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Fixed-place ideals in commutative rings

Ali Rezaei Aliabad, Mehdi Badie

Abstract. Let I be a semi-prime ideal. Then P◦ ∈ Min(I) is called irredundant
with respect to I if I 6=

⋂
P◦ 6=P∈Min(I) P . If I is the intersection of all irre-

dundant ideals with respect to I, it is called a fixed-place ideal. If there are no
irredundant ideals with respect to I, it is called an anti fixed-place ideal. We
show that each semi-prime ideal has a unique representation as an intersection
of a fixed-place ideal and an anti fixed-place ideal. We say the point p ∈ βX is a
fixed-place point if Op(X) is a fixed-place ideal. In this situation the fixed-place
rank of p, denoted by FP-rankX(p), is defined as the cardinal of the set of all
irredundant prime ideals with respect to Op(X). Let p be a fixed-place point,
it is shown that FP-rankX(p) = η if and only if there is a family {Yα}α∈A of
cozero sets of X such that: 1- |A| = η, 2- p ∈ clβX Yα for each α ∈ A, 3-
p /∈ clβX(Yα ∩ Yβ) if α 6= β and 4- η is the greatest cardinal with the above
properties. In this case p is an F -point with respect to Yα for any α ∈ A.
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1. Introduction

In this article, any ring R is commutative with unity. A semi-prime ideal means
an ideal which is an intersection of prime ideals. For each ideal I of R and each
element a of R, we denote the ideals {x ∈ R : ax ∈ I} by (I : a). When I = {0}
we write instead Ann(a) and call this the annihilator of a. If Ann(a) is maximal
in the set of all annihilators of nonzero elements of R, then Ann(a) is a prime
ideal of R, and it is called an affiliated prime ideal. A prime ideal P is said to be a
minimal prime ideal over an ideal I, if there are no prime ideals strictly contained
in P that contain I. By Min(I) we mean the set of all minimal prime ideals over I;
we use Min(R) instead of Min({0}). A ring is called reduced, if the ideal {0} is
a semi-prime ideal. Zd(R) stands for the set of all zero divisors of R. A prime
ideal P is called a Bourbaki (resp. Zariski-Samuel) associated prime divisor of an
ideal I if (I : x) = P (resp., (I : x) is P -primary) for some x ∈ R. We denote the
set of Bourbaki (Zariski-Samuel) associated prime divisors of an ideal I by B(I)
(resp., [Z-S](I)). It is clear that if I is a semi-prime ideal, then B(I) = [Z-S](I).
A representation I =

⋂

P∈P P of I as an intersection of prime ideals is called
irredundant if no P ∈ P may be omitted.
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For every S ⊆ R, by h(S) and hc(S) we mean the sets {P ∈ Min(R) : S ⊆ P}
and Min(R) \ h(S), respectively. Recall that the Zariski topology on Min(R) is
the one generated by the closed base {h(a) : a ∈ R}.

We assume throughout the paper that any topological space X is Tychonoff,
βX is the Stone-Čech compactification of X and C(X) is the ring of all real
valued continuous functions on X . For any f ∈ C(X), we denote f−1{0} and
X \ f−1{0} by Z(f) and Coz(f), respectively. Supposing S ⊆ C(X), we define
Z(S) = {Z(f) : f ∈ S} and we use Z(X) instead of Z(C(X)). For any B ⊆ Z(X),
we define Z−1(B) = {f ∈ C(X) : Z(f) ∈ B}. Suppose that A ⊆ βX , then
by MA(X) and OA(X) we mean the sets {f ∈ C(X) : A ⊆ clβXZ(f)} and
{f ∈ C(X) : A ⊆ intβXclβXZ(f)}, respectively. If A = {p} for some p ∈ βX ,
then for brevity, we use the notations Mp(X) and Op(X). We denote Z(Op(X))
by Op(X). An element p ∈ βX is called an F -point with respect to X if Op(X) is
prime ideal. The set of all isolated points of a topological space X is denoted by
I(X). Clearly, I(X) = X if and only if X has a smallest dense subspace; exactly,
this subspace is equal to I(X). The reader is referred to [6] for other terms and
notations.

In Section 2, we introduce irredundant families and irredundant prime ideals
with respect to a semi-prime ideal. We use these notions to define central concepts
of the article: fixed-place ideals, anti fixed-place ideals, and fixed-place rank for
the fixed-place ideals. We give equivalence conditions for the above concepts. We
prove that the intersection of two fixed-place ideals is fixed-place. In Section 3,
we show that each semi-prime ideal has a unique intersection representation of
a fixed-place ideal and an anti fixed-place ideal. In Section 4, we obtain some
results from viewpoint of the Zariski topology. We show that I is a fixed-place
(an anti fixed-place) ideal if and only if the set of isolated points of Min(I) is a
dense subspace (Min(I) has no isolated point). We introduce fixed-place families
in this section, and prove that P ⊆ Spec(R) is fixed-place if and only if P is
discrete in the Zariski topology. In the final section, we study fixed-place ideals in
C(X). We show that the zero ideal of C(X) is fixed-place (anti fixed-place) if and
only if I(X) is dense in X (X has no isolated point). We introduce fixed-place
points and fixed-place rank of these points and we generalize Proposition 3.1 in [8]
and Theorem 3.1 in [10].

