Thinness and non-tangential limit associated to coupled PDE

Allami Benyaiche, Salma Ghiate

Abstract. In this paper, we study the reduit, the thinness and the non-tangential limit associated to a harmonic structure given by coupled partial differential equations. In particular, we obtain such results for biharmonic equation (i.e. $\Delta^2 \varphi = 0$) and equations of $\Delta^2 \varphi = \varphi$ type.

Keywords: thinness, non-tangential limit, Martin boundary, biharmonic functions, coupled partial differential equations

Classification: Primary 31C35; Secondary 31B30, 31B10, 60J50

1. Introduction

Let D be a domain in \mathbb{R}^d , $d \ge 1$ and let L_j ; j = 1, 2, be two second order elliptic differential operators on D leading to harmonic spaces (D, H_{L_j}) with Green functions G_j . Moreover, we assume that every ball $B \subset \overline{B} \subset D$ is a L_j -regular set. Throughout this paper, we consider two positive Radon measures μ_1 and μ_2 such that $K_D^{\mu_j} = \int_D G_j(\cdot, y)\mu_j(dy)$ is a bounded continuous real function on D; j = 1, 2, and

$$|| K_D^{\mu_1} ||_{\infty} \cdot || K_D^{\mu_2} ||_{\infty} < 1.$$

We consider the system:

(S)
$$\begin{cases} L_1 u = -v \cdot \mu_1 \\ L_2 v = -u \cdot \mu_2. \end{cases}$$

Note that if U is a relatively compact open subset of D, $\mu_1 = \lambda^d$, where λ^d is the Lebesgue measure, $\mu_2 = 0$, and $L_1 = L_2 = \Delta$, then we obtain the classical biharmonic case on U. In the case where $\mu_1 = \mu_2 = \lambda^d$, and $\lambda^d(D) < \infty$, we obtain equations of $\Delta^2 \varphi = \varphi$ type. In this work, we shall study the thinness notion and the non-tangential limit associated with the balayage space given by the system (S). Let us note that the notion of a balayage space defined by J. Bliedtner and W. Hansen in [6], [11] is more general than that of a P-harmonic space. It covers harmonic structures given by elliptic or parabolic partial differential equations, Riesz potentials, and biharmonic equations (which are a particular case of this work). In the biharmonic case, a similar study can be done using couples of functions as presented in [2], [7], [12]. We are also grateful to the referee for his remarks and comments.

2. Notations and preliminaries

For j = 1, 2, let $X_j = D \times \{j\}$, and let $X = X_1 \cup X_2$, moreover, let i_j and π_j the mappings defined by:

$$i_j: D \longrightarrow X_j \text{ and } \pi_j: X_j \longrightarrow D$$

 $x \longmapsto (x, j) \qquad (x, j) \longmapsto x.$

Let \mathcal{U}_0 be the set of all balls B such that $B \subset \overline{B} \subset D$, \mathcal{U}_j be the image of \mathcal{U}_0 by i_j ; j = 1, 2 and $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

Definition 2.1. Let v be a measurable function on X. For $j, k \in \{1, 2\}, j \neq k$ and $U \in \mathcal{U}_j$, we define the kernel S_U , on X_j , by:

$$S_U v = (H^j_{\pi_j(U)}(v \ o \ i_j)) \ o \ \pi_j + (K^{\mu_j}_{\pi_j(U)}(v \ o \ i_k)) \ o \ \pi_j.$$

Where $H_{\pi_i(U)}^j$, j = 1, 2, denote harmonic kernels associated with (D, H_{L_j}) and

$$K_{\pi_j(U)}^{\mu_j}(w) = \int G_j^{\pi_j(U)}(\cdot, y) w(y) \mu_j(dy); \quad j = 1, 2.$$

Here w is a measurable function on D and $G_j^{\pi_j(U)}$ is the Green function associated with the operator L_j on $\pi_j(U)$. Let G_j , j = 1, 2, be the Green kernel associated with L_j on D. The family of kernels $(S_U)_{U \in \mathcal{U}}$ yields a balayage space on X as defined in [6], [11].

