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Thinness and non-tangential

limit associated to coupled PDE
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Abstract. In this paper, we study the reduit, the thinness and the non-tangential
limit associated to a harmonic structure given by coupled partial differential
equations. In particular, we obtain such results for biharmonic equation (i.e.
△2

ϕ = 0) and equations of △2
ϕ = ϕ type.
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1. Introduction

Let D be a domain in R
d, d ≥ 1 and let Lj ; j = 1, 2, be two second order ellip-

tic differential operators on D leading to harmonic spaces (D,HLj
) with Green

functions Gj . Moreover, we assume that every ball B ⊂ B̄ ⊂ D is a Lj-regular
set. Throughout this paper, we consider two positive Radon measures µ1 and µ2

such that K
µj

D =
∫
D
Gj(·, y)µj(dy) is a bounded continuous real function on D;

j = 1, 2, and

‖ K
µ1

D ‖∞ · ‖ K
µ2

D ‖∞< 1.

We consider the system:

(S)

{
L1u = −v · µ1

L2v = −u · µ2.

Note that if U is a relatively compact open subset of D, µ1 = λd, where λd is
the Lebesgue measure, µ2 = 0, and L1 = L2 = △, then we obtain the classical
biharmonic case on U . In the case where µ1 = µ2 = λd, and λd(D) < ∞, we
obtain equations of△2ϕ = ϕ type. In this work, we shall study the thinness notion
and the non-tangential limit associated with the balayage space given by the
system (S). Let us note that the notion of a balayage space defined by J. Bliedtner
and W. Hansen in [6], [11] is more general than that of a P-harmonic space.
It covers harmonic structures given by elliptic or parabolic partial differential
equations, Riesz potentials, and biharmonic equations (which are a particular
case of this work). In the biharmonic case, a similar study can be done using



42 A. Benyaiche, S. Ghiate

couples of functions as presented in [2], [7], [12]. We are also grateful to the
referee for his remarks and comments.

2. Notations and preliminaries

For j = 1, 2, let Xj = D × {j}, and let X = X1 ∪X2, moreover, let ij and πj

the mappings defined by:

ij : D −→ Xj and πj : Xj −→ D

x 7−→ (x, j) (x, j) 7−→ x.

Let U0 be the set of all balls B such that B ⊂ B̄ ⊂ D, Uj be the image of U0 by
ij ; j = 1, 2 and U = U1 ∪ U2.

Definition 2.1. Let v be a measurable function on X . For j, k ∈ {1, 2}, j 6= k

and U ∈ Uj , we define the kernel SU , on Xj , by:

SUv = (Hj

πj(U)(v o ij)) o πj + (K
µj

πj(U)(v o ik)) o πj .

Where H
j

πj(U), j = 1, 2, denote harmonic kernels associated with (D,HLj
) and

K
µj

πj(U)(w) =

∫
G

πj(U)
j (·, y)w(y)µj(dy); j = 1, 2.

Here w is a measurable function on D and G
πj(U)
j is the Green function as-

sociated with the operator Lj on πj(U). Let Gj , j = 1, 2, be the Green kernel
associated with Lj on D. The family of kernels (SU )U∈U yields a balayage space
on X as defined in [6], [11].

For all open subset V of X , let ∗H(V ) denote the set of all hyperharmonic
functions on V :

∗H(V ) := {v ∈ B(X) : v |V is l.s.c and SUv ≤ v ∀U ∈ U(V )}.

Here U(V ) = {U ∈ U : Ū ⊂ V } and B(X) denotes the set of all Borel functions
on X . Let S(V ) be the set of all superharmonic functions on X , i.e.

S(V ) := {s ∈ ∗H(V ) : (SUv) |U∈ C(U) ∀U ∈ U(V )},

and H(V ) be the set of all harmonic functions on X :

H(V ) := {h ∈ S(V ) : SUh = h ∀U ∈ U(V )}.

We denote ∗H+(V ) (resp. S+(V ), H+(V )) the set of all hyperharmonic (resp.
superharmonic, harmonic) positive functions on V . We denote also, for V ⊂
D, ∗H+

j (V ) (resp. S+
j (V ), H+

j (V )) the set of all Lj-hyperharmonic (resp. Lj-

superharmonic, Lj-harmonic) positive functions on V .
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Let ϕ be a positive hyperharmonic function on X and let ϕj be the function
defined on D by:

ϕj :=

{
ϕ o ij −K

µj

D (ϕ o ik) if K
µj

D (ϕ o ik) < ∞

+∞ otherwise

where j, k ∈ {1, 2} and j 6= k. We note that ϕj , j = 1, 2 are Lj-hyperharmonic
on D (see [4, Corollary 2.2]).