2. Fixed-place ideal

By Theorem 2.1 and Proposition 4.11 of [12], each irredundant prime ideal of a
semi-prime ideal I is of the form (I : x), for some x ∈ R, and if a semi-prime ideal
I is equal to an irredundant intersection of the family {Pα}α∈A of prime ideals,
then {Pα}α∈A is the set of all irredundant prime ideals of I. We can summarize
these facts as follows.

Theorem 2.1. If I is a semi-prime ideal, then the following statements are

equivalent.
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(a) There is a family P of prime ideals such that I =
⋂

P is an irredundant

intersection.

(b) I =
⋂

B(I).
(c) I =

⋂

[Z-S](I).
(d) I =

⋂

{(I : x) : x ∈ R and (I : x) is a prime ideal }.

In this situation, we have

P = B(I) = [Z-S](I) = {(I : x) : x ∈ R and (I : x) is a prime ideal }.

Definition 2.2. Suppose that I is a semi-prime ideal of a ring R and ∅ 6= P ⊆
Min(I). We say P is irredundant with respect to I if I 6=

⋂

P∈Min(I)\P P . If

P = {P}, then we say that P is irredundant with respect to I. If I is equal to the
intersection of irredundant prime ideals of I, then we call I a fixed-place ideal ,
exactly, by Theorem 2.1, we have I =

⋂

B(I). In this situation the fixed-place

rank of I is denoted by FP–rank(I), and it is defined by the cardinal of B(I). If
B(I) = ∅, i.e., I has no irredundant prime ideal, then we call I an anti fixed-place

ideal .

The following proposition is an immediate consequence of Theorem 2.1.

Proposition 2.3. If I is a semi-prime ideal of a ring R and A ⊆ B(I) 6= ∅, then
J =

⋂

P∈A P is a fixed-place ideal and B(J) = A.

Proposition 2.4. Let I be a semi-prime ideal of a ring R and P ⊆ Min(I). If

I =
⋂

P∈P P , then B(I) ⊆ P .

Proof: If P0 /∈ P , then P ⊆ Min(I) \ {P0}. Thus

I ⊆
⋂

P0 6=P∈Min(I)

P ⊆
⋂

P0 6=P∈P

P = I ⇒
⋂

P0 6=P∈Min(I)

P = I ⇒ P0 /∈ B(I).

Hence B(I) ⊆ P . �

Theorem 2.5. Let I be a semi-prime ideal of a ring R, P ⊆ Min(I) and Q =
{P/I : P ∈ P}. The family P is irredundant with respect to I if and only if Q is

irredundant with respect to the zero ideal of the ring R/I.

Proof: We know that

I(a) ∈
⋂

P/I∈Min(R/I)\Q

P

I
=

⋂

P∈Min(I)\P

P

I
⇔ a ∈

⋂

P∈Min(I)\P

P.

Thus
⋂

P/I∈Min(R/I)\Q

P

I
= {0} ⇔

⋂

P∈Min(I)\P

P = I.

Therefore, P is irredundant with respect to ideal I if and only if Q is irredundant
with respect to the zero ideal of the ring R/I. �
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By the above theorem, we can see that for studying the fixed-place ideals it is
sufficient to focus on the zero ideal of the reduced rings. Thus, in the remainder
of this section we assume that R is reduced. By this assumption, it is clear that
if P is a minimal prime ideal of R, then P is irredundant with respect to the zero
ideal if and only if P is an affiliated prime ideal.

Proposition 2.6. Suppose that R is a ring and P ⊆ Min(R).

(a) If P ∩ B({0}) 6= ∅, then P is irredundant with respect to {0}.
(b) If J =

⋂

P∈B({0}) P ,

∅ 6= S = {P ∈ Min(R) : P /∈ B({0}) and P 6⊇ J} and

∅ 6= T = {P ∈ Min(R) : P /∈ B({0}) and P ⊇ J}

then S is irredundant with respect to the zero ideal, where S∩B({0}) = ∅.
Also, T is not irredundant with respect to the zero ideal.

Proof: The proof is straightforward. �

In this part, we study the irredundant family with respect to the zero ideal
and give some equivalent conditions.

Proposition 2.7. Let P ⊆ Min(R). If P is an irredundant family with respect

to the zero ideal R, then there exists 0 6= a ∈ R such that
⋂

P ⊆ Ann(a).

Proof: Since P is an irredundant family with respect to the zero ideal of R, we
have that

⋂

P∈Min(R)\P

P 6= {0}.

Say 0 6= a ∈
⋂

P∈Min(R)\P P . For any b ∈
⋂

a∈P P ,

ab ∈
⋂

P∈(Min(R)\P)∪P

P =
⋂

P∈Min(R)

P = {0}.

Therefore,
⋂

P∈P P ⊆ Ann(a). �

Lemma 2.8. For each element a ∈ R, we have Min(Ann(a)) = hc(a).

Proof: We claim that a /∈ P for each P ∈ Min(Ann(a)). Suppose, on the
contrary, that a ∈ P for some P ∈ Min(Ann(a)). Then

∃b /∈ P, ab ∈ Ann(a) ⇒ a2b = 0 ⇒ ab = 0 ⇒ b ∈ Ann(a) ⇒ b ∈ P,

which is impossible. Now, we prove that P is a minimal prime ideal for each
P ∈ Min(Ann(a)). To see this,

∀x ∈ P ∃y /∈ P xy ∈ Ann(a) ⇒ xya = 0.