For all open subset V of X, let ${}^*\mathcal{H}(V)$ denote the set of all hyperharmonic functions on V:

$${}^{*}\mathcal{H}(V) := \{ v \in \mathcal{B}(X) : v \mid_{V} \text{ is l.s.c and } S_{U}v \leq v \ \forall U \in \mathcal{U}(V) \}$$

Here $\mathcal{U}(V) = \{U \in \mathcal{U} : \overline{U} \subset V\}$ and $\mathcal{B}(X)$ denotes the set of all Borel functions on X. Let $\mathcal{S}(V)$ be the set of all superharmonic functions on X, i.e.

$$\mathcal{S}(V) := \{ s \in {}^*\mathcal{H}(V) : (S_U v) \mid_U \in C(U) \ \forall U \in \mathcal{U}(V) \},\$$

and $\mathcal{H}(V)$ be the set of all harmonic functions on X:

$$\mathcal{H}(V) := \{ h \in \mathcal{S}(V) : S_U h = h \ \forall U \in \mathcal{U}(V) \}.$$

We denote ${}^*\mathcal{H}^+(V)$ (resp. $\mathcal{S}^+(V)$, $\mathcal{H}^+(V)$) the set of all hyperharmonic (resp. superharmonic, harmonic) positive functions on V. We denote also, for $V \subset D$, ${}^*\mathcal{H}^+_j(V)$ (resp. $\mathcal{S}^+_j(V)$, $\mathcal{H}^+_j(V)$) the set of all L_j -hyperharmonic (resp. L_j -superharmonic, L_j -harmonic) positive functions on V.

Let φ be a positive hyperharmonic function on X and let φ_j be the function defined on D by:

$$\varphi_j := \begin{cases} \varphi \ o \ i_j - K_D^{\mu_j}(\varphi \ o \ i_k) & \text{if } K_D^{\mu_j}(\varphi \ o \ i_k) < \infty \\ +\infty & \text{otherwise} \end{cases}$$

where $j, k \in \{1, 2\}$ and $j \neq k$. We note that $\varphi_j, j = 1, 2$ are L_j -hyperharmonic on D (see [4, Corollary 2.2]).

3. Reduit and thinness

Let $A \subset X$ and let f be a positive numerical function on X. The reduit R_f^A of f relative to A in X is defined by:

$$R_f^A := \inf\{\varphi \in {}^*\mathcal{H}^+(X) : \varphi \ge f \text{ on } A\}.$$

Let \widehat{R}_{f}^{A} be the lower semi-continuous regularization of R_{f}^{A} , i.e.

$$\widehat{R}^A_\varphi(x) := \liminf_{y \to x} R^A_\varphi(y), \ x \in X.$$

We denote ${}^{j}R_{g}^{A}$ the reduit of a function g defined on D relative to a set A of D with respect to harmonic space $(D, H_{j}), j = 1, 2$ and ${}^{j}\hat{R}_{g}^{A}$ the l.s.c. regularization of ${}^{j}R_{g}^{A}$.

Proposition 3.1. Let f be a positive numerical function on X and $A = (A_1 \times \{1\}) \cup (A_2 \times \{2\})$ with $A_j \subset D$, j = 1, 2. We have:

$${}^{j}R_{f\circ i_{j}}^{A_{j}} \leq R_{f}^{A}\circ i_{j}, \quad j=1,2.$$

PROOF: We consider the following sets:

$$B_1 = \{ \varphi \circ i_1, \ \varphi \in {}^*\mathcal{H}^+(X), \ \varphi \ge f \text{ on } A \}$$

and

$$B_2 = \{g, g \in {}^*\mathcal{H}_1^+(D), g \ge f \circ i_1 \text{ on } A_1\}.$$

For showing ${}^{1}R_{f\circ i_{1}}^{A_{1}} \leq R_{f}^{A} \circ i_{1}$, it suffices to prove that $B_{1} \subset B_{2}$. Let $u \in B_{1}$, then there exists $\varphi \in {}^{*}\mathcal{H}^{+}(X)$ such that $u = \varphi \circ i_{1}$ and $\varphi \geq f$ on A. Since $\varphi \in {}^{*}\mathcal{H}^{+}(X)$, then $u \in {}^{*}\mathcal{H}_{1}^{+}(D)$ and $u = \varphi \circ i_{1} \geq f \circ i_{1}$ on A_{1} . So $u \in B_{2}$, and ${}^{1}R_{f\circ i_{1}}^{A_{1}} \leq R_{f}^{A} \circ i_{1}$. In the same way, we show that ${}^{2}R_{f\circ i_{2}}^{A_{2}} \leq R_{f}^{A} \circ i_{2}$.

