
Comment.Math.Univ.Carolin. 53,4 (2012) 573–579 573

Fixed points of periodic and firmly

lipschitzian mappings in Banach spaces

Krzysztof Pupka

Abstract. W.A. Kirk in 1971 showed that if T : C → C, where C is a closed
and convex subset of a Banach space, is n-periodic and uniformly k-lipschitzian
mapping with k < k0(n), then T has a fixed point. This result implies estimates
of k0(n) for natural n ≥ 2 for the general class of k-lipschitzian mappings. In
these cases, k0(n) are less than or equal to 2. Using very simple method we
extend this and later results for a certain subclass of the family of k-lipschitzian
mappings. In the paper we show that k0(3) > 2 in any Banach space. We also
show that Fix(T ) is a Hölder continuous retract of C.
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1. Introduction

Let C be a nonempty closed convex subset of a Banach space E. A mapping
T : C → C is called k-lipschitzian if for all x, y in C, ‖Tx − Ty‖ ≤ k‖x − y‖.
It is called nonexpansive if the same condition with k = 1 holds. In general,
to assure the fixed point property for nonexpansive mappings some assumptions
concerning the geometry of the spaces are added (see [9]). Another way is to put
some additional restrictions on the mapping itself.

Recall that a mapping T is said to be n-periodic if T n = I (for n = 2, T

is called involution). The first fixed point theorem for involutions are due to
K. Goebel and E. Z lotkiewicz [2], [5]. They investigated conditions under which
k-lipschitzian involutions have a fixed point. K. Goebel [2] showed in 1970 that
involutions have a fixed point if they are k-lipschitzian for k < 2 in a Banach space
and for k <

√
5 ≈ 2.2361 in a Hilbert space. Moreover, in the same paper, he

showed that if the space E satisfies ε0(E) < 1, the same is true for k-lipschitzian
involutions where k satisfies

(

k

2

)(

1 − δE

(

2

k

))

< 1.

In 1971, W.A. Kirk [8] extend this result for all Banach spaces by proving that
the same is true if T is n-periodic and such that ‖T ix − T iy‖ ≤ k‖x − y‖ for
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x, y ∈ C, i = 1, 2, . . . , n− 1, where

(1)
1

n2

[

(n− 1)(n− 2)k2 + 2(n− 1)k
]

< 1.

It follows from (1) that for n = 3, k < 1.3452; for n = 4, k < 1.2078; for n = 5,
k < 1.1280; for n = 6, k < 1.1147.

If T is k-lipschitzian with k > 1, then ‖T ix−T iy‖ ≤ kn−1‖x− y‖ for x, y ∈ C,
i = 1, 2, . . . , n − 1. Thus a k-lipschitzian mapping satisfying T n = I has fixed
points if

(2)
1

n2

[

(n− 1)(n− 2)k2(n−1) + 2(n− 1)kn−1
]

< 1.

It follows from (2) that for n = 3, k < 1.1598; for n = 4, k < 1.0649; for n = 5,
k < 1.0351; for n = 6, k < 1.0219.

In 1973, J. Linhart [11] slightly improved these results, namely he showed that
a k-lipschitzian mapping T : C → C for which T n = I (n > 1) has a fixed point if

(3)
1

n

2n−3
∑

j=n−1

kj < 1.

It follows from (3) that for n = 3, k < 1.1745; for n = 4, k < 1.0741; for n = 5,
k < 1.0412; for n = 6, k < 1.0262.

In 2005, J. Górnicki and K. Pupka [7] obtained new improved evaluations of
k for n-periodic (n > 2) and k-lipschitzian mappings in a Banach space, namely
for n = 3, k < 1.3821; for n = 4, k < 1.2524; for n = 5, k < 1.1777; for n = 6,
k < 1.1329.

Recently in 2010, Victor Perez Garcia and Helga Fetter Nathansky [12] ob-
tained better evaluation of k for n-periodic (n > 2) and k-lipschitzian mappings
in special case of a Hilbert space, namely for n = 3, k < 1.5549; for n = 4,
k < 1.3267; for n = 5, k < 1.2152; for n = 6, k < 1.1562.

In the present paper, studying a simple iteration process, we extend Kirk’s
and Linhart’s and later results for n-periodic mappings in a certain subclass of
k-lipschitzian mappings, i.e., firmly k-lipschitzian mappings in general case of
Banach space.

The notion of firmly nonexpansive mapping was introduced in 1973 by
R.E. Bruck in [1]. The same class of mappings has been studied independently
by K. Goebel and M. Koter in [4], where a different name is used, i.e., regularly
nonexpansive mappings .