3. Reduit and thinness

Let A ⊂ X and let f be a positive numerical function on X . The reduit RA
f of

f relative to A in X is defined by:

RA
f := inf{ϕ ∈ ∗H+(X) : ϕ ≥ f on A}.

Let R̂A
f be the lower semi-continuous regularization of RA

f , i.e.

R̂A
ϕ (x) := lim inf

y→x
RA

ϕ (y), x ∈ X.

We denote jR
A

g the reduit of a function g defined on D relative to a set A of D

with respect to harmonic space (D,Hj), j = 1, 2 and jR̂
A

g the l.s.c. regularization

of jR
A

g .

Proposition 3.1. Let f be a positive numerical function on X and A = (A1 ×
{1}) ∪ (A2 × {2}) with Aj ⊂ D, j = 1, 2. We have:

jR
Aj

f◦ij ≤ RA
f ◦ ij , j = 1, 2.

Proof: We consider the following sets:

B1 = {ϕ ◦ i1, ϕ ∈ ∗H+(X), ϕ ≥ f on A}

and

B2 = {g, g ∈ ∗H+
1 (D), g ≥ f ◦ i1 on A1}.

For showing 1R
A1

f◦i1 ≤ RA
f ◦ i1, it suffices to prove that B1 ⊂ B2. Let u ∈ B1,

then there exists ϕ ∈ ∗H+(X) such that u = ϕ ◦ i1 and ϕ ≥ f on A. Since
ϕ ∈ ∗H+(X), then u ∈ ∗H+

1 (D) and u = ϕ ◦ i1 ≥ f ◦ i1 on A1. So u ∈ B2, and
1R

A1

f◦i1 ≤ RA
f ◦ i1. In the same way, we show that 2R

A2

f◦i2 ≤ RA
f ◦ i2. �

Corollary 3.1. Let f be a positive numerical function on X and A ⊂ X . We

have:

jR̂
Aj

f◦ij ≤ R̂A
f ◦ ij , j = 1, 2.

Here A = (A1 × {1}) ∪ (A2 × {2}) and Aj ⊂ D; j = 1, 2.
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Definition 3.1. (i) Let A be a subset of X . We say that A is thin at a point
x ∈ X if and only if there exist an open neighbourhood U of x in X and a positive
hyperharmonic function v on U such that R̂A∩U

v (x) < v(x).
(ii) Let B be a subset of D. We say that B is Lj-thin at point z ∈ D, j = 1, 2,

if and only if there exist an open neighbourhood U of z in D and a positive

Lj-hyperharmonic function v on U such that jR̂
B∩U

v (z) < v(z).

Proposition 3.2. LetA = (A1×{1})∪(A2×{2}) be a subset ofX and x = (x0, j),
j = 1, 2, where x0 ∈ D. If A is thin at point x, then Aj is Lj-thin at point x0.

Proof: If A is thin at point x = (x0, 1) where x0 ∈ D, then there exist an open
neighbourhood U of x in X and a positive hyperharmonic function ϕ on U such
that R̂A∩U

ϕ (x) < ϕ(x). Hence there exist an open neighbourhood U1 of x0, in D

such that (U1 × {1}) ⊂ U . From Corollary 3.1,

1R̂
A1∩U1

ϕ◦i1 (x0) ≤ (R̂A∩U
ϕ ◦ i1)(x0) < (ϕ ◦ i1)(x0).

Since ϕ is a positive hyperharmonic function on U , then the function ϕ ◦ i1 is a
positive L1-hyperharmonic function on U1. Therefore, A1 is L1-thin at point x0.
In the same way, we show that A2 is L2-thin at point x0.

For j, k ∈ {1, 2}, j 6= k, we denote by Pj,k:=K
µj

D K
µk

D and GPj,k
:=

∑+∞
n=0(Pj,k)

n

which coincides with (I−Pj,k)
−1 on Bb(D). Bb(D) denotes the set of all bounded

Borel measurable functions on D. We recall the following equalities:

Pj,kGPj,k
= GPj,k

Pj,k,(1)

Pj,kGPj,k
+ I = GPj,k

,(2)

G2
Pj,k

− Pj,kG
2
Pj,k

= GPj,k
,(3)

K
µj

D GPk,j
= GPj,k

K
µj

D .(4)

�

Remark 3.1. (1) We note that if ϕ is a finite positive Borel measurable function
on D such that Pj,kϕ is bounded, then GPj,k

ϕ < +∞.
(2) If s is a Lj-hyperharmonic positive function on D then GPj,k

s is Lj-
hyperharmonic on D.

