ourrene of a variable, as thevariable together with its address. Formally, if t = x, a variable, the only branhof t is x; and if t = f(s1; : : : ; sn) for a basi operation f , then b is a branh of tif and only if b = (f; i)b0, where b0 is a branh of si. (See [16℄ for an alternativedesription using free semimodules.)Theorem 6.2 ([16℄). An algebra is quasi-aÆne if and only if it satis�es all quasi-identities t1 = s1 & : : : & tn = sn ! t0 = s0suh that B(ft0; t1; : : : ; tng) = B(fs0; s1; : : : ; sng).In Szendrei di�erential modes, it is onvenient to assume terms are in theredued form. The lemma states what equality of branh multisets means.Lemma 6.3. Let t0; : : : ; tn, s0; : : : ; sn be terms suh thatB(ft0; : : : ; tng) = B(fs0; : : : ; sng):Then there exist equivalent redued forms x0�u0; : : : ; xn�un, y0�v0; : : : ; yn�vn suhthat the following two onditions are satis�ed:



470 D. Stanovsk�y(B1) �u0�u1 : : : �un � �v0�v1 : : : �vn;(B2) there is a permutation � of the indies suh that xi = y�(i) and ui � v�(i).Proof: Consider the identityx �i0 ((((y �i1 z1) �i2 z2) : : : ) �in zn) = x �i0 y:(R+)It is an obvious onsequene of (R), for every hoie of i0; : : : ; in. An ourreneof a variable in a term will be alled good , if its address ontains at most oneright turn, i.e., at most one letter of the form (�i; 2). An appliation of theidentity (R+) only removes bad ourrenes of variables, and good ourrenesremain good. The other way around, every bad ourrene an be removed by anappliation of (R+).For a multiset T of terms, we de�ne multisets B1(T ); B2(T ) in the followingway. For every t 2 T and every good ourrene of a variable x in t with preiselyone right turn (�i; 2), we put one opy of the letter (i; x) into B1(T ). For everyt 2 T and every good ourrene of a variable x in t with no right turns, we putone opy of the orresponding branh into B2(T ). Both multisets B1(T ); B2(T )are invariant with respet to an appliation of (R+) to any of the terms in T .Now, start with two multisets of terms T = ft0; : : : ; tng, S = fs0; : : : ; sngsuh that B(T ) = B(S). Hene also B1(T ) = B1(S) and B2(T ) = B2(S). Us-ing (R+) suÆiently many times, we obtain multisets T 0 = ft00 : : : ; t0ng, S0 =fs00; : : : ; s0ng ontaining equivalent redued forms. Aording to the previous para-graph, Bi(T 0) = Bi(T ) = Bi(S) = Bi(S0) for both i = 1; 2. Condition (Bi)obviously follows from equality of the multisets Bi. �Corollary 6.4. A Szendrei di�erential mode is quasi-aÆne if it satis�es all quasi-identities t1 = s1 & : : : & tn = sn ! t0 = s0suh that the terms are in the redued form and satisfy onditions (B1) and (B2)of Lemma 6.3.Proof of Theorem 6.1: Every abelian mode is a Szendrei mode (Proposition3.1), so we need to verify that abelianess, i.e. onditions (A1), (A2) of Pro-position 5.1, implies every quasi-identity desribed in Corollary 6.4. Assumet1 = s1; : : : ; tn = sn holds, we prove t0 = s0. We will use the assumptions andnotation introdued in Lemma 6.3 and start with an analysis of the permutation� from (B2).Claim. Let C be a yle of length k in the permutation � suh that 0 =2 C. Let 2 C, and �w1 � �w2 be two similar words. Denote �u = �u�u�() : : : �u�k�1() and�v = �v�v�() : : : �v�k�1(). If a�u �w1 = a�v �w2 for every a, then a �w1 = a �w2 for every a.