A mapping T : C → C is said to be firmly k-lipschitzian if for each t ∈ [0, 1]
and for any x, y ∈ C,

(4) ‖Tx− Ty‖ ≤ ‖k(1 − t)(x− y) + t(Tx− Ty)‖.

Of course, each firmly k-lipschitzian mappings is k-lipschitzian.
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In 1986, M. Koter [10] obtained theorems on the existence of a fixed point for
the firmly k-lipschitzian and rotative mapping in a Banach space.

2. Firmly lipschitzian mappings

We will start with the following lemmas:

Lemma 1 ([6]). Let C be a nonempty closed subset of a Banach space E and

T : C → C be k-lipschitzian. Let A,B ∈ R and 0 ≤ A < 1 and 0 < B. If for

arbitrary x ∈ C there exists u ∈ C such that

‖Tu− u‖ ≤ A‖Tx− x‖

and

‖u− x‖ ≤ B‖Tx− x‖,
then T has a fixed point in C.

Lemma 2. Let C be a nonempty subset of a Banach space E and a mapping

T : C → C be firmly k-lipschitzian (k > 1) and n-periodic (n > 2), then for x ∈ C

we have

‖T n−1x− T nx‖ ≤





n−1
∑

j=2

(

k

k + 1

)j

kn−j 1 − kj−1

1 − k



 ‖x− Tx‖.

Proof: Let n > 2. Note at the beginning that for a firmly k-lipschitzian mapping
T : C → C, putting t = k

k+1 in (4), we obtain

‖Tx− Ty‖ ≤ k

k + 1
‖x− y + Tx− Ty‖.(5)

Using the condition (5) two times, we obtain

‖T n−1x− T nx‖ ≤ k

k + 1
‖T n−2x− T n−1x + T n−1x− T nx‖

=
k

k + 1
‖T n−2x− T nx‖

≤
(

k

k + 1

)2

‖T n−3x− T n−1x + T n−2x− T nx‖

=

(

k

k + 1

)2

‖T n−3x− T nx + T n−2x− T n−1x‖

≤
(

k

k + 1

)2
(

‖T n−3x− T nx‖ + ‖T n−2x− T n−1x‖
)

.
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Repeating this estimate, we get

‖T n−1x− T nx‖ ≤
(

k

k + 1

)2(
k

k + 1
‖T n−4x− T n−1x + T n−3x− T nx‖

+ ‖T n−2x− T n−1x‖
)

≤
(

k

k + 1

)2(
k

k + 1
‖T n−4x− T nx‖

+
k

k + 1
‖T n−3x− T n−1x‖ + ‖T n−2x− T n−1x‖

)

≤ . . .

≤
(

k

k + 1

)2
(

(

k

k + 1

)n−3

‖x− T nx‖

+

(

k

k + 1

)n−3

‖Tx− T n−1x‖ + . . .

+
k

k + 1
‖T n−3x− T n−1x‖ + ‖T n−2x− T n−1x‖

)

.

Note that mapping T is n-periodic, so we have

‖T n−1x− T nx‖ ≤
(

k

k + 1

)2
(

(

k

k + 1

)n−3

‖Tx− T n−1x‖ + . . .

+
k

k + 1
‖T n−3x− T n−1x‖ + ‖T n−2x− T n−1x‖

)

.

Finally, using the fact that mapping T is also k-lipschitzian, we have

‖T n−1x− T nx‖ ≤
(

k

k + 1

)2
(

n−1
∑

j=2

(

k

k + 1

)j−2

kn−j 1 − kj−1

1 − k

)

‖x− Tx‖

=

(

n−1
∑

j=2

(

k

k + 1

)j

kn−j 1 − kj−1

1 − k

)

‖x− Tx‖,

which completes the proof. �

The following theorem can be proved using Lemma 2.

Theorem 1. Let C be a nonempty closed and convex subset of a Banach space

E and T : C → C be a firmly k-lipschitzian mapping (k > 1) such that T n = I
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(n > 2). If

k < k0(n) = sup

{

s > 1 :

n−1
∑

j=2

(

s

s + 1

)j

sn−j 1 − sj−1

1 − s
= 1

}

,

then T has a fixed point in C.

Proof: Let x be an arbitrary point in C and let z = T n−1x. Then from Lemma 2,
we get

(6)

‖z − Tz‖ = ‖T n−1x− T nx‖

≤





n−1
∑

j=2

(

k

k + 1

)j

kn−j 1 − kj−1

1 − k



 ‖x− Tx‖.