Let J = (J1 × {1}) ∪ (J2 × {2}), J ′ = ((J1 ∩ J2) × {1}) ∪ ((J1 ∩ J2) × {2})
with Jj ⊂ D, j = 1, 2, and J1 ∩ J2 6= ∅. Let tj , j = 1, 2, be two positive Lj-
hyperharmonic functions on D. We define two functions vj,k, j, k ∈ {1, 2}, j 6= k

on X by:

vj,k :=

{
(GPj,k

tj + Pj,kG
2
Pj,k

tj) o πj on Xj

(Kµk

D G2
Pj,k

tj) o πk on Xk.

From ([4, Corollary 2.2]), the functions vj,k are hyperharmonic on (D × {1}) ∪
(D × {2}).
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Remark 3.2. Note that, if Pj,kG
2
Pj,k

tj < ∞, we have vj,k ◦ ij = G2
Pj,k

tj and

(v1,2 + v2,1) ◦ ij −K
µj

D (v1,2 + v2,1) ◦ ik = Pj,ktj ,

j, k ∈ {1, 2}, j 6= k.

Proposition 3.3. If Pj,kG
2
Pj,k

tj < ∞, we have

RJ′

vj,k
◦ ij ≤

jR
Jj

GPj,k
tj
+ Pj,kG

2
Pj,k

tj

and

RJ′

vj,k
◦ ik ≤ K

µk

D G2
Pj,k

tj

j, k ∈ {1, 2}, j 6= k.

Proof: (1) We give the proof for j = 1 and k = 2. Let s be a L1-hyperharmonic
function on D such that s = GP1,2

t1 on J1 and s ≤ GP1,2
t1. We consider on X

the function

f :=

{
(s+ P1,2G

2
P1,2

t1) o π1 on X1

(Kµ2

D G2
P1,2

t1) o π2 on X2.

So f ◦ i1 = v1,2 ◦ i1 on J1 and f ◦ i2 = v1,2 ◦ i2. Hence f = v1,2 on J ′ and f ≤ v1,2.
On one hand, we have

f ◦ i1 −K
µ1

D f ◦ i2 = s+ P1,2G
2
P1,2

t1 − P1,2G
2
P1,2

t1 = s.

On the other hand, using the equalities (1), (2) and (3), we have

f ◦ i2 −K
µ2

D f ◦ i1 = K
µ2

D G2
P1,2

t1 −K
µ2

D (s+ P1,2G
2
P1,2

t1)

= K
µ2

D G2
P1,2

t1 −K
µ2

D s−K
µ2

D P1,2G
2
P1,2

t1

= K
µ2

D (G2
P1,2

t1 − P1,2G
2
P1,2

t1)−K
µ2

D s

= K
µ2

D GP1,2
t1 −K

µ2

D s

= K
µ2

D (GP1,2
t1 − s).

Hence f ◦ i1 − K
µ1

D f ◦ i2 and f ◦ i2 − K
µ2

D f ◦ i1 are respectively L1 and L2

hyperharmonic on D and therefore the function f is hyperharmonic on X ([4,
Corollary 2.2]). So

RJ′

v1,2
◦ i1 ≤ 1R

J1

GP1,2
t1
+ P1,2G

2
P1,2

t1

and

RJ′

v1,2
◦ i2 ≤ K

µ2

D G2
P1,2

t1.

�

The following theorem results from the previous proposition.
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Theorem 3.1. Let tj , j = 1, 2, be two positive Lj-hyperharmonic functions on D

such that Pj,kG
2
Pj,k

tj < ∞, j, k ∈ {1, 2}, j 6= k. Then

R̂J′

v1,2+v2,1
◦ ij ≤

jR̂
Jj

GPj,k
tj
+ Pj,kG

2
Pj,k

tj +K
µj

D G2
Pk,j

tk.

Remark 3.3. (1) In the biharmonic case, i.e. µ1 = λd, µ2 = 0, Lj = △ for
j = 1, 2 and J = J1 = J2, the result is given by A. Boukricha [7, Proposition 5.6].

