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Thinness and non-tangential

limit associated to coupled PDE
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Abstract. In this paper, we study the reduit, the thinness and the non-tangential
limit associated to a harmonic structure given by coupled partial differential
equations. In particular, we obtain such results for biharmonic equation (i.e.
N2p = 0) and equations of A2p = ¢ type.
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1. Introduction

Let D be a domain in R?, d > 1 and let L;; j =1,2, be two second order ellip-
tic differential operators on D leading to harmonic spaces (D, Hp,;) with Green
functions G;. Moreover, we assume that every ball B C BCcDisa Lj-regular
set. Throughout this paper we consider two positive Radon measures pq and ps

such that K gj f p Gji(,y)p;(dy) is a bounded continuous real function on D;
j=1,2, and

KD oo - I KB Jloo< 1.

We consider the system:

() {L”: U

Lov = —u - ps.

Note that if U is a relatively compact open subset of D, u1 = A%, where \¢ is
the Lebesgue measure, py = 0, and L; = Lo = /\, then we obtain the classical
biharmonic case on U. In the case where pu; = ps = )\d, and )\d(D) < 00, We
obtain equations of A% = ¢ type. In this work, we shall study the thinness notion
and the non-tangential limit associated with the balayage space given by the
system (S). Let us note that the notion of a balayage space defined by J. Bliedtner
and W. Hansen in [6], [11] is more general than that of a P-harmonic space.
It covers harmonic structures given by elliptic or parabolic partial differential
equations, Riesz potentials, and biharmonic equations (which are a particular
case of this work). In the biharmonic case, a similar study can be done using
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couples of functions as presented in [2], [7], [12]. We are also grateful to the
referee for his remarks and comments.

2. Notations and preliminaries

For j =1,2,1et X; = D x {j}, and let X = X7 U X5, moreover, let i; and =;
the mappings defined by:

ijID*)Xj and ’/TjZXj*)D

v (@) (@) — e
Let Uy be the set of all balls B such that B ¢ B C D, U; be the image of Uy by
ij; ] = 1,2 and U :Lﬁ UUQ.

Definition 2.1. Let v be a measurable function on X. For j, k € {1,2}, j # k
and U € U;, we define the kernel Sy, on X, by:

Suv = (HL 1 (v 0ij) o)+ (KL (v oir)) omj.

Where Hiv(U), J = 1,2, denote harmonic kernels associated with (D, Hr;) and
J

K2y w) = [ GO et §=1.2

Here w is a measurable function on D and G;rj(U) is the Green function as-
sociated with the operator L; on m;(U). Let G;, j = 1,2, be the Green kernel
associated with L; on D. The family of kernels (Su)uey yields a balayage space
on X as defined in [6], [11].

For all open subset V' of X, let *H (V) denote the set of all hyperharmonic
functions on V:

H(V):={veB(X):v|y islscand Syv<v YU eU(V)}.

Here U(V) = {U €U : U C V} and B(X) denotes the set of all Borel functions
on X. Let S(V) be the set of all superharmonic functions on X, i.e.

S(V):={se™H(V): (Syv) lue C(U) YU e U(V)},
and H(V) be the set of all harmonic functions on X:
H(V):={heSV):Syh=h YU elU(V)}.

We denote *H (V) (resp. ST(V), HT(V)) the set of all hyperharmonic (resp.
superharmonic, harmonic) positive functions on V. We denote also, for V C
D, *H;F(V) (resp. S;F(V), ”HJJF(V)) the set of all L;-hyperharmonic (resp. Lj-
superharmonic, L;-harmonic) positive functions on V.
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Let ¢ be a positive hyperharmonic function on X and let ¢; be the function
defined on D by:

gooij—ng(gooik) if ng(gooik)<oo
Pj = .
+00 otherwise

where j,k € {1,2} and j # k. We note that ¢;, j = 1,2 are L;-hyperharmonic
on D (see [4, Corollary 2.2]).
3. Reduit and thinness
Let A C X and let f be a positive numerical function on X. The reduit RJ‘? of
f relative to A in X is defined by:
R} =inf{o € "H (X): ¢ >f on A}.