Corollary 3.1. Let f be a positive numerical function on X and $A \subset X$. We have:

$${}^{j}\hat{R}^{A_{j}}_{f\circ i_{j}} \leq \hat{R}^{A}_{f} \circ i_{j}, \ j = 1, 2.$$

Here $A = (A_{1} \times \{1\}) \cup (A_{2} \times \{2\})$ and $A_{j} \subset D; \ j = 1, 2.$

Definition 3.1. (i) Let A be a subset of X. We say that A is thin at a point $x \in X$ if and only if there exist an open neighbourhood U of x in X and a positive hyperharmonic function v on U such that $\hat{R}_v^{A \cap U}(x) < v(x)$.

(ii) Let B be a subset of D. We say that B is L_j -thin at point $z \in D$, j = 1, 2, if and only if there exist an open neighbourhood U of z in D and a positive L_j -hyperharmonic function v on U such that ${}^j\hat{R}_v^{B\cap U}(z) < v(z)$.

Proposition 3.2. Let $A = (A_1 \times \{1\}) \cup (A_2 \times \{2\})$ be a subset of X and $x = (x_0, j)$, j = 1, 2, where $x_0 \in D$. If A is thin at point x, then A_j is L_j -thin at point x_0 .

PROOF: If A is thin at point $x = (x_0, 1)$ where $x_0 \in D$, then there exist an open neighbourhood U of x in X and a positive hyperharmonic function φ on U such that $\hat{R}_{\varphi}^{A \cap U}(x) < \varphi(x)$. Hence there exist an open neighbourhood U_1 of x_0 , in D such that $(U_1 \times \{1\}) \subset U$. From Corollary 3.1,

$${}^{1}\hat{R}^{A_{1}\cap U_{1}}_{\varphi\circ i_{1}}(x_{0}) \leq (\hat{R}^{A\cap U}_{\varphi}\circ i_{1})(x_{0}) < (\varphi\circ i_{1})(x_{0}).$$

Since φ is a positive hyperharmonic function on U, then the function $\varphi \circ i_1$ is a positive L_1 -hyperharmonic function on U_1 . Therefore, A_1 is L_1 -thin at point x_0 . In the same way, we show that A_2 is L_2 -thin at point x_0 .

For $j, k \in \{1, 2\}, j \neq k$, we denote by $P_{j,k} := K_D^{\mu_j} K_D^{\mu_k}$ and $G_{P_{j,k}} := \sum_{n=0}^{+\infty} (P_{j,k})^n$ which coincides with $(I - P_{j,k})^{-1}$ on $\mathcal{B}_b(D)$. $\mathcal{B}_b(D)$ denotes the set of all bounded Borel measurable functions on D. We recall the following equalities:

(1)
$$P_{j,k}G_{P_{j,k}} = G_{P_{j,k}}P_{j,k},$$

$$(2) P_{j,k}G_{P_{j,k}} + I = G_{P_{j,k}},$$

(3)
$$G_{P_{j,k}}^2 - P_{j,k}G_{P_{j,k}}^2 = G_{P_{j,k}},$$

(4)
$$K_D^{\mu_j} G_{P_{k,j}} = G_{P_{j,k}} K_D^{\mu_j}.$$

Remark 3.1. (1) We note that if φ is a finite positive Borel measurable function on D such that $P_{j,k}\varphi$ is bounded, then $G_{P_{j,k}}\varphi < +\infty$.

(2) If s is a L_j -hyperharmonic positive function on D then $G_{P_{j,k}}s$ is L_j -hyperharmonic on D.

Let $J = (J_1 \times \{1\}) \cup (J_2 \times \{2\}), J' = ((J_1 \cap J_2) \times \{1\}) \cup ((J_1 \cap J_2) \times \{2\})$ with $J_j \subset D, j = 1, 2$, and $J_1 \cap J_2 \neq \emptyset$. Let $t_j, j = 1, 2$, be two positive L_j -hyperharmonic functions on D. We define two functions $v_{j,k}, j, k \in \{1, 2\}, j \neq k$ on X by:

$$v_{j,k} := \begin{cases} (G_{P_{j,k}}t_j + P_{j,k}G_{P_{j,k}}^2t_j) \ o \ \pi_j & \text{ on } X_j \\ (K_D^{\mu_k}G_{P_{j,k}}^2t_j) \ o \ \pi_k & \text{ on } X_k. \end{cases}$$

From ([4, Corollary 2.2]), the functions $v_{j,k}$ are hyperharmonic on $(D \times \{1\}) \cup (D \times \{2\})$.