(2) All the previous results are still valid if we substitute D by any Lj-regular
subset V of D.

Proposition 3.4. Let Jj , j = 1, 2 be two subsets of D such that J1 ∩ J2 6= ∅.
Let x0 ∈ D. If Jj are Lj-thin at point x0 then the set J ′ := ((J1 ∩ J2) × {1}) ∪
((J1 ∩ J2)× {2}) is thin at points (x0, j), j = 1, 2.

Proof: Since Jj , j ∈ {1, 2}, is Lj-thin at point x0, then there exist a Lj-regular
open neighbourhood Uj of x0 in D and a positive Lj-hyperharmonic function sj
on Uj such that

jR̂
Jj∩Uj

sj
(x0) < sj(x0).

Letting V := U1 ∩ U2, V is a regular open neighbourhood of x0. Let ϕ be the
positive hyperharmonic function on W := (V × {1}) ∪ ((V ) × {2}) defined on
V × {j} by:

ϕ := (GPj,k
sj +K

µj

V G2
Pk,j

sk + Pj,kG
2
Pj,k

sj) ◦ πj .

We have, from Theorem 3.1,

R̂J′∩W
ϕ ◦ ij ≤

jR̂
Jj

GPj,k
sj

+ Pj,kG
2
Pj,k

sj +K
µj

V G2
Pk,j

sk.

Since

GPj,k
sj = sj + Pj,kGPj,k

sj ,

we have

jR̂
Jj∩Uj

GPj,k
sj
(x0) ≤

jR̂
Jj∩Uj

sj
(x0) +

jR̂
Jj∩Uj

Pj,kGPj,k
sj
(x0).

Hence, from the hypothesis, we get

jR̂
Jj∩Uj

GPj,k
sj
(x0) < sj(x0) + Pj,kGPj,k

sj(x0) = GPj,k
sj(x0).

Therefore, we conclude

R̂J′∩W
ϕ (x0, 1) < ϕ(x0, 1),

i.e. J ′ is thin at point (x0, 1). �

Note that our proof is direct. From Proposition 3.2 and Proposition 3.4 we
have the following characterization of the thinness with respect to the system (S).
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Theorem 3.2. Let J1 and J2 be two subsets of D such that J1 ∩ J2 6= ∅. The

following propositions are equivalent.

(1) J1 is L1-thin at point x0 and J2 is L2-thin at point x0 ∈ D.

(2) The set J ′ := ((J1 ∩J2)×{1})∪ ((J1∩J2)×{2}) is thin at points (x0, j),
j = 1, 2.

4. Minimal thinness

Let us fix x0 ∈ D. For all x, y ∈ D and j ∈ {1, 2}, we put:

gj(x, y) :=

{
Gj(x,y)
Gj(x0,y)

, if x 6= x0 or y 6= x0

1, if x = y = x0.

Let Aj = {gj(x, ·), x ∈ D}, and A = A1 ∪ A2.

As in [8], [9], we consider the Martin compactification D̂ ofD associated withA.

The boundary ∂MD := D̂−D of D is called the Martin boundary of D associated
with the system (S).

The function gj(x, ·), j = 1, 2, x ∈ D can be extended, on D̂, to a continuous

function denoted gj(x, ·), j = 1, 2, x ∈ D as in [8]. Put ∂̃MD := ∂MD × {1} ∪
∂MD×{2}. A couple of functions (u1, u2) defined on ∂MD can be identified with

a function f on ∂̃MD such that f ◦ ij = uj , where ij , j = 1, 2 denote always
the mappings of ∂MD into ∂MD × {j} defined by: ij(z) = (z, j); z ∈ ∂MD.

We use also π, the mapping of ∂̃MD into ∂MD defined by: π(Y ) = πj(Y ), if
Y ∈ ∂MD × {j}. Here πj(Y ) = z, if Y = (z, j). We denote:

∂j
mD = {y ∈ ∂MD : gj(·, y) is Lj-minimal}.