But ya /∈ P , hence P is a minimal prime ideal and therefore P ∈ hc(a). Con-
sequently, Min(Ann(a)) ⊆ hc(a). Now, we show that hc(a) ⊆ Min(Ann(a)).
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Suppose that P ∈ hc(a). It is sufficient to show that Ann(a) ⊆ P . But it is
evident, because aAnn(a) = {0} ⊆ P . �

Proposition 2.9. Let a be a nonzero element of R and P ⊆ Min(Ann(a)). The
family P is irredundant with respect to the zero ideal of R if and only if P is

irredundant with respect to Ann(a).

Proof: ⇒) Suppose that the assertion of the proposition is false, then

Ann(a) =
⋂

P∈Min(Ann(a))\P

P.

Thus

{0} =
⋂

P∈Min(R)

P =
(

⋂

P∈Min(Ann(a))

P
)

∩
(

⋂

P∈Min(R)
P /∈Min(Ann(a))

P
)

=
(

⋂

P∈Min(Ann(a))\P

P
)

∩
(

⋂

P∈Min(R)
P /∈Min(Ann(a))

P
)

=
⋂

P∈Min(R)\P

P.

Therefore, P is not irredundant with respect to the zero ideal of R and this is
a contradiction.

⇐) Let P ⊆ Min(Ann(a)) = hc(a) be irredundant with respect to Ann(a). We
show that P is irredundant with respect to the zero ideal. On the contrary

{0} =
⋂

P∈Min(R)\P

P =
(

⋂

P∈hc(a)\P

P
)

∩
(

⋂

P∈h(a)

P
)

.

Since
⋂

P∈h(a) P 6⊆ Q for each Q ∈ hc(a), it follows that

∀Q ∈ hc(a)
⋂

P∈hc(a)\P

P ⊆ Q.

Hence
⋂

P∈hc(a)\P

P ⊆
⋂

P∈hc(a)

P = Ann(a) ⇒
⋂

P∈hc(a)\P

P = Ann(a),

which is a contradiction. �

An immediate consequence of the above proposition is that Min(Ann(a)) is
irredundant with respect to the zero ideal of R.

Proposition 2.10. If the zero ideal in a ring R is a fixed-place ideal, then

Zd(R) =
⋃

P∈B({0}) P .

Proof: Clearly,
⋃

P∈B({0}) P ⊆ Zd(R). We only need to show that Zd(R) ⊆
⋃

P∈B({0}) P . On the contrary, suppose that there exists a zero divisor a which is

not in
⋃

P∈B({0}) P , then a nonzero element b exists such that ab = 0. Since for
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each P ∈ B({0}), a /∈ P and ab = 0 ∈ P , it follows that 0 6= b ∈
⋂

P∈B({0}) P .

This contradicts our assumption. �

Now, we are going to show that the intersection of two fixed-place ideals is also
a fixed-place ideal. To see this, we need the following lemma.

Lemma 2.11. If I and J are two fixed-place ideals of R such that I 6⊆ P for

each P ∈ B(J) and J 6⊆ P for each P ∈ B(I), then I ∩ J is a fixed-place ideal.

Proof: Clearly, we have I ∩ J =
⋂

{P ∈ Spec(R) : P ∈ B(I) ∪ B(J)}. Now, by
Theorem 2.1, it is enough to prove that B(I ∩ J) = B(I) ∪ B(J). To prove this,
suppose that P◦ ∈ B(I) ∪ B(J). Without loss of generality, we may assume that
P◦ ∈ B(I). On the contrary, let I ∩ J =

⋂

P∈B(I)∪B(J)
P 6=P0

P . Thus

⋂

P∈B(I)∪B(J)
P 6=P◦

P ⊆ P◦ ⇒ J ∩
(

⋂

P∈B(I)
P 6=P◦

P
)

⊆ P◦

⇒
⋂

P∈B(I)
P 6=P◦

P ⊆ P◦ ⇒
⋂

P∈B(I)
P 6=P◦

P = I,

which is a contradiction. �

Theorem 2.12. If I and J are two fixed-place ideals of R, then I ∩ J is also

a fixed-place ideal.

Proof: Let I ′ =
⋂

{P ∈ B(I) : P 6⊇ J} and J ′ =
⋂

{P ∈ B(J) : P 6⊇ I ′}. Then,
it is clear that I ∩ J = I ′ ∩ J = I ′ ∩ J ′, B(J ′) = {P ∈ B(J) : P 6⊇ I} and
B(I ′) = {P ∈ B(I) : P 6⊇ J}. Therefore

(1) ∀P ∈ B(I ′) J ′ 6⊆ P, ∀P ∈ B(J ′) I ′ 6⊆ P.

On the other side, I ⊆ I ′ and J ⊆ J ′. Therefore, I ′ and J ′ are two fixed-
place ideals such that they satisfy the condition of Lemma 2.11 and consequently
I ′ ∩ J ′ = I ∩ J is a fixed-place ideal. �

In the following, we show that if I is not a fixed-place ideal, then there is no
smallest fixed-place ideal containing I.

Proposition 2.13. Let I be a semi-prime ideal of a ring R. If I is not fixed-place,
then the set of all fixed-place ideals containing I has no minimal element.