Remark 3.2. Note that, if $P_{j,k}G^2_{P_{i,k}}t_j < \infty$, we have $v_{j,k} \circ i_j = G^2_{P_{i,k}}t_j$ and

 $(v_{1,2} + v_{2,1}) \circ i_i - K_D^{\mu_j}(v_{1,2} + v_{2,1}) \circ i_k = P_{i,k}t_i,$

 $j, k \in \{1, 2\}, j \neq k.$

Proposition 3.3. If $P_{j,k}G_{P_{j,k}}^2 t_j < \infty$, we have

$$R_{v_{j,k}}^{J'} \circ i_j \le {}^j R_{G_{P_{j,k}}t_j}^{J_j} + P_{j,k} G_{P_{j,k}}^2 t_j$$

and

$$R_{v_{j,k}}^{J'} \circ i_k \le K_D^{\mu_k} G_{P_{j,k}}^2 t_j$$

 $i, k \in \{1, 2\}, i \neq k.$

PROOF: (1) We give the proof for j = 1 and k = 2. Let s be a L_1 -hyperharmonic function on D such that $s = G_{P_{1,2}}t_1$ on J_1 and $s \leq G_{P_{1,2}}t_1$. We consider on X the function /

$$f := \begin{cases} (s + P_{1,2}G_{P_{1,2}}^2 t_1) \ o \ \pi_1 & \text{on } X_1 \\ (K_D^{\mu_2}G_{P_{1,2}}^2 t_1) \ o \ \pi_2 & \text{on } X_2. \end{cases}$$

So $f \circ i_1 = v_{1,2} \circ i_1$ on J_1 and $f \circ i_2 = v_{1,2} \circ i_2$. Hence $f = v_{1,2}$ on J' and $f \leq v_{1,2}$.

On one hand, we have

$$f \circ i_1 - K_D^{\mu_1} f \circ i_2 = s + P_{1,2} G_{P_{1,2}}^2 t_1 - P_{1,2} G_{P_{1,2}}^2 t_1 = s.$$

On the other hand, using the equalities (1), (2) and (3), we have

$$\begin{split} f \circ i_2 - K_D^{\mu_2} f \circ i_1 &= K_D^{\mu_2} G_{P_{1,2}}^2 t_1 - K_D^{\mu_2} (s + P_{1,2} G_{P_{1,2}}^2 t_1) \\ &= K_D^{\mu_2} G_{P_{1,2}}^2 t_1 - K_D^{\mu_2} s - K_D^{\mu_2} P_{1,2} G_{P_{1,2}}^2 t_1 \\ &= K_D^{\mu_2} (G_{P_{1,2}}^2 t_1 - P_{1,2} G_{P_{1,2}}^2 t_1) - K_D^{\mu_2} s \\ &= K_D^{\mu_2} G_{P_{1,2}} t_1 - K_D^{\mu_2} s \\ &= K_D^{\mu_2} (G_{P_{1,2}} t_1 - s). \end{split}$$

Hence $f \circ i_1 - K_D^{\mu_1} f \circ i_2$ and $f \circ i_2 - K_D^{\mu_2} f \circ i_1$ are respectively L_1 and L_2 hyperharmonic on D and therefore the function f is hyperharmonic on X ([4, Corollary 2.2]). So

$$R_{v_{1,2}}^{J'} \circ i_1 \le {}^1 R_{G_{P_{1,2}}t_1}^{J_1} + P_{1,2}G_{P_{1,2}}^2 t_1$$

and

$$R_{v_{1,2}}^{J'} \circ i_2 \le K_D^{\mu_2} G_{P_{1,2}}^2 t_1.$$

The following theorem results from the previous proposition.

Theorem 3.1. Let t_j , j = 1, 2, be two positive L_j -hyperharmonic functions on D such that $P_{j,k}G^2_{P_{j,k}}t_j < \infty$, $j,k \in \{1,2\}, j \neq k$. Then

$$\hat{R}_{v_{1,2}+v_{2,1}}^{J'} \circ i_j \le {}^j \hat{R}_{G_{P_{j,k}}t_j}^{J_j} + P_{j,k} G_{P_{j,k}}^2 t_j + K_D^{\mu_j} G_{P_{k,j}}^2 t_k.$$

Remark 3.3. (1) In the biharmonic case, i.e. $\mu_1 = \lambda^d$, $\mu_2 = 0$, $L_j = \Delta$ for j = 1, 2 and $J = J_1 = J_2$, the result is given by A. Boukricha [7, Proposition 5.6].

(2) All the previous results are still valid if we substitute D by any L_j -regular subset V of D.