Let ﬁj‘? be the lower semi-continuous regularization of RJ‘?, ie.

BA o A
Ry (z) == hgﬁﬁf R (y), =€ X.
We denote 7 R? the reduit of a function g defined on D relative to a set A of D
LA
with respect to harmonic space (D, H;), j = 1,2 and ’ R the l.s.c. regularization
of 1R,

Proposition 3.1. Let f be a positive numerical function on X and A = (A; X
{1}) U (A2 x {2}) with A; C D, j =1,2. We have:

IRy, < Rjoij; j=12

PROOF: We consider the following sets:

Bi={poi, p€"H (X), p> [ on A}
and

By={g, g€ "H{ (D), g > foir on A}.
For showing 1R?olil < R]‘? o1, it suffices to prove that By C Bs. Let u € By,
then there exists ¢ € *HT(X) such that w = @ oi; and ¢ > f on A. Since
@ € *HT(X), then u € *H] (D) and u = poi; > foi; on A;. So u € By, and
1R?01i1 < R? oi1. In the same way, we show that QR?;Z < RJ/;1 0 ig. O

Corollary 3.1. Let f be a positive numerical function on X and A C X. We
have:

jR?jij <Rfoij, j=1,2.
Here A = (A1 x {1}) U (Az x {2}) and A; C D; j =1,2.

43



44

A. Benyaiche, S. Ghiate

Definition 3.1. (i) Let A be a subset of X. We say that A is thin at a point
x € X if and only if there exist an open neighbourhood U of x in X and a positive
hyperharmonic function v on U such that RAV () < v(z).

(ii) Let B be a subset of D. We say that B is L;-thin at point z € D, j = 1,2,
if and only if there exist an open neighbourhood U of z in D and a positive

- BNU
L j-hyperharmonic function v on U such that /R, : (z) <v(z).

Proposition 3.2. Let A = (A1 x{1})U(A2x{2}) be a subset of X and x = (x9, j),
j=1,2, where zy € D. If A is thin at point z, then Aj; is L;-thin at point .

PROOF: If A is thin at point = (xg,1) where gy € D, then there exist an open
neighbourhood U of x in X and a positive hyperharmonic function ¢ on U such
that Rﬁmj(ac) < (). Hence there exist an open neighbourhood U; of xg, in D
such that (U; x {1}) C U. From Corollary 3.1,
e @o) < (RET 0 i) (o) < (90 1) (o).

Since ¢ is a positive hyperharmonic function on U, then the function ¢ oi; is a
positive Li-hyperharmonic function on U;. Therefore, A; is Li-thin at point xg.
In the same way, we show that As is Lo-thin at point xg.

For j,k € {1,2}, j # k, we denote by P; =K K}t and Gp, ,:= >0 (P; )"
which coincides with (I — P; )" on By (D). By(D) denotes the set of all bounded
Borel measurable functions on D. We recall the following equalities:

(1) PjvaPj,k = GPj,k-Pj,kv
(2) PjrGpy +1=Gpy s
(3) Gp,, — PixGh,, = Gp,,,
(4) ngGPk,j = GPj,kK;:L)j'
O

Remark 3.1. (1) We note that if ¢ is a finite positive Borel measurable function
on D such that Pj ¢ is bounded, then Gp,; , ¢ < +oc.

(2) If s is a Lj-hyperharmonic positive function on D then Gp,,s is Lj-
hyperharmonic on D.

Let J = (Jl X {1}) U (JQ X {2}), J/ = ((Jl N JQ) X {1}) U ((Jl N JQ) X {2})
with J; C D, j = 1,2, and J; NJy # 0. Let t;, j = 1,2, be two positive L;-
hyperharmonic functions on D. We define two functions v, j, k € {1,2}, j # k
on X by:

- (Gijktj‘i’Pj,kG?Dj ktj) 0 T on Xj
= ,
» (K[ G, t5) o my, on Xj.