Proof: On the contrary, suppose that J is a minimal element of that set. Con-
sequently, J∩P is a fixed-place ideal for each P ∈ Min(I). Thus J = J∩P , hence
J ⊆ P . This implies that J =

⋂

P∈Min(I) P = I. It follows that I is a fixed-place

ideal, which is a contradiction. �
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3. Unique decomposition

Let P be the set of all subsets of Spec(R). Throughout this section ∼ and ≤
denote the relations on P defined by

S ≤ T ⇔ ∀P1 ∈ S, ∃P2 ∈ T P1 ⊆ P2

and

S ∼ T ⇔
⋂

S =
⋂

T .

It is easy to check that P with relation ≤ is a complete lattice, in which Spec(R)
is the greatest element and ∅ is the smallest element. Furthermore, the relation
∼ is an equivalence relation. If we put P = {[S] : S ⊆ Spec(R)} and I = {I : I
is a semi-prime ideal of R}, then the function K : P −→ I (resp. H : I −→ P) is
defined by K([S]) =

⋂

[S] (resp. H(I) = [Min(I)]). Throughout this section we
use the above notation.

Lemma 3.1. Let {Sα}α∈A and {Tα}α∈A be two families of subsets of Spec(R).
If Sα ∼ Tα for each α ∈ A, then [

⋃

α∈A Sα] = [
⋃

α∈A Tα].

Proof: The proof is standard. �

Definition 3.2. We call two families S and T of P essentially disjoint if

∀P ∈ S
⋂

T 6⊆ P, ∀P ∈ T
⋂

S 6⊆ P.

In this way, we call two classes S and T essentially disjoint, if there are two
essentially disjoint families S and T in S and T , respectively. Finally, we say
two semi-prime ideals I and J are essentially disjoint if [H(I)] and [H(J)] are
essentially disjoint.

Theorem 3.3. If I is a semi-prime ideal of R, then we can write I as a unique

intersection of a fixed-place ideal and an anti fixed-place ideal which are essentially

disjoint.

Proof: Let J =
⋂

P∈B(I) P , A = {P ∈ Min(I) : P /∈ B(I), P 6⊇ J}, K =
⋂

P∈A P and B = {P ∈ Min(I) : P /∈ B(I), P ⊇ J}. Then

I =
⋂

P∈Min(I)

P =
(

⋂

P∈B(I)

P
)

∩
(

⋂

P∈B

P
)

∩
(

⋂

P∈A

P
)

= J ∩K.

By Corollary 2.3, J is fixed-place. We claim that A ⊆ Min(K), because for each
P◦ ∈ A, K ⊆ P ⊆ P◦, we have I ⊆ K ⊆ P ⊆ P◦. Since P◦ ∈ Min(I), P = P◦ and
therefore P◦ ∈ Min(K). By Proposition 2.4, B(K) ⊆ A. For each P◦ ∈ A,

P◦ ⊇ I =
⋂

P◦ 6=P∈Min(I)

P =
(

⋂

P∈B(I)

P
)

∩
(

⋂

P∈B

P
)

∩
(

⋂

P◦ 6=P∈A

P
)

= J ∩
(

⋂

P◦ 6=P∈A

P
)

.
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Since J 6⊆ P◦, we can write

⋂

P◦ 6=P∈A

P ⊆ P◦ ⇒ K =
⋂

P∈A

P = (
⋂

P◦ 6=P∈A

P ) ∩ P◦ =
⋂

P◦ 6=P∈A

P.

This implies that P◦ /∈ B(K) and therefore B(K) = ∅, thus K is an anti fixed-
place ideal. Now, suppose that I = J1 ∩K1 where J1 is a fixed-place ideal, K1

is an anti fixed-place ideal and J1 and K1 are essentially disjoint. So there are
some essentially disjoint families of prime ideals P and Q such that J1 =

⋂

P
and K1 =

⋂

Q. Since J1 is fixed-place, we can assume that P = B(J1). Now,
we prove that J1 = J . To prove this, it is enough to show that B(J) = B(J1).
If P◦ ∈ B(J) = B(I), then there exists a ∈ R such that P◦ = (I : a), thus
P◦ = (J1 ∩ K1 : a) = (J1 : a) ∩ (K1 : a). Since K1 is anti fixed-place, by
Theorem 2.1, we have P◦ 6= (K1 : a). Hence P◦ = (J1 : a) and this implies
that P◦ ∈ B(J1). Therefore, B(J) ⊆ B(J1). Conversely, if P◦ ∈ B(J1), then
K1 6⊆ P◦ and so there exists a ∈ K1 \ P◦. Hence, (I : a) = (J1 ∩ K1 : a) =
(J1 : a) =

⋂

a/∈P∈B(J1)
P . Since (J1 : a) is fixed-place and P◦ ∈ B(J1 : a),

Theorem 2.1 shows that there exists b ∈ R such that ((J1 : a) : b) = P◦. Therefore,
(I : ab) = ((I : a) : b) = ((J1 : a) : b) = P◦. This implies that P◦ ∈ B(I) = B(J),
thus B(J1) ⊆ B(J), and therefore J1 = J . To complete the proof, we must show
that K = K1. Clearly, since J ∩ K = I = J1 ∩ K1, for each Q ∈ Q, we have
J = J1 6⊆ Q and so K ⊆ Q. It follows that K ⊆ K1. By the same manner we can
see K1 ⊆ K. Thus, K1 = K. �

Proposition 3.4. The zero ideal in a reduced ring R is fixed-place if and only if

Ann(a) is fixed-place, for each a ∈ Zd(R).