Proposition 3.4. Let J_j , j = 1, 2 be two subsets of D such that $J_1 \cap J_2 \neq \emptyset$. Let $x_0 \in D$. If J_j are L_j -thin at point x_0 then the set $J' := ((J_1 \cap J_2) \times \{1\}) \cup ((J_1 \cap J_2) \times \{2\})$ is thin at points $(x_0, j), j = 1, 2$.

PROOF: Since J_j , $j \in \{1, 2\}$, is L_j -thin at point x_0 , then there exist a L_j -regular open neighbourhood U_j of x_0 in D and a positive L_j -hyperharmonic function s_j on U_j such that

$${}^{j}\hat{R}_{s_{j}}^{J_{j}\cap U_{j}}(x_{0}) < s_{j}(x_{0}).$$

Letting $V := U_1 \cap U_2$, V is a regular open neighbourhood of x_0 . Let φ be the positive hyperharmonic function on $W := (V \times \{1\}) \cup ((V) \times \{2\})$ defined on $V \times \{j\}$ by:

$$\varphi := (G_{P_{j,k}}s_j + K_V^{\mu_j}G_{P_{k,j}}^2s_k + P_{j,k}G_{P_{j,k}}^2s_j) \circ \pi_j.$$

We have, from Theorem 3.1,

$$\hat{R}_{\varphi}^{J' \cap W} \circ i_j \leq {}^j \hat{R}_{G_{P_{j,k}} s_j}^{J_j} + P_{j,k} G_{P_{j,k}}^2 s_j + K_V^{\mu_j} G_{P_{k,j}}^2 s_k.$$

Since

$$G_{P_{j,k}}s_j = s_j + P_{j,k}G_{P_{j,k}}s_j,$$

we have

$${}^{j}\hat{R}^{J_{j}\cap U_{j}}_{G_{P_{j,k}}s_{j}}(x_{0}) \leq {}^{j}\hat{R}^{J_{j}\cap U_{j}}_{s_{j}}(x_{0}) + {}^{j}\hat{R}^{J_{j}\cap U_{j}}_{P_{j,k}G_{P_{j,k}}s_{j}}(x_{0}).$$

Hence, from the hypothesis, we get

$${}^{j}\hat{R}^{J_{j}\cap U_{j}}_{G_{P_{j,k}}s_{j}}(x_{0}) < s_{j}(x_{0}) + P_{j,k}G_{P_{j,k}}s_{j}(x_{0}) = G_{P_{j,k}}s_{j}(x_{0}).$$

Therefore, we conclude

$$\hat{R}_{\varphi}^{J' \cap W}(x_0, 1) < \varphi(x_0, 1)$$

i.e. J' is thin at point $(x_0, 1)$.

Note that our proof is direct. From Proposition 3.2 and Proposition 3.4 we have the following characterization of the thinness with respect to the system (S).

Theorem 3.2. Let J_1 and J_2 be two subsets of D such that $J_1 \cap J_2 \neq \emptyset$. The following propositions are equivalent.

- (1) J_1 is L_1 -thin at point x_0 and J_2 is L_2 -thin at point $x_0 \in D$.
- (2) The set $J' := ((J_1 \cap J_2) \times \{1\}) \cup ((J_1 \cap J_2) \times \{2\})$ is thin at points (x_0, j) , j = 1, 2.

4. Minimal thinness

Let us fix $x_0 \in D$. For all $x, y \in D$ and $j \in \{1, 2\}$, we put:

$$g^{j}(x,y) := \begin{cases} \frac{G_{j}(x,y)}{G_{j}(x_{0},y)}, & \text{if } x \neq x_{0} \text{ or } y \neq x_{0} \\ 1, & \text{if } x = y = x_{0}. \end{cases}$$

Let $\mathcal{A}_j = \{g^j(x, \cdot), x \in D\}$, and $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$.

As in [8], [9], we consider the Martin compactification \widehat{D} of D associated with \mathcal{A} . The boundary $\partial_M D := \widehat{D} - D$ of D is called the Martin boundary of D associated with the system (S).

