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Further remarks on formal power series

Marcin Borkowski, Piotr Maćkowiak

Abstract. In this paper, we present a considerable simplification of the proof of
a theorem by Gan and Knox, stating a sufficient and necessary condition for
existence of a composition of two formal power series. Then, we consider the
behavior of such series and their (formal) derivatives at the boundary of the
convergence circle, obtaining in particular a theorem of Bugajewski and Gan
concerning the structure of the set of points where a formal power series is
convergent with all its derivatives.
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1. Introduction

The existence of superposition of two functions depends on the relation of the
range of the interior function and the domain of the exterior function. If the
functions in question are represented by power series, the domain is obviously
circular, and it is not obvious what the range might look like. However, it is well-
known that the superposition must exist if the leading coefficient of the interior
series vanishes (see e.g. [5, p. 66, Theorem 3.4]).

In 2002, Gan and Knox showed in [3] that this criterion may be generalized
to series with nonvanishing leading coefficient, and that there exists a simple
necessary and sufficient condition for the existence of superposition of two power
series. The proof, however, is far from simple. The first part of this paper consists
of a simpler (although based on a similar idea) proof of this fact.

It is well-known that a power series is convergent in the interior of its conver-
gence circle (or interval) and divergent in its exterior. However, it is not at all
obvious whether it converges or diverges on the boundary of its convergence cir-
cle. It is easily shown that both cases may occur; moreover, convoluted examples
were devised (see for example [4]) to show that the structure of the set of conver-
gence points of a power series can be quite complicated. Since power series can be
differentiated term-by-term infinitely many times, it seems a natural question to
determine whether any relationship exists between the convergence of the power
series and the convergence of its derivatives. In order to fully answer such ques-
tion, it also seems natural to consider formal power series , i.e., sequences of (real
or complex) coefficients giving rise to series which are not necessarily convergent,
since such series can be (formally) differentiated (even at points of divergence).
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Such series are also useful in applications, in particular in the field of differential
equations (see e.g. [2] and references therein).

Recently, it was proved in [1] that if there exists a point at the boundary of
the convergence circle of a given (formal) power series such that all its derivatives
are convergent at this point, then each point on this boundary possesses such a
property. However, the proof given therein seems overly complicated; moreover,
it does not clearly reveal the reason for such a property, namely that if a for-
mal power series is not absolutely convergent at some point at the boundary of
the convergence circle, then its second derivative (and all subsequent ones) must
diverge on the whole boundary. Also, the proof given therein uses the abovemen-
tioned theorem on the existence of the superposition of two formal power series
shown in [3]. In this paper, we give a short proof of the above property, together
with a similar theorem on the first derivative, not using that result.

2. Preliminaries

By K we will denote the field of real or complex numbers. Any sequence
(bn)

∞

n=0 of numbers in K will be called a (formal) power series (with coefficients

b0, b1, . . . ); the set of all such sequences will be denoted by X(K) or just X, and
instead of writing f = (b0, b1, . . . ), we will use the notation f(z) :=

∑

∞

n=0 bnz
n.

(This notation will not necessarily mean that the sum is convergent in any sense.)
We define addition and multiplication by scalars in X in the usual way. Moreover,
multiplication of two formal power series is defined by the Cauchy formula:

(

∞
∑

n=0

bnz
n
)

·
(

∞
∑

n=0

anz
n
)

=

∞
∑

n=0

cnz
n iff cn =

n
∑

k=0

bkan−k for n = 0, 1, . . .

If f(z) :=
∑

∞

n=0 bnz
n is a formal power series, we will denote by deg(f) its

degree, that is, the highest index of a nonzero coefficient; by r(g), its radius of

convergence; by I(g), its domain of convergence, that is, the set of all points z ∈ K

such that f(z) is convergent. (Notice that we will adopt the usual convention
that z0 = 1 even if z = 0.) The (first) formal derivative of f(z) will be defined
as f ′(z) :=

∑

∞

n=1 nbnz
n−1; the second and subsequent (formal) derivatives are

defined accordingly. The set of points of convergence of f and all its derivatives
will be denoted by D(f).