Proof: ⇒) Since the zero ideal is a fixed-place ideal, {0} =
⋂

P∈B({0}) P . Thus

Ann(a) = (0 : a) =
(

⋂

P∈B({0}) P : 0
)

=
⋂

a/∈P∈B({0}) P for each a ∈ Zd(R). By

Corollary 2.3, it implies that Ann(a) is a fixed-place ideal.
⇐) By Theorem 3.3, {0} = J ∩K where J is a fixed-place ideal, K is an anti

fixed-place ideal and J and K are essentially disjoint. To obtain contradiction,
suppose that {0} is not fixed-place, then J 6= {0}, so there exists 0 6= a ∈ J . It is
clear that a ∈ Zd(R). Consequently

(1) Ann(a) = (0 : a) = (J ∩K : a) = (K : a).

Since Ann(a) is a fixed-place ideal, it has an irredundant prime ideal P . Hence,
by Theorem 2.1, there exists an element b in R such that (Ann(a) : b) = P . We
conclude from (1) that (K : ab) = ((K : a) : b) = (Ann(a) : b) = P . Theorem 2.1
shows that P ∈ B(K), which contradicts our assumption. �

The following corollary is an immediate consequence of Theorem 2.5 and Propo-
sition 3.4. This corollary will be needed to prove the next proposition.
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Corollary 3.5. Suppose that J is a semi-prime ideal of a ring R. The ideal J
is fixed-place if and only if (J : a) is a fixed-place ideal for each a ∈ R where

J ⊂ (J : a).

Proposition 3.6. The zero ideal in a reduced ring R is an anti fixed-place ideal

if and only if Ann(a) is an anti fixed-place ideal for each a ∈ Zd(R).

Proof: ⇒) On the contrary, if for some a ∈ Zd(R), Ann(a) is not anti fixed-
place, then there exist b in R and a prime ideal P such that P = (Ann(a) : b),
by Theorem 2.1. In this way P = (Ann(a) : b) = (0 : ab) = Ann(ab). So, by
Theorem 2.1, P ∈ B({0}), which is impossible.

⇐) By Theorem 3.3, there is a fixed-place ideal J and an anti fixed-place ideal
K such that {0} = J ∩K. Suppose that the zero ideal is not an anti fixed-place
ideal, so K 6= {0}. Hence there exists 0 6= a ∈ K. It is clear that a ∈ Zd(R) and

(2) Ann(a) = (0 : a) = (J ∩K : a) = (J : a).

Since J is a fixed-place ideal, (J : a) is also a fixed-place ideal, by Corollary 3.5.
So, we can conclude from (2) that Ann(a) is a fixed-place ideal, which is a con-
tradiction. �

4. Fixed-place ideal and Zariski topology

Throughout this section, for convenience, by Z we mean the set Min(R).

Theorem 4.1. Let R be a reduced ring and P ⊆ Z. The family P is irredundant

with respect to the zero ideal of R if and only if intZP 6= ∅.

Proof: ⇒) Since P is an irredundant family with respect to the zero ideal of R,
we have

⋂

P∈Z\P

P 6= {0}.

Hence, there is a nonzero element a ∈
⋂

P∈Z\P P . Obviously, ∅ 6= hc(a) ⊆ P .

Therefore, intZP 6= ∅.
⇐) Since intZP 6= ∅, there is an element a ∈ R such that

∅ 6= hc(a) ∩ Z ⊆ P ⇒ Z \ P ⊆ h(a) 6= Z ⇒ 0 6= a ∈
⋂

P∈h(a)

P ⊆
⋂

P∈Z\P

P.

Consequently, P is irredundant with respect to the zero ideal. �

An immediate conclusion of the above theorem is the following corollary.

Corollary 4.2. Let P be a minimal prime ideal of a reduced ring R. The ideal

P is an isolated point of Z if and only if P ∈ B({0}).

Corollary 4.3. The zero ideal of a reduced ring R is anti fixed-place if and only

if Z has no isolated point.

Proof: It is evident, by Corollary 4.2. �
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Theorem 4.4. The zero ideal of a reduced ring R is a fixed-place ideal if and

only if I(Z) = Z.

Proof: ⇒) Clearly, by Corollary 4.2, B({0}) = I(Z). On the other side,

cl
Z
B({0}) = h

(

⋂

P∈B({0})

P
)

= h({0}) = Z.

Thus, I(Z) = Z.

⇐) Using Corollary 4.2, since I(Z) = Z, we have Z = cl
Z
B({0}). So, we can

write

Z = cl
Z
B({0}) = h

(

⋂

P∈B({0})

P
)

⇒ h
(

⋂

P∈B({0})

P
)

= Z ⇒ {0} =
⋂

P∈B(0)

P.

Therefore, the zero ideal is fixed-place. �

Definition 4.5. Let P be a family of prime ideals of a ring R. We say P is a
fixed-place family, whenever

⋂

P◦ 6=P∈P P 6⊆ P◦ for each P◦ ∈ P . Obviously, if

P is a fixed-place family, by Theorem 2.1, the ideal I =
⋂

P is fixed-place and
B(I) = P .

Theorem 4.6. Let P be a family of prime ideals of a ring R. The family P
is fixed-place if and only if P is discrete as a subspace of Spec(R) with Zariski

topology.