The function $g^j(x, \cdot)$, $j = 1, 2, x \in D$ can be extended, on \widehat{D} , to a continuous function denoted $g^j(x, \cdot)$, $j = 1, 2, x \in D$ as in [8]. Put $\widetilde{\partial}_M D := \partial_M D \times \{1\} \cup$ $\partial_M D \times \{2\}$. A couple of functions (u_1, u_2) defined on $\partial_M D$ can be identified with a function f on $\widetilde{\partial}_M D$ such that $f \circ i_j = u_j$, where $i_j, j = 1, 2$ denote always the mappings of $\partial_M D$ into $\partial_M D \times \{j\}$ defined by: $i_j(z) = (z, j); z \in \partial_M D$. We use also π , the mapping of $\widetilde{\partial}_M D$ into $\partial_M D$ defined by: $\pi(Y) = \pi_j(Y)$, if $Y \in \partial_M D \times \{j\}$. Here $\pi_j(Y) = z$, if Y = (z, j). We denote:

$$\partial_m^j D = \{ y \in \partial_M D : g^j(\cdot, y) \text{ is } L_j \text{-minimal} \}.$$

We note that, for all $y \in \partial_M D$, the function $g^j(\cdot, y)$ is L_j -harmonic on D. In the following, we suppose that, for all $y \in \partial_M D$, the function $K_D^{\mu_j} g^k(\cdot, y)$ is finite and the function $P_{k,j}g^k(\cdot, y)$ is bounded for $j \neq k, j, k \in \{1, 2\}$. For all $Y \in \tilde{\partial}_M D$, we have $\pi(Y) \in \partial_M D$. Hence we can define on X, the following functions:

$$\Phi_Y := \begin{cases} (G_{P_{1,2}}g^1(\cdot, \pi(Y))) \ o \ \pi_1 & \text{on } X_1 \\ (K_D^{\mu_2}G_{P_{1,2}}g^1(\cdot, \pi(Y))) \ o \ \pi_2 & \text{on } X_2 \end{cases}$$

and

$$\Psi_Y := \begin{cases} (G_{P_{1,2}} K_D^{\mu_1} g^2(\cdot, \pi(Y))) \ o \ \pi_1 & \text{on } X_1 \\ (G_{P_{2,1}} g^2(\cdot, \pi(Y))) \ o \ \pi_2 & \text{on } X_2. \end{cases}$$

From [4, Theorem 3.1], Φ_Y and Ψ_Y are harmonic functions on X.

Definition 4.1. Let $Y \in \tilde{\partial}_M D$. We say that Y is a minimal point for $\tilde{\partial}_M D$ if Φ_Y is minimal or Ψ_Y is minimal.

Lemma 4.1. Y = (y, j), j = 1, 2 is a minimal point for $\tilde{\partial}_M D$, if and only if y is a minimal point for $\partial_M D$.

PROOF: Let Y = (y, j) be a minimal point for $\tilde{\partial}_M D$, j = 1, 2, then, by the definition, Φ_Y is minimal or Ψ_Y is minimal. Suppose that Φ_Y is minimal. So, from [4, Proposition 4.2], the function $(\Phi_Y \circ i_1 - K_D^{\mu_1}(\Phi_Y \circ i_2))$ is L_1 -minimal. Since

$$\Phi_Y \circ i_1 - K_D^{\mu_1}(\Phi_Y \circ i_2) = G_{P_{1,2}}g^1(\cdot, y) - P_{1,2}G_{P_{1,2}}g^1(\cdot, y),$$

then we have

(4.1)
$$\Phi_Y \circ i_1 - K_D^{\mu_1}(\Phi_Y \circ i_2) = g^1(\cdot, y).$$

Therefore, the function $g^1(\cdot, y)$ is minimal and we can deduce that the point y is a minimal point for $\partial_M D$. If we suppose that the function Ψ_Y is a minimal function, we show in an analogous way that the function $g^2(\cdot, y)$ is a minimal function, i.e. y is a minimal point for $\partial_M D$.

Conversely, let y be a minimal point for $\partial_M D$. Then $g^1(\cdot, y)$ is a L_1 -minimal function or $g^2(\cdot, y)$ is a L_2 -minimal function. If $g^1(\cdot, y)$ is minimal, then, by (4.1), the function $(\Phi_Y \circ i_1 - K_D^{\mu_1}(\Phi_Y \circ i_2))$ is L_1 -minimal. Therefore, by [4, Proposition 4.2], Φ_Y is a minimal function. So Y is a minimal point for $\tilde{\partial}_M D$. Similarly, if we assume that the function $g^2(\cdot, y)$ is a minimal function, we show that the function Ψ_Y is a minimal function, i.e. Y is a minimal point for $\tilde{\partial}_M D$.

Definition 4.2. Let J be a subset of X and let Y be a minimal point for $\tilde{\partial}_M D$. We say that J has a minimal thinness at point Y if $\hat{R}^J_{\Phi_Y} \neq \Phi_Y$ or $\hat{R}^J_{\Psi_Y} \neq \Psi_Y$.