Abelian di�erential modes are quasi-aÆne 471Proof: Starting with the premise for a = x�k�1(), we obtainx�k�1()�u �w1 = x�k�1()�v �w2= x�k�1()�v�v�() : : : �v�k�1() �w2= y�v�v�() : : : �v�k�1() �w2= x�u�v�() : : : �v�k�1() �w2;using (B2) and t = s in the last two steps. Repeating the proedure performedon the last two lines k times, we obtainx�k�1()�u �w1 = x�u�v�()�v�2() : : : �v�k�1() �w2= y�()�u�v�()�v�2() : : : �v�k�1() �w2= x�()�u�u�()�v�2() : : : �v�k�1() �w2= : : := x�k�1()�u�u�()�u�2() : : : �u�k�1() �w2= x�k�1()�u �w2:Now, use anellation (A1) and obtainx�k�1() �w1 = x�k�1() �w2:Finally, use (A2) with the assumption that �w1 � �w2 and obtaina �w1 = a �w2for every a. �Let � = C0C1 : : : Cl be the yle deomposition of � suh that 0 is ontainedin C0. Aording to (B1), we havea�u0�u1 : : : �un = a�v0�v1 : : : �vnfor every a. By (B2), ui � v�(i), so we an apply the laim on the previousidentity l-times, for every yle C1; : : : ; Cl. The result is that, for every a,a�u0�u�(0) : : : �u�k�1(0) = a�v0�v�(0) : : : �v�k�1(0);where k is the length of C0. Now, start with a = x0 and do exatly k � 1 stepsas in the proof of the laim. The result isx0�u0�u�(0) : : : �u�k�1(0) = x�k�1(0)�v0�u�(0) : : : �u�k�1(0):By anellation (A1), x0�u0 = x�k�1(0)�v0 = y0�v0:Hene t0 = s0, as desired. �



472 D. Stanovsk�yLet me note that in an earlier version of this paper, I had a proof of Theo-rem 6.1 based on the Quakenbush's axiomatization of quasi-aÆne algebras [8℄.In [16℄, we laim that our axiomatization is larger but muh easier to handle (andprovide some evidene by �nding easy proofs of some older results). Based on myexperiene from proving Theorem 6.1, I have to on�rm our bold statement.7. Reduts of modulesOur main result answers the question when a di�erential mode is a subredut ofa module. When does it admit a stronger representation, as a redut of a module?The �nal setion ontains several observations and remarks with respet to thisquestion.Similarly as in Example 2.3, every quasi-aÆne n-ary di�erential mode an berepresented over the ring Rn = Z[x2; : : : ; xn℄=(x22; : : : ; x2n) witha �i b = (1� xi)a+ xib:Sine (1�xi)(1+xi) = 1�x2i = 1, the element 1�xi is invertible. Consequently,if A is a redut of a module over the ring Rn, every operation �i forms a rightquasigroup (it means, all right translations are permutations). This is a strongerondition than (A1), but not suÆiently strong for a di�erential mode to be aredut of a module.Example 7.1. Let R = Z3[x℄=(x2), let a�b = (1�x)a+xb and put A = fux+v :u; v 2 Z3; v 6= �1g. Then A = (A; �) is a six-element subalgebra of (R; �), andit is a quasi-aÆne di�erential mode whih also is a right quasigroup. However,the only six-element abelian group is Z6 and it has only two binary reduts whihare right quasigroups: a Æ1 b = a and a Æ2 b = �a + 2b. None of the reduts isisomorphi to A.Is there a nie ondition haraterizing reduts of modules within the varietyof di�erential modes?Our �nal remark says, forget about aÆne algebras. An algebra is alled aÆne,if it is polynomially equivalent to a module. In partiular, aÆne algebras have aMal'tsev polynomial. But every di�erential mode has a non-trivial fator whihis a left projetion subalgebra, so it annot have a Mal'tsev operation. Atually,there is an independene result. (Similar and more general results for binarymodes are in Setion 8.5 of [11℄.)Proposition 7.2. The variety of di�erential modes is independent of any varietywith a Mal'tsev term.Proof: First, note that if t(x; : : : ) is a term where x is the leftmost variable,then the redut (A; t) of a di�erential mode A is a di�erential mode again: if� is the ongruene on A suh that all bloks and the fator are left projetionalgebras, it also is a ongruene on (A; t), with the same property.
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