Moreover

(7)

‖z − x‖ = ‖T n−1x− x‖
≤ ‖T n−1x− T n−2x‖ + ‖T n−2x− T n−3x‖ + · · · + ‖Tx− x‖
≤ (kn−2 + kn−3 + · · · + k + 1)‖Tx− x‖.

Since

n−1
∑

j=2

(

k

k + 1

)j

kn−j 1 − kj−1

1 − k
< 1

for k < k0(n), by inequality (6) and (7), Lemma 1 implies the existence of fixed
points of T in C. �

Remark 1. Note that Theorem 1 implies

k0(3) ≥ 3

√

47

54
−

√
93

18
+

3

√

47

54
+

√
93

18
+

1

3
≈ 2.1479,

which is better than all estimates of k0(3) obtained in [8], [11], [7] for an arbitrary
Banach space and better even than that obtained in [12] for a Hilbert space. It
is worth noting that so far the estimates of k0(n) which are greater than 2 have
been obtained only for n = 2 and in Hilbert space.

Remark 2. It follows from Theorem 1 that

k0(4) ≥

√

1

8
+

√
2

2
+

√
2

4
≈ 1.2657.

It is better estimate of k0(4) than obtained in [8], [11], [7] for a Banach space.
For n ≥ 5 Theorem 1 does not give better estimates than obtained in [7].
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3. Hölder continuous retractions

In this section, we will show that, for a mapping T of a bounded, closed and
convex set C, the limit of the iteration process discussed above, i.e.

x0 = x ∈ C

xm+1 = T n−1xm, m = 0, 1, 2, . . .

is a Hölder continuous retraction from C to Fix(T ).
Let C be a nonempty, closed, convex and bounded subset of a Banach space E.

Recall that a set D ⊂ C is a retract of C if there is a continuous mapping
R : C → D (retraction) with Fix(R) = D. We say that a mapping R : C → C is
Hölder continuous if there are constants L ≥ 0 and 0 < β < 1 such that for any
x, y ∈ C it holds:

(8) ‖Rx−Ry‖ ≤ L‖x− y‖β.

An example of a real function (with x ≥ 0) satisfying the Hölder condition but
not satisfying the Lipschitz condition is a function f(x) = xβ .

The following lemma gives a condition for existence of a Hölder continuous
retraction on the fixed point set.

Lemma 3 ([12]). Let X be a complete metric space and T : X → X be a

continuous mapping. Suppose there are u : X → X , 0 < A < 1 and B > 0, such
that for every x ∈ X :

(i) d(Tu(x), u(x)) ≤ Ad(Tx, x),
(ii) d(u(x), x) ≤ B d(Tx, x).

Then we have that Fix(T ) 6= ∅.
If we define R(x) = limn→∞ un(x) and u is a continuous mapping, then R is

a retraction from X to Fix(T ). If additionally u satisfies the Lipschitz condition

with constant k > 1 and diam(X) < ∞, then R is a Hölder continuous retraction

from X to Fix(T ).

Now, using Lemma 3, Theorem 1 and inequalities (6) and (7) we get the fol-
lowing conclusion.

Corollary 1. Let n > 2 be natural and let C be a nonempty, closed, convex and

bounded subset of a Banach space E. Let a mapping T : C → C be n-periodic

and firmly k-lipschitzian with 1 < k < k0(n). If we define mapping F : C → C

such that Fx = T n−1x, then the mapping R : C → C defined by

R(x) = lim
p→∞

F p(x)

is a Hölder continuous retraction from C to Fix(T ).
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[7] Górnicki J., Pupka K., Fixed point theorems for n-periodic mappings in Banach spaces,

Comment. Math. Univ. Carolin. 46 (2005), no. 1, 33–42.
[8] Kirk W.A., A fixed point theorem for mappings with a nonexpansive iterate, Proc. Amer.

Math. Soc. 29 (1971), 294–298.
[9] Kirk W.A., Sims B. (eds.), Handbook of Metric Fixed Point Theory , Kluwer Acad. Pub.,

Dordrecht-Boston-London, 2001.
[10] Koter M., Fixed points of lipschitzian 2-rotative mappings, Boll. Un. Mat. Ital. C (6) 5

(1986), 321–339.

[11] Linhart J., Fixpunkte von Involutionen n-ter Ordnung , Österreich. Akad. Wiss. Math.-
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