5. Non-tangential limit

In this section, we take $L_1 = L_2 = \triangle$ and D is the half space in \mathbb{R}^d defined by:

$$D = \{ (x', x_d) : x' \in \mathbb{R}^{d-1} \text{ and } x_d > 0 \}.$$

The Martin compactification of D can be identified with the closure of D and all Martin boundary points are minimal (see [1]). Let $x_0 = (0', 1)$ with $0' = (0, 0, ...) \in \mathbb{R}^{d-1}$. We recall that the Martin Kernel in this case is given by:

$$\begin{cases} M(x,y) = \frac{\|x_0 - y\|^d \cdot x_d}{\|x - y\|^d}, & x \in D, \ y \in \partial D\\ M(x,\infty) = x_d, & x \in D. \end{cases}$$

For a > 0 and $y \in \partial D$, we define

$$\Gamma_{y,a} := \{ (x', x_d) \in \mathbb{R}^{d-1} \times \mathbb{R}^{*+} : x_d > ||x' - y'|| \}, \ y = (y', 0), \ y' \in \mathbb{R}^{d-1}$$

we define for $V = (y, i) \in (\partial D \times \{1\}) \cup (\partial D \times \{2\})$

and we define for $Y = (y, j) \in (\partial D \times \{1\}) \cup (\partial D \times \{2\})$,

$$\Omega_{Y,a} := (\Gamma_{y,a} \times \{1\}) \cup (\Gamma_{y,a} \times \{2\}).$$

We note that if h is a positive harmonic function on X, then the function $h_j = h \circ i_j - K_D^{\mu_j}(h \circ i_k)$ is harmonic on D [4, Theorem 2.1]. Moreover, $K_D^{\mu_j}(h \circ i_k) < \infty$ for $j, k = 1, 2, j \neq k$.

Definition 5.1. (1) Let f be a function defined on X. We say that f has a fine minimal limit l at point Y = (y, j) for j = 1, 2 and $y \in \partial D$, if there exist a subset J_1 of D having a L_1 -minimal thinness at point y and a subset J_2 of D having a L_2 -minimal thinness at point y such that

$$\lim_{x \longrightarrow Y, \ x \in X \setminus J} f(x) = l.$$

Here $J = (J_1 \times \{1\}) \cup (J_2 \times \{2\}).$

(2) Let f be a function defined on X. We say that f has a non-tangential limit l at point Y = (y, j) for j = 1, 2 and $y \in \partial D$ if

$$\forall a > 0, \lim_{x \longrightarrow Y, \ x \in \Omega_{Y,a}} f(x) = l.$$

Remark 5.1. Let Y = (y, j) for j = 1, 2 and $y \in \partial D$, then

$$\lim_{(z,j)\longrightarrow(y,j),\ (z,j)\in\Gamma_{y,a}\times\{j\}}f(z,j)=\lim_{z\longrightarrow y,\ z\in\Gamma_{y,a}}(f\circ i_j)(z).$$

Theorem 5.1. Let Y = (y, j) for $j = 1, 2, y \in \partial D$. Let u be a positive harmonic function on X and let h be a strictly positive harmonic function on X such that the function $\frac{u}{h}$ has a minimal fine limit l at point Y. Denote $h_j = h \circ i_j - K_D^{\mu_j}(h \circ i_k), j, k = 1, 2, j \neq k$.

If $h_1 > 0$ and $h_2 > 0$ then the function $\frac{u}{h}$ has a non-tangential limit at point Y.

Remark 5.2. If $h_j > 0$, $h_k = 0$ and Y = (y, j) for $j, k \in \{1, 2\}, j \neq k$, then

$$\lim_{z \longrightarrow y, \ z \in \Gamma_{y,a}} \frac{(u \circ i_j)(z)}{(h \circ i_j)(z)} = \lim_{x \longrightarrow Y, \ x \in (\Gamma_{y,a} \times \{1\})} \frac{u}{h}(x) = l.$$

PROOF: Let Y = (y, j) for $j = 1, 2, y \in \partial D$. We suppose that $h_1 > 0$ and $h_2 > 0$. Since the function $\frac{u}{h}$ has a minimal fine limit l at point Y, there exist a subset J_1 of D having a L_1 -minimal thinness at point y and a subset J_2 of D having a L_2 -minimal thinness at point y such that

$$\lim_{x \longrightarrow Y, \ x \in X \setminus J} \frac{u}{h}(x) = l.$$

Here $J = (J_1 \times \{1\}) \cup (J_2 \times \{2\})$. Therefore $\lim_{z \longrightarrow y} \frac{(u \circ i_j)(z)}{(h \circ i_j)(z)} = l$ on $D \setminus J_j$. We have

$$\frac{(u \circ i_j)(z)}{(h \circ i_j)(z)} = \frac{u_j(z) + K_D^{\mu_j}(u \circ i_k)(z)}{h_j(z) + K_D^{\mu_j}(h \circ i_k)(z)}, \ j \neq k.$$