Let g(z) :=
∑

∞

n=0 anz
n be a formal power series. We will define the set Xg ⊂ X

by the formula

Xg =
{

f(z) =

∞
∑

n=0

bnz
n ∈ X

∣

∣

for each k = 0, 1, . . . , the series
∞
∑

n=0

anb
(n)
k converges

}

,
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where b
(n)
k are the coefficients of the series fn, the nth power (in the sense of

Cauchy multiplication) of f . For all f ∈ Xg we can then define the map-
ping Tg : Xg → X such that Tg(f)(z) := g ◦ f(z) :=

∑

∞

k=0 ckz
k, where ck :=

∑

∞

n=0 anb
(n)
k ; g ◦ f is called the superposition of g and f . Finally, given a power

series g(z), the set of all power series f(z) =
∑

∞

n=0 bnz
n such that b0 ∈ D(g) will

be denoted by Xg.

3. Existence of a superposition of two formal power series

In this section, we provide a shorter variant of the proof of the following theo-
rem.

Theorem 1 ([3, p. 766, Theorem 3.1]). Denote f(z) :=
∑

∞

n=0 bnz
n and g(z) :=

∑

∞

n=0 anz
n and assume that deg(f) 6= 0. Then the composition g ◦ f exists if and

only if

(1)

∞
∑

n=k

(

n

k

)

anb
n−k
0 converges

for k = 0, 1, 2, . . . .

Proof: The case when b0 = 0 is trivial, so suppose that b0 6= 0. By definition
(cf. [3, p. 763, equation (2.3)]), g ◦ f exists if and only if all series

(2) ck =

∞
∑

n=0

an

(

∑ n!

r0! . . . rk!
br00 . . . brkk

)

converge, where the inner sum is taken over nonnegative integer solutions of

(3)

{

r0 + r1 + · · ·+ rk = n

r1 + 2r2 + · · ·+ krk = k,
k = 0, 1, . . .

(of course, we adhere to the usual conventions that summing over an empty set
gives zero and that b0i = 1 even if bi = 0).

Since c0 =
∑

∞

n=0 anb
n
0 , existence of c0 is equivalent to convergence of (1) for

k = 0.
Now fix k > 0. Since we are dealing only with convergence of series (2), it

is enough to consider n ≥ k. Notice that under this assumption, due to the
equality r0 = n − (r1 + · · · + rk), there is a one-to-one correspondence between
the nonnegative integer solutions of (3) and the nonnegative integer solutions of

(3′) r1 + 2r2 + · · ·+ krk = k.

Remark that the solution set of (3′) is finite; let p denote the number of solu-
tions of (3′) (given the fixed k > 0). For any j = 1, . . . , p, denote the jth solution
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of (3′) by (r
(j)
1 , . . . , r

(j)
k ) and (for s = 1, . . . , k) put:

Ws := {j ∈ {1, . . . , p} :

k
∑

i=1

r
(j)
i = s}

mj := b
r
(j)
1

1 . . . b
r
(j)
k

k / r
(j)
1 ! . . . r

(j)
k !

d(k)s :=
∑

j∈Ws

mj .

Now let us consider the part of the sum (2) from the kth term to the qth term.

For brevity, we will denote r
(j)
0 (n) := n− (r

(j)
1 + · · ·+ r

(j)
k ).

(4)

q
∑

n=k

an

(

∑ n!

r0! . . . rk!
br00 . . . brkk

)

=

q
∑

n=k

an

( p
∑

j=1

n!

r
(j)
0 (n)!

b
r
(j)
0 (n)

0 mj

)

=

q
∑

n=k

an

( k
∑

s=1

∑

j∈Ws

n!

(n− s)!
bn−s
0 mj

)

=

q
∑

n=k

an

( k
∑

s=1

n!

(n− s)!
bn−s
0 d(k)s

)

=

k
∑

s=1

d(k)s

( q
∑

n=k

an
n!