From ([4, Corollary 2.2]), the functions v, are hyperharmonic on (D x {1}) U

(D x {2}).
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Remark 3.2. Note that, if P; G, ¢; < co, we have v;, 0i; = G t; and

(’ULQ + ’0211) (¢] ij — ng (’ULQ + ’0211) (¢] ik = Pjﬁkt]‘,

gk e{l,2}, 5 # k.

Proposition 3.3. If Pj7kG%j L tj <00, we have
J s e ipdi 2
R'Uj,k (¢] Zj S JRG‘inthj + ijkGPj ktj

and
] .
R; e Ok < Kg’“G%j’ktj

J7k/’€{1,2}',]#k.

PRrOOF: (1) We give the proof for j = 1 and k = 2. Let s be a Li-hyperharmonic
function on D such that s = Gp, ,t1 on J; and s < Gp, ,t1. We consider on X
the function

L (S+P1 QG?DI 2t1) o0 1 on X1
(K“ZGP12ﬁ1) 0 T on Xg.

So fOil = V1,2 Oil on Jl and fOZQ = ’ULQO’L'Q. Hence f = V1,2 0N J/ and f § U1,2-
On one hand, we have
f (@) il — Kglf o i2 =S5+ P172G%31,2t1 - PLQG%DLQtl = S.
On the other hand, using the equalities (1), (2) and (3), we have

f0127K'u fO’Ll—K'uQGP12 ng(Sﬁ*PLQG?DLZtl)
KHQGP12 Kg287Kg2P172G?31Y2t1
= K'uz (Gpl 2 PLQG?DLZtl) - ngs
= KgZGpLZﬁl — KgZS
= KgZ(GpLZﬁl —3).
Hence foiy — K f ois and f oiy — KI5 f o4y are respectively L; and Lo

hyperharmonic on D and therefore the function f is hyperharmonic on X ([4,
Corollary 2.2]). So

J . 1pJ1 2
R o011 § RGPLZtl + P172GP172151

V1,2
and

RI O’LQ KH GP12

V1,2

The following theorem results from the previous proposition.
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Theorem 3.1. Lett;, j = 1,2, be two positive L;-hyperharmonic functions on D
such that Pj,kG%Djyktj < o0, j,ke€{1,2}, j #k. Then

v1,2+v2,1

- AT )
J . J 2 (ad 2
R oij <'Rg, 1, + PixGp, ti + Kp' Gp, tk.

Remark 3.3. (1) In the biharmonic case, i.e. u3 = A4, po = 0, L;j = A for
j=1,2and J = J; = Jo, the result is given by A. Boukricha [7, Proposition 5.6].

(2) All the previous results are still valid if we substitute D by any L;-regular
subset V of D.

Proposition 3.4. Let J;, j = 1,2 be two subsets of D such that J; N Jo # 0.
Let ©g € D. If J; are Lj-thin at point xo then the set J' := ((J1 N J2) x {1}) U
((J1 N J2) x {2}) is thin at points (xo,j), j = 1,2.

PROOF: Since J;, j € {1,2}, is L;-thin at point xo, then there exist a L,-regular
open neighbourhood Uj of xp in D and a positive L;-hyperharmonic function s;
on U; such that

A J.NU:
"Ry (20) < s5(o0).

Letting V := U; N Uy, V is a regular open neighbourhood of xy. Let ¢ be the
positive hyperharmonic function on W := (V' x {1}) U (V) x {2}) defined on

V x {j} by:
= (Gpj,ksj + Kllij%k,jSk + PjykG?gj,ij) oTj.

We have, from Theorem 3.1,
AIOAW o ipdi o2 Wi 2
R‘P OZ] S RGPijS], +P],kGPijSJ +KV GPkijk'

Since
Gp, 85 = sj + PGP, .85,
we have
A JiNU; A JiNU; . JNU;
] J J < J J J J J J
RGPj,lch (l‘o) — RSj ('TO) + RPj,kGPjyij (l‘o).
Hence, from the hypothesis, we get

N,
TRy s (w0) < 55(w0) + PikGr, 55 (x0) = G o5(wo).