Proof: ⇒) For convenience, assume that V (S) denotes the set of all prime ideals
containing S ⊆ R. Suppose that P◦ ∈ P and I =

⋂

P . It is enough to show that
P◦ is isolated in Min(I) with Zariski topology. Set J =

⋂

P◦ 6=P∈P P . Since P is a

fixed-place family, we have J 6⊆ P◦. Clearly, V (J) ∩Min(I) = Min(I) \ {P◦} and
hence P◦ is isolated in Min(I).

⇐) Consider P◦ ∈ P . Since P◦ is isolated in P , there exists an ideal K of R
such that V (K) ∩ P = P \ {P◦}. It follows that K 6⊆ P◦, K ⊆

⋂

P◦ 6=P∈P P and

hence
⋂

P◦ 6=P∈P P 6⊆ P◦. Therefore, P is a fixed-place family. �

5. Fixed-place ideal and C(X)

This section is divided in two parts. First we study the zero ideal of C(X) and
give two equivalent topological conditions. In the second part, we introduce the
fixed-place point and the fixed-place rank of this point. Throughout this section
I(X) denotes the set of all isolated points of a topological space X .

Lemma 5.1. Let A be a subset of a topological space X . The subset A is dense

in X if and only if MA(X) = OA(X) = {0}.
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Proof: ⇒) Suppose that f ∈ MA(X). Since A ⊆ Z(f), A is dense in X and
Z(f) is closed, so Z(f) = X . Consequently, MA(X) = OA(X) = {0}.

⇐) If A is not dense in X , then there is a point p in X such that p /∈ clXA.
Thus, there is a function f in C(X) such that p /∈ Z(f) and A ⊆ intXZ(f), hence
0 6= f ∈ OA(X). This clearly forces MA(X) ⊇ OA(X) 6= 0. �

Theorem 5.2. Let I(X) be the set of all isolated points of X , then B({0}) =
{Op(X) : p ∈ I(X)}.

Proof: Define A = {p ∈ βX : ∃P ∈ B({0}) Op(X) ⊆ P}. We first prove that A
is a subset of each dense subset of βX . Assume that D is a dense subset of βX .
Fix P = {P ∈ Min(C(X)) : ∃p ∈ D Op ⊆ P}. If P◦ is a minimal prime ideal and
P◦ /∈ P , then

⋂

P◦ 6=P∈Min(C(X))

P ⊆
⋂

P∈P

P =
⋂

p∈D

⋂

P∈Min(Op(X))

P =
⋂

p∈D

Op(X) = OD(X).

By Lemma 5.1, OD(X) = {0}, thus
⋂

P◦ 6=P∈Min(C(X)) P = {0}. It shows that

P◦ /∈ B({0}), and therefore B({0}) ⊆ P . Now suppose p ∈ A, then there exists
P ∈ B({0}) such that Op(X) ⊆ P . Therefore P ∈ P and consequently there

exists p′ ∈ D such that Op
′

(X) ⊆ P . By [6, 2.11] and [6, 4I.4], every prime z-
ideal contains a unique Ox(X) for some x ∈ βX , hence p = p′ ∈ D and therefore
A ⊆ D, which is desired. It is easily seen that the intersection of all dense subset
of βX is equal to I(X), thus A ⊆ I(X), and therefore

(3) B({0}) ⊆
{

Op(X) : p ∈ I(X)
}

.

Now, consider p◦ ∈ I(X). Then it is clear that Op◦(X) is prime and

⋂

Op◦ 6=P∈Min(C(X))

P ⊇
⋂

p◦ 6=p∈X

Op(X) = OX\{p◦}(X) 6= 0.

Hence, Op◦(X) ∈ B({0}). Thus

(4) B({0}) ⊇
{

Op : p ∈ I(X)
}

.

From (3) and (4), we obtain B({0}) = {Op(X) : p ∈ I(X)}. �

Corollary 5.3. A space X has an isolated point if and only if the space

Min(C(X)) has an isolated point.

Proof: Applying Corollary 4.2 and Theorem 5.2, it follows clearly. �

Corollary 5.4. The zero ideal of C(X) is anti fixed-place if and only if X has

no isolated point.

Proof: By Corollary 4.3 and Theorem 5.2, it is obvious. �

Theorem 5.5. The zero ideal in the ring C(X) is fixed-place if and only if

I(X) = X . Then FP–rank({0}) = |I(X)|.
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Proof: ⇒) Since the zero ideal is a fixed-place ideal, Theorem 5.2 shows that

{0} =
⋂

P∈B({0})

P =
⋂

p∈I(X)

Op(X) = OI(X)(X).

We conclude from Lemma 5.1 that I(X) is dense in X .

⇐) Since I(X) = X , by Lemma 5.1, OI(X)(X) = {0}. Now, using Theorem 5.2,
we have

⋂

P∈B({0})

P =
⋂

p∈I(X)

Op = OI(X) = {0}.

Therefore, the zero ideal of C(X) is fixed-place. �

Corollary 5.6. I(X) is a dense subspace if and only if the set of isolated points

of Min(C(X)) is also a dense subspace.

Proof: It is evident, by Theorems 4.4 and 5.5. �

Example 5.7. Let X be an almost discrete space with the only non-isolated
point p. The zero ideal of C(X) is a fixed-place ideal and FP–rank({0}) = |X |,
by Theorem 5.5. Thus, for every cardinal number α there is a fixed-place ideal of
fixed-place rank α.