(n− s)!
bn−s
0

)

=
k

∑

s=1

s! d(k)s

( q
∑

n=k

(

n

s

)

anb
n−s
0

)

.

We can see that if the series (1) converge for k = 1, 2, . . . , then the above sum
(and hence ck) is well-defined.

Suppose now that the composition g ◦ f exists, i.e., all the series (2) converge.
As we have seen, this implies that (1) converges for k = 0. We will proceed
by induction on k. Let l be the smallest positive number for which bl 6= 0 and

let us fix some integer m > 0. We will first show that d
(ml)
k = 0 for k > m,

and d
(ml)
m =

bml
m! . Indeed, assume that nonnegative integers r1, . . . , rml solve the

system r1 + 2r2 + · · ·+mlrml = ml and r1 + · · ·+ rml = k. If l = 1 and k > m

then d
(ml)
k = 0, since there are no ri’s satisfying the system. If k > m and

l > 1, it cannot be true that r1 = · · · = rl−1 = 0, since then we would have
ml = lrl + · · · +mlrml ≥ l(rl + · · · + rml) = kl > ml, which is a contradiction.

Therefore, if l > 1, then in each component of the sum d
(ml)
k , where k > m, there

is some 1 ≤ h < l such that rh > 0 and brhh = 0, so d
(ml)
k = 0. Consider now

the case when k = m. If for some 1 ≤ h < l we have rh > 0, the component

containing brhh adds nothing to d
(ml)
m , so we can restrict ourselves to the case

where only rl, . . . , rml can be positive. If there were some lm ≥ h > l such that
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rh > 0, we would have rl + · · · + rml = m and lrl + · · · + mlrml = ml; but
ml = l(rl + · · · + rml) < lrl + · · · + mlrml = ml — again a contradiction. This

means that the only nonzero component of d
(ml)
m is bml /m!, for any fixed m.

Now we obtain the following formula for the part of the sum (4) defining cml

from the mlth to the qth term:

ml
∑

s=1

s! d(ml)
s

( q
∑

n=ml

(

n

s

)

anb
n−s
0

)

=
m−1
∑

s=1

s! d(ml)
s

( q
∑

n=ml

(

n

s

)

anb
n−s
0

)

+ bml

q
∑

n=ml

(

n

m

)

anb
n−m
0 .

Putting m = k + 1 in the above equality we get that existence of cml implies
convergence of the left-hand side (when q tends to infinity) and the inductive
hypothesis guarantees the convergence of the first component of the right-hand
side sum, so the last component must converge, too. So, since bl 6= 0, then
∑

∞

n=(k+1)l

(

n
k+1

)

anb
n−(k+1)
0 converges, which finishes the proof. �

4. Boundary behavior of power series

In this section we describe the behavior of formal power series (in particular,
its derivatives) on the boundary of the convergence circle.

Lemma 1. Let g ∈ X(K). Assume that r(g) ∈ (0,+∞). If g is not absolutely

convergent at some point in the boundary of I(g), then the (formal) second

derivative of g is divergent on the whole boundary of I(g).

Proof: Let g(a) =
∑

∞

n=0 bna
n, where |a| = r = r(g), be not absolutely conver-

gent. Then, there exists an increasing sequence (nk)
∞

k=1 of natural numbers such
that n1 ≥ 2 and |bnk

|rnk > 1
n2
k

for each k ∈ N. We have therefore:

nk(nk − 1)|bnk
|rnk−2 >

nk(nk − 1)

r2
·
1

n2
k

= 1
r2
(1 − 1

nk
) −−−−→

k→∞

1
r2

6= 0,

so that g′′(z) is divergent for any z such that |z| = r. �

Corollary 1 (see [1, Corollary 1]). Let g ∈ X(K) and a ∈ ∂I(g). If a ∈ D(g),
then ∂I(g) ⊂ D(g).

Corollary 2. Let g ∈ X(K). Then either D(g) = {z ∈ K : |z| < r(g)} or

D(g) = {z ∈ K : |z| ≤ r(g)}.