Therefore, we conclude
Ri mVV(‘I"07 1) < (10(1‘0) 1)7
i.e. J' is thin at point (zg, 1). O

Note that our proof is direct. From Proposition 3.2 and Proposition 3.4 we
have the following characterization of the thinness with respect to the system (S).



Thinness and non-tangential limit associated to coupled PDE 47

Theorem 3.2. Let J; and Js be two subsets of D such that J; N Js # (). The
following propositions are equivalent.

(1) Ji is Ly-thin at point xg and Jo is Lo-thin at point xg € D.
(2) The set J' := ((J1NJ2) x {1})U((J1NJ2) x {2}) is thin at points (xo, j),
j=1,2.

4. Minimal thinness

Let us fix zp € D. For all z,y € D and j € {1,2}, we put:

Gy (z,y) .
Ploy) = LGy 1T w# 30 0r y# a0
1’ lf T =Y = x9.

Let A; = {¢’(z,-), v € D}, and A = A; U As.

Asin [8], [9], we consider the Martin compactification D of D associated with A.
The boundary 0y D := D—D of D is called the Martin boundary of D associated
with the system (S).

The function ¢’(z,-), j = 1,2, € D can be extended, on 15, to a continuous
function denoted g7 (x,-), j = 1,2, x € D as in [8]. Put dp D := dprD x {1} U
OnmD x {2}. A couple of functions (u1,us) defined on 9y D can be identified with
a function f on Oy D such that foi; = uj, where i;, j = 1,2 denote always
the mappings of dy D into OuD X {j} defined by: i;(z) = (2,7); z € OuD.
We use also 7, the mapping of dyD into Oy D defined by: 7(Y) = m;(Y), if
Y € OuD x {j}. Here m;(Y) = 2z, if Y = (2, j). We denote:

0 D={y€ouD:g¢(,y) is Lj-minimal}.

We note that, for all y € 0y, D, the function gj(-,y) is Lj-harmonic on D. In
the following, we suppose that, for all y € 9y D, the function K7 g*(-,y) is finite
and the function Py ;¢*(-,y) is bounded for j # k, j,k € {1,2}. ForallY € ouD,
we have 7(Y) € Oy D. Hence we can define on X, the following functions:

Py = (GP1,2gl('77T(Y))) 0 T on X1
v (Kg2GP1’2g1(~,7r(Y))) oms on Xso
and
v JGPLER G m(Y))om  on X,
TG g (V) 0 m on Xs.

From [4, Theorem 3.1], @y and ¥y are harmonic functions on X.

Definition 4.1. Let Y € 5MD. We say that Y is a minimal point for 5MD if
®y is minimal or ¥y is minimal.
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Lemma 4.1. Y = (y,j), j = 1,2 is a minimal point for Ou D, if and only if vy is
a minimal point for Oy D.

PROOF: Let Y = (y,j) be a minimal point for OmD, j = 1,2, then, by the
definition, ®y is minimal or ¥y is minimal. Suppose that ®y is minimal. So,
from [4, Proposition 4.2], the function (®y oi; — Ki'(®y o iz)) is Li-minimal.
Since

CI)Y 011 — Kgl(q)y © 22) = GPl,zgl('7y) - P172GP1,291('5y)7

then we have
(4.1) <I>yoz'1—Kgl(fbyoia):gl(-,y)-

Therefore, the function g!(-,y) is minimal and we can deduce that the point y
is a minimal point for dy;D. If we suppose that the function ¥y is a minimal
function, we show in an analogous way that the function g2(-,y) is a minimal
function, i.e. y is a minimal point for dy;D.

Conversely, let y be a minimal point for dy;D. Then ¢'(-,y) is a L;-minimal
function or g2(-,y) is a Lo-minimal function. If g*(-,y) is minimal, then, by (4.1),
the function (®y oy — KI5 (Py 049)) is Li-minimal. Therefore, by [4, Proposi-
tion 4.2], @y is a minimal function. So Y is a minimal point for OuD. Similarly,
if we assume that the function ¢g2(-,y) is a minimal function we show that the
function ¥y is a minimal function, i.e. Y is a minimal point for éMD. [l

Definition 4.2. Let J be a subset of X and let Y be a minimal point for OuD.
We say that J has a minimal thinness at point Y if Réy # &y or R‘i]/y # Uy.