We note that, for all y ∈ ∂MD, the function gj(·, y) is Lj-harmonic on D. In
the following, we suppose that, for all y ∈ ∂MD, the function K

µj

D gk(·, y) is finite

and the function Pk,jg
k(·, y) is bounded for j 6= k, j, k ∈ {1, 2}. For all Y ∈ ∂̃MD,

we have π(Y ) ∈ ∂MD. Hence we can define on X , the following functions:

ΦY :=

{
(GP1,2

g1(·, π(Y ))) o π1 on X1

(Kµ2

D GP1,2
g1(·, π(Y ))) o π2 on X2

and

ΨY :=

{
(GP1,2

K
µ1

D g2(·, π(Y ))) o π1 on X1

(GP2,1
g2(·, π(Y ))) o π2 on X2.

From [4, Theorem 3.1], ΦY and ΨY are harmonic functions on X .

Definition 4.1. Let Y ∈ ∂̃MD. We say that Y is a minimal point for ∂̃MD if
ΦY is minimal or ΨY is minimal.
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Lemma 4.1. Y = (y, j), j = 1, 2 is a minimal point for ∂̃MD, if and only if y is

a minimal point for ∂MD.

Proof: Let Y = (y, j) be a minimal point for ∂̃MD, j = 1, 2, then, by the
definition, ΦY is minimal or ΨY is minimal. Suppose that ΦY is minimal. So,
from [4, Proposition 4.2], the function (ΦY ◦ i1 − K

µ1

D (ΦY ◦ i2)) is L1-minimal.
Since

ΦY ◦ i1 −K
µ1

D (ΦY ◦ i2) = GP1,2
g1(·, y)− P1,2GP1,2

g1(·, y),

then we have

(4.1) ΦY ◦ i1 −K
µ1

D (ΦY ◦ i2) = g1(·, y).

Therefore, the function g1(·, y) is minimal and we can deduce that the point y

is a minimal point for ∂MD. If we suppose that the function ΨY is a minimal
function, we show in an analogous way that the function g2(·, y) is a minimal
function, i.e. y is a minimal point for ∂MD.

Conversely, let y be a minimal point for ∂MD. Then g1(·, y) is a L1-minimal
function or g2(·, y) is a L2-minimal function. If g1(·, y) is minimal, then, by (4.1),
the function (ΦY ◦ i1 −K

µ1

D (ΦY ◦ i2)) is L1-minimal. Therefore, by [4, Proposi-

tion 4.2], ΦY is a minimal function. So Y is a minimal point for ∂̃MD. Similarly,
if we assume that the function g2(·, y) is a minimal function we show that the

function ΨY is a minimal function, i.e. Y is a minimal point for ∂̃MD. �

Definition 4.2. Let J be a subset of X and let Y be a minimal point for ∂̃MD.
We say that J has a minimal thinness at point Y if R̂J

ΦY
6= ΦY or R̂J

ΨY
6= ΨY .

5. Non-tangential limit

In this section, we take L1 = L2 = △ and D is the half space in Rd defined by:

D = {(x′, xd) : x
′ ∈ Rd−1 and xd > 0}.

The Martin compactification of D can be identified with the closure of D and
all Martin boundary points are minimal (see [1]). Let x0 = (0′, 1) with 0′ =
(0, 0, . . . ) ∈ Rd−1. We recall that the Martin Kernel in this case is given by:

{
M(x, y) = ‖x0−y‖d.xd

‖x−y‖d , x ∈ D, y ∈ ∂D

M(x,∞) = xd, x ∈ D.

For a > 0 and y ∈ ∂D, we define

Γy,a := {(x′, xd) ∈ Rd−1 ×R∗+ : xd > ‖x′ − y′‖}, y = (y′, 0), y′ ∈ Rd−1

and we define for Y = (y, j) ∈ (∂D × {1}) ∪ (∂D × {2}),

ΩY,a := (Γy,a × {1}) ∪ (Γy,a × {2}).
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We note that if h is a positive harmonic function on X , then the function hj =
h◦ ij−K

µj

D (h◦ ik) is harmonic on D [4, Theorem 2.1]. Moreover, K
µj

D (h◦ ik) < ∞
for j, k = 1, 2, j 6= k.

Definition 5.1. (1) Let f be a function defined on X . We say that f has a fine
minimal limit l at point Y = (y, j) for j = 1, 2 and y ∈ ∂D, if there exist a subset
J1 of D having a L1-minimal thinness at point y and a subset J2 of D having a
L2-minimal thinness at point y such that

lim
x−→Y, x∈X\J

f(x) = l.

Here J = (J1 × {1}) ∪ (J2 × {2}).