Here $u_j = u \circ i_j - K_D^{\mu_j}(u \circ i_k)$; $j, k = 1, 2, j \neq k$. Using [10, 18.1] or [1, Corollary 9.3.8], we have

$$\lim_{z \longrightarrow y \in \partial D} \frac{K_D^{\mu_j}(u \circ i_k)(z)}{h_j(z)} = \lim_{z \longrightarrow y \in \partial D} \frac{K_D^{\mu_j}(h \circ i_l)(z)}{h_j(z)} = 0; \mu_{h_j} - a.e. \text{ on } \partial_m^j D.$$

Here μ_{h_j} denotes the measure on $\partial_M^j D$ corresponding to h_j in the Martin representation. So, we get

$$\lim_{z \to y} \frac{u_j(z)}{h_j(z)} = l \quad \text{on} \quad D \setminus J_j.$$

Therefore, by Fatou Theorem (see [1, Theorem 9.7.4]) $\lim_{z \to y} \frac{u_j(z)}{h_j(z)} = l$ on $\Gamma_{y,a}$. Since we have

$$\frac{u_j}{h_j} = \frac{(u \circ i_j) - K_D^{\mu_j}(u \circ i_k)}{(h \circ i_j) - K_D^{\mu_j}(h \circ i_k)}$$
$$= \frac{\frac{u \circ i_j}{h_j} - \frac{K_D^{\mu_j}(u \circ i_k)}{h_j}}{\frac{h \circ i_j}{h_j} - \frac{K_D^{\mu_j}(h \circ i_k)}{h_j}},$$

we conclude that $\lim_{z \longrightarrow y} \frac{u \circ i_j(z)}{h \circ i_j(z)} = l$ on $\Gamma_{y,a}$.

In the same way, we show the assertions in the previous remark.

References

- [1] Armitage D.H., Stephen J.G., Classical Potential Theory, Springer, London, 2001.
- [2] Benyaiche A., Ghiate S., Frontière de Martin biharmonique, preprint, 2000.
- [3] Benyaiche A., Ghiate S., Propriété de moyenne restreinte associée à un système d'E.D.P., Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003), 125–143.
- [4] Benyaiche A., Ghiate S., Martin boundary associated with a system of PDE, Comment. Math. Univ. Carolin. 47 (2006), no. 3, 399-425.
- [5] Benyaiche A., On potential theory associated to a coupled PDE, in Complex Analysis and Potential Theory, T.A. Azeroglu and P.M. Tamrazov, eds., Proceedings of the Conference Satellite to ICM 2006, World Sci. Publ., Hackensack, NJ, 2007, pp. 178–186.
- [6] Bliedtner J., Hansen W., Potential Theory. An Analytic and Probabilistic Approach to Balayage, Universitext, Springer, Berlin, 1986.
- [7] Boukricha A., Espaces biharmoniques, in G. Mokobodzki and D. Pinchon, eds., Théorie du Potentiel (Orsay, 1983), pp. 116–149, Lecture Notes in Mathematics, 1096, Springer, Berlin, 1984.
- [8] Brelot M., On Topologies and Boundaries in Potential Theory, Lecture Notes in Mathematics, 175, Springer, Berlin-New York, 1971.
- [9] Constantinescu C., Cornea A., Potential Theory on Harmonic Spaces, Springer, New York-Heidelberg, 1972.
- [10] Doob J.L., Classical Potential Theory and its Probabilistics Conterpart, Springer, New York, 1984.

50

- [11] Hansen W., Modification of balayage spaces by transitions with application to coupling of PDE's, Nagoya Math. J. 169 (2003), 77–118.
- [12] Smyrnélis E.P., Axiomatique des fonctions biharmoniques, I, Ann. Inst. Fourier (Grenoble)
 25 (1975), no. 1, 35–98.

IBN TOFAIL UNIVERSITY, DEPARTMENT OF MATHEMATICS, B.P. 133, KENITRA, MOROCCO

E-mail: a_benyaiche@yahoo.fr

(Received December 26, 2011, revised November 7, 2012)