5. Non-tangential limit
In this section, we take L1 = Ly = A and D is the half space in R% defined by:
D ={(2',2q) : 2’ € R*™' and x4 > 0}.

The Martin compactification of D can be identified with the closure of D and
all Martin boundary points are minimal (see [1]). Let zg = (0',1) with 0/ =
(0,0,...) € R~1. We recall that the Martin Kernel in this case is given by:

lz—y
M(z,00) = x4, x €D.

{M(m,y):%, z€D, yedD
For a > 0 and y € 0D, we define
Py ={(",2q) € R X R g > |lo" o/}, y = (¢,0), ¥’ € RT!
and we define for Y = (y, j) € (0D x {1}) U (0D x {2}),

Ay = Tya x {1} U([Ty.q x {2}).
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We note that if h is a positive harmonic function on X, then the function h; =
hoij— K1 (hoiy) is harmonic on D [4, Theorem 2.1]. Moreover, K15’ (hoiy) < 0o
for j,k=1,2, j # k.

Definition 5.1. (1) Let f be a function defined on X. We say that f has a fine
minimal limit [ at point Y = (y,j) for j = 1,2 and y € 9D, if there exist a subset
Ji of D having a Lj-minimal thinness at point y and a subset J; of D having a
Lo-minimal thinness at point y such that

Iﬂ}l,ir?EX\.]f(x) =1l
Here J = (J1 x {1}) U (J2 x {2}).

(2) Let f be a function defined on X. We say that f has a non-tangential limit
lat point Y = (y,j) for j = 1,2 and y € 9D if

Ya >0, lim flx)=1.

z—Y, z€Qy o

Remark 5.1. Let Y = (y,j) for j =1,2 and y € 9D, then

lim f(z,9) = lim (f oij)(2).

(2,3)—(v,3), (2,5)€ly,ax{j} 2=y, 2€Ty

Theorem 5.1. Let Y = (y,j) for j = 1,2, y € 9D. Let u be a positive harmonic
function on X and let h be a strictly positive harmonic function on X such that the
function § has a minimal fine limit | at point Y. Denote h; = hoij— K (hoiy),
jak = 172’]% k.

Ifhy > 0 and ha > 0 then the function 3 has a non-tangential limit at point Y.

Remark 5.2. If h; >0, hy =0 and Y = (y,j) for j,k € {1,2}, j # k, then

(20 lim L) =1
2=y, 26Ty (h0ij)(2)  o—Y, zeTyux{1}) h

PROOF: Let Y = (y,j) for j = 1,2, y € 0D. We suppose that hy > 0 and he > 0.
Since the function 7 has a minimal fine limit / at point Y, there exist a subset

Ji of D having a Lj-minimal thinness at point y and a subset J; of D having a
Lo-minimal thinness at point y such that

L) =1.

lim —-
z—Y, zeX\J h

Here J = (J1 x {1}) U (J2 x {2}). Therefore lim,_,, EZSZ;EZ =lon D\ J;. We
have

(woij)(2) _ u;(2) + K (woin)(2)

(hoij)(z) B hj(z)—l—ng(hoik)(Z)v j#k.
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Here u; = woij; — Ky (uoiy); j,k = 1,2, j # k. Using [10, 18.1] or [1, Corol-
lary 9.3.8], we have

L KBwei)) . KE(oi)()

7 .
=0;up, —a.e. on 92 D.
z—y€OD h,j (Z z—y€OD h,j Z) P Hh; m

Here pp,; denotes the measure on %D corresponding to h; in the Martin repre-
sentation. So, we get

i ()
z—y hj(z

=1 on D\ J;.

~—

Since we have

uj (woij) — K4 (uoi)

hij  (hoij;)— K (hoiy)
woi; K3 (uoip)
hj hj

hoi; K (hoiy)
}L]' }L]'

LG L on Ty

In the same way, we show the assertions in the previous remark. (I

we conclude that lim,__,,
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