(2) Let f be a function defined on X . We say that f has a non-tangential limit
l at point Y = (y, j) for j = 1, 2 and y ∈ ∂D if

∀ a > 0, lim
x−→Y, x∈ΩY,a

f(x) = l.

Remark 5.1. Let Y = (y, j) for j = 1, 2 and y ∈ ∂D, then

lim
(z,j)−→(y,j), (z,j)∈Γy,a×{j}

f(z, j) = lim
z−→y, z∈Γy,a

(f ◦ ij)(z).

Theorem 5.1. Let Y = (y, j) for j = 1, 2, y ∈ ∂D. Let u be a positive harmonic

function onX and let h be a strictly positive harmonic function onX such that the

function u
h
has a minimal fine limit l at point Y . Denote hj = h◦ ij −K

µj

D (h◦ ik),
j, k = 1, 2, j 6= k.

If h1 > 0 and h2 > 0 then the function u
h
has a non-tangential limit at point Y .

Remark 5.2. If hj > 0, hk = 0 and Y = (y, j) for j, k ∈ {1, 2}, j 6= k, then

lim
z−→y, z∈Γy,a

(u ◦ ij)(z)

(h ◦ ij)(z)
= lim

x−→Y, x∈(Γy,a×{1})

u

h
(x) = l.

Proof: Let Y = (y, j) for j = 1, 2, y ∈ ∂D. We suppose that h1 > 0 and h2 > 0.
Since the function u

h
has a minimal fine limit l at point Y , there exist a subset

J1 of D having a L1-minimal thinness at point y and a subset J2 of D having a
L2-minimal thinness at point y such that

lim
x−→Y, x∈X\J

u

h
(x) = l.

Here J = (J1 × {1}) ∪ (J2 × {2}). Therefore limz−→y
(u◦ij)(z)
(h◦ij)(z)

= l on D \ Jj . We

have

(u ◦ ij)(z)

(h ◦ ij)(z)
=

uj(z) +K
µj

D (u ◦ ik)(z)

hj(z) +K
µj

D (h ◦ ik)(z)
, j 6= k.
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Here uj = u ◦ ij −K
µj

D (u ◦ ik); j, k = 1, 2, j 6= k. Using [10, 18.1] or [1, Corol-
lary 9.3.8], we have

lim
z−→y∈∂D

K
µj

D (u ◦ ik)(z)

hj(z)
= lim

z−→y∈∂D

K
µj

D (h ◦ il)(z)

hj(z)
= 0;µhj

− a.e. on ∂j
mD.

Here µhj
denotes the measure on ∂

j
MD corresponding to hj in the Martin repre-

sentation. So, we get

lim
z−→y

uj(z)

hj(z)
= l on D \ Jj .

Therefore, by Fatou Theorem (see [1, Theorem 9.7.4]) limz−→y
uj(z)
hj(z)

= l on Γy,a.

Since we have

uj

hj

=
(u ◦ ij)−K

µj

D (u ◦ ik)

(h ◦ ij)−K
µj

D (h ◦ ik)

=

u◦ij
hj

−
K

µj

D
(u◦ik)

hj

h◦ij
hj

−
K

µj

D
(h◦ik)

hj

,

we conclude that limz−→y
u◦ij(z)
h◦ij(z)

= l on Γy,a.

In the same way, we show the assertions in the previous remark. �
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Potentiel (Orsay, 1983), pp. 116–149, Lecture Notes in Mathematics, 1096, Springer, Berlin,
1984.

[8] Brelot M., On Topologies and Boundaries in Potential Theory , Lecture Notes in Mathe-
matics, 175, Springer, Berlin-New York, 1971.

[9] Constantinescu C., Cornea A., Potential Theory on Harmonic Spaces, Springer, New York-
Heidelberg, 1972.

[10] Doob J.L., Classical Potential Theory and its Probabilistics Conterpart , Springer, New
York, 1984.



Thinness and non-tangential limit associated to coupled PDE 51

[11] Hansen W., Modification of balayage spaces by transitions with application to coupling of

PDE’s, Nagoya Math. J. 169 (2003), 77–118.
[12] Smyrnélis E.P., Axiomatique des fonctions biharmoniques, I , Ann. Inst. Fourier (Grenoble)

25 (1975), no. 1, 35–98.

Ibn Tofail University, Department of Mathematics, B.P. 133, Kenitra,

Morocco

E-mail: a benyaiche@yahoo.fr

(Received December 26, 2011, revised November 7, 2012)