Corollary 3 (see [1, Lemma 2]). Let g ∈ X(K). If there exists some a with

|a| = r(g) such that for each k ∈ {0, 1, 2, . . .}, the series g(k)(a) converges, then

each g(k) converges absolutely on the closed disc D(g) = {z ∈ K : |z| ≤ r(g)}.
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Lemma 2. Let g ∈ X(K). Assume that r(g) ∈ (0,+∞). If g is not absolutely

convergent at some point in the boundary of I(g), then the (formal) first deriva-
tive of g is not absolutely convergent on the whole boundary of I(g).

Proof: Let g(a) =
∑

∞

n=0 bna
n, where |a| = r = r(g), be not absolutely conver-

gent, i.e.
∑

∞

n=0 |bn|r
n = +∞. It is obvious that for any k ∈ N :

∑

∞

n=k |bn|r
n =

+∞. For all large n it holds n|bn|r
n−1 = n

r
|bn|r

n ≥ |bn|r
n and the divergence

follows. �

Corollary 4. If a ∈ I(g) and g(a) is not absolutely convergent then neither is

g(n)(a) for n = 1, 2, . . ..

Corollary 5. Let g ∈ X(K). Assume that r(g) = 1. If g(1)(1) is absolutely

convergent, then g is absolutely convergent over I(g).

Combining Lemmas 1 and 2, we obtain the following result.

Lemma 3. Let g ∈ X(K). Assume that r(g) ∈ (0,+∞). If g is not absolutely

convergent at some point in the boundary of I(g), then the (formal) nth derivative

of g is divergent on the whole boundary of I(g) for n = 2, 3, . . ..

From the above lemma we obtain a simple criterion deciding which part of the
alternative from Corollary 2 holds.

Corollary 6. D(g) = Int I(g) iff g(k)(r(g)) is not absolutely convergent for some

k = 0, 1, . . ..

5. Appendix

Finally, we show variants of two proofs contained in [1].

Proposition 2 (see [1, Proposition 4.1]). Let g(z) =
∑

∞

n=0 bnz
n ∈ X(C). Then

Tg maps Xg into itself if and only if g maps D(g) into itself.

Proof: Assume that g(a) ∈ D(g) for a ∈ D(g). Let f ∈ Xg, i.e., f = a + f̃

for some a ∈ D(g) and f̃ ∈ m(X). Using the notation of [1, Definition 1.2] we
have c0 =

∑

∞

n=0 bna
n = g(a) ∈ D(g) and Tg(f) = g ◦ f ∈ c0 + m(X) ∈ Xg.

On the other hand, if Tg : Xg → Xg, then for f = a for some a ∈ D(g) we have

Tg(f) = g ◦ f = g(a) ∈ Xg; but the only constants in Xg are in D(g) and the
proof is finished. �

Proposition 3 (see [1, Corollary 4.2]). Let g(z) =
∑

∞

n=0 bnz
n ∈ X(C). Then Tg

maps Xg into itself if and only if g maps I(g) into itself.

Proof: If there exists any a ∈ D(g) such that |a| = r(g), we infer from Corollar-
ies 1 and 3 that D(g) = I(g) and Xg = Xg, so it is enough to apply Proposition 2.

Assume now that there exists no such a; this means that D(g) is an open disk
{z : |z| < r(g)}. Assume that g maps I(g) into itself. It follows easily from the
maximum principle that either g is constant (and there is nothing to prove), or
for a ∈ D(g) = Int I(g), also g(a) ∈ D(g). Now, if f ∈ Xg, then by Theorem 1,
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either f ∈ Xg, or f = a for some a ∈ I(g) \D(g). In the former case we apply
Proposition 2; in the latter, we have Tg(f) = g ◦ f = g(a) ∈ I(g) ⊂ Xg.

Let now Tg map Xg into itself. Put f = a for some a ∈ I(g); then g(a) =
g ◦ f = Tg(f) ∈ Xg; but the only constants in Xg are those from I(g) and thus
the proof is finished. �
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