The notion of rank of a point of a topological space was first introduced and
studied in [8, 1.7], further in [10] and [11], and generalized in [1]. One can find in
[9, 4.1] a basis of this concept as FMP -point. The following definition is based
on similar definition in [3, 4.3] with a few differences. Actually, the root of this
generalized definition may be found in [1].

Definition 5.8. Let X be a topological space and p ∈ βX . We call p a fixed-place

point with respect to X if Op(X) is a fixed-place ideal and the fixed-place rank of
p with respect to X , denoted by FP–rankX(p), is defined to be FP–rank(Op(X)).

In [3, Theorem 4.4], it is shown that there is a point of fixed-place rank η for
any given cardinal η. It is easy to see that p is a fixed-place point with respect
to X if and only if it is a fixed-place point with respect to βX , for each p ∈ βX .
Furthermore, if p is a fixed-place point with respect to X , then FP–rankX(p) =
FP–rankβX(p).

The Proposition 3.1 of [8] states: “Let X be a compact space. A point p ∈ X
has rank k(<∞) if and only if there is a family of k pairwise disjoint cozero sets
with p being in each of their closures, but no larger family of pairwise disjoint
cozero sets with this feature.” Also, in [10, Theorem 3.1] the same proposition
is given for completely regular spaces. Of course, this proposition, with a few
differences, was also shown in [2]. In the remainder of this section, we want to
generalize this proposition for any p ∈ βX and any cardinal number. To do this,
we need some facts.
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Suppose that Y is a subspace of X and F(X) and F(Y ) are the set of all
z-filters of X and Y , respectively. Let γ : F(Y ) → F(X) be given by

γ(F ) = {Z ∈ Z(X) : Z ∩ Y ∈ F}.

Then ψ = Z−1γZ is a map from all z-ideals of C(Y ) to the set of all z-ideals
of C(X). We consider Φ : βY → βX as extension of the identity map Y → X .
In the remainder of this section we use the above notation. See [4] for more
information about the above maps.

Proposition 5.9. Let Y be a subspace of X . The subspace

Y ′ = {p ∈ βX : Φ−1(p) is a singleton}

is the largest subspace of βX that can be considered homeomorphically as a

subspace of βY by Φ.

Proof: The proof is standard. �

The above proposition leads us to the following definition.

Definition 5.10. Suppose that Y is a subspace of X and p ∈ βX . We say p is
an F -point with respect to Y if Φ−1(p) is a singleton and this point is an F -point
with respect to Y .

Proposition 5.11. Let X be a compact space, p ∈ X and Y = Coz(f), for some

f ∈ C(X). If p ∈ clXY , then ψ is a one-to-one correspondence map between
⋃

Φ(q)=pMin(Oq(Y )) and {P ∈ Min(Op(X)) : f /∈ P}.

Proof: It follows from [4, Theorem 4.1 and Theorem 4.2]. �

Lemma 5.12. Let X be a topological space, f ∈ C(X) and p ∈ βX . A prime

ideal P is irredundant with respect to Op(X) if and only if there is a cozero set

Y in X such that p is an F -point with respect to Y and P = ψ(Oq(Y )), in which

Φ(q) = p.

Proof: Suppose that Y = Coz(f) for some f ∈ C(X). By Proposition 5.11,
there is the one-to-one correspondence ψ between

⋃

Φ(q)=pMin(Oq(Y )) and {P ∈

Min(Op(X)) : f /∈ P}. Thus

(5)

(Op : f) =
(

⋂

P∈Min(Op(X))

P : f
)

=
⋂

P∈Min(Op(X))

(P : f)

=
⋂

P∈Min(Op(X))
f /∈P

P =
⋂

Φ(q)=p

(

⋂

Q∈Min(Oq(Y ))

ψ(Q)
)

.

Now, by Theorem 2.1, it follows that P is irredundant with respect to Op(X) if
and only if there is f ∈ C(X) such that (Op : f) = P . By (5),

P =
⋂

Φ(q)=p

(

⋂

P∈Min(Oq(Y ))

ψ(Q)
)

.
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Since the ψ(Q)’s in the above equality are minimal prime, this is equivalent to
saying that Φ−1(p) is a singleton and p is an F -point with respect to Y and conse-
quently, this is equivalent to saying that P = ψ(Oq(Y )) where {q} = Φ−1{p}. �

Lemma 5.13. Let p ∈ βX and Y1 = Coz(f1), Y2 = Coz(f2) for some f1, f2 ∈
C(X). Then f1f2 ∈ Op(X) if and only if p /∈ clβX(Y1 ∩ Y2).

Proof: First we note that for each f ∈ C∗(X)

clβXCoz(f
β) = clβX

(

Coz(fβ) ∩X
)

= clβXCoz(f).

Now, without loss of generality, we assume that f1, f2 ∈ C∗(X). Thus

p /∈ clβX(Y1 ∩ Y2) = clβX
(

Coz(f1) ∩Coz(f2)
)

= clβXCoz(f1f2) = clβXCoz(f
β
1 f

β
2 )

⇔ p ∈ intβXZ(f
β
1 f

β
2 ) = intβXclβXZ(f1f2) ⇔ f1f2 ∈ Op(X).

�

Proposition 5.14. Let X be a topological space, p ∈ βX and {Yα}α∈A be a

family of cozero sets of X . If

(a) p is F -point with respect to Yα for each α ∈ A,
(b) p /∈ clβX(Yα ∩ Yβ), if α 6= β,

then |B(Op(X))| ≥ |A|.

Proof: Let Yα = Coz(fα) for each α ∈ A. By hypothesis, for each α ∈ A there
is a unique qα ∈ βYα such that Φα(qα) = p. If we put Pα = ψα(O

qα (Yα)) for
every α ∈ A, then by Proposition 5.11, {Pα}α∈A is a family of irredundant ideals
with respect to Op(X). It is sufficient to show that if α 6= β, then Pα 6= Pβ . By
Lemma 5.13, since p /∈ clβX(Yα ∩ Yβ), we have fαfβ ∈ Op(X) ⊆ Pα. It follows
from Proposition 5.11 that fα /∈ Pα. Therefore, fβ ∈ Pα and hence Pα 6= Pβ . �

Lemma 5.15. Let X be a topological space and p ∈ βX be a fixed-place point.

If FP–rankX(p) = η and ζ is a cardinal such that ζ ≤ η, then there exist a family

{Yα}α∈A of distinct cozero sets such that

(a) |A| = ζ;
(b) p is an F -point with respect to Yα for every α ∈ A;
(c) p /∈ clβX(Yα ∩ Yβ), if α 6= β.

Proof: Since FP–rankX(p) = η, Theorem 2.1 shows that there exists a family
{Pα}α∈B of minimal prime ideals such that |B| = η, Op(X) =

⋂

α∈B Pβ and this
intersection is irredundant. Suppose that {Pα}α∈A is a subfamily of {Pα}α∈B
such that |A| = ζ. By Lemma 5.12, for every α ∈ A, there exists a cozero set
Yα = Coz(fα) such that p is an F -point with respect to Yα, for each α ∈ A. If
α 6= β, it is easy to check that either fα or fβ must be in Pθ, for each θ ∈ B.
Thus fαfβ ∈ Pθ, for each θ ∈ B, and therefore fαfβ ∈ Op(X). It shows that
p /∈ intβX(Yα ∩ Yβ), by Lemma 5.13. �
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The following is another version of Lemma 5.14.

Lemma 5.16. Let p ∈ βX be a fixed-place point and {Yα}α∈A be a family of

cozero sets of X . If

(a) p ∈ clβXYα for each α ∈ A,
(b) p /∈ clβX(Yα ∩ Yβ) for α 6= β,

then FP–rankX(p) ≥ |A|.

Proof: For each α ∈ A, set Yα = Coz(fα) with fα ∈ C∗(X). Define

Qα = {Q ∈ Min(Oq(Yα)) : Φα(q) = p}.

We claim that ψα(Qα)∩ψβ(Qβ) = ∅, for each α 6= β. Let ψα(Q) ∈ ψα(Qα), then
fα /∈ ψα(Q). Since p /∈ clβX(Yα ∩ Yβ), by Lemma 5.13, obviously fαfβ ∈ Op(X).
Thus fβ ∈ ψα(Q), this implies that ψα(Q) /∈ ψβ(Qβ). To complete the proof, it
is sufficient to show that B(Op(X)) ∩ ψα(Qα) 6= ∅ for each α ∈ A. We know that
fα /∈ ψα(Q), for each Q ∈ Qα and fα ∈

⋂

P∈Min(Op(X))\ψα(Qα) P . Thus

fα ∈
⋂

P∈Min(Op(X))\ψα(Qα)

P \Op(X)

⇒ Op(X) 6=
⋂

P∈Min(Op(X))\ψ(Qα)

P.

This implies that ψ(Qα) is irredundant with respect to Op(X). Since Op(X) is
fixed-place, B(Op(X)) ∩ ψα(Qα) 6= ∅. �

Now, we are ready to state the main theorem of this section.

Theorem 5.17. Let p ∈ βX be a fixed-place point. Then FP–rankX(p) = η if

and only if there exists a family {Yα}α∈A of cozero sets of X such that

(a) |A| = η;
(b) p ∈ clβXYα, for each α ∈ A;
(c) p /∈ clβX(Yα ∩ Yβ), if α 6= β;
(d) η is the greatest cardinal with above properties.

In this case, p is an F -point with respect to Yα for each α ∈ A.

Proof: ⇒) By Lemma 5.15, there is a family {Yα}α∈A of cozero sets of X with
properties (a)–(c), and by Lemma 5.16, it follows that η is the greatest cardinal
with properties (a)–(c).

⇐) Lemma 5.16 shows that FP–rankX(p) ≥ η. Since η is the greatest cardinal
with properties (a)–(c), by Lemma 5.15, FP–rankX(p) = η.

According to Lemma 5.12, p is an F -point with respect to Yα, for each α ∈ A.
�

It is clear to see that if f ∈ Op(X), then there exists g /∈ Mp(X) such that
fg = 0. Using this fact, we may obtain the following result.
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Corollary 5.18. A point p ∈ βX has finite fixed-place rank n if and only if

there is a collection of n pairwise disjoint cozero sets {Yi}
n
i=1 such that p is in

the closure of each Yi, and there is no larger such collection. In this case, p is an

F -point with respect to Yi, for each i = 1, . . . , n.
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