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Diagonals and discrete subsets of squares

Dennis Burke, Vladimir V. Tkachuk

Abstract. In 2008 Juhász and Szentmiklóssy established that for every compact space
X there exists a discrete D ⊂ X ×X with |D| = d(X). We generalize this result in two
directions: the first one is to prove that the same holds for any Lindelöf Σ-space X and
hence Xω is d-separable. We give an example of a countably compact space X such that
Xω is not d-separable.

On the other hand, we show that for any Lindelöf p-space X there exists a discrete
subset D ⊂ X × X such that ∆ = {(x, x) : x ∈ X} ⊂ D; in particular, the diagonal

∆ is a retract of D and the projection of D on the first coordinate is dense in X. As
a consequence, some properties that are not discretely reflexive in X become discretely
reflexive in X×X. In particular, if X is compact and D is Corson (Eberlein) compact for
any discrete D ⊂ X ×X then X itself is Corson (Eberlein). Besides, a Lindelöf p-space

X is zero-dimensional if and only if D is zero-dimensional for any discrete D ⊂ X ×X.
Under CH, we give an example of a crowded countable space X such that every

discrete subset of X ×X is closed. In particular, the diagonal of X cannot be contained
in the closure of a discrete subspace of X ×X.
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0. Introduction

A property P is called discretely reflexive if a space X has P whenever D
has P for any discrete D ⊂ X . Tkachuk established in [Tk1] that a space X is
compact if and only if the closure of every discrete subspace of X is compact, i.e.,
compactness is a discretely reflexive property. Alas, Tkachuk and Wilson proved
in [ATW] that quite a few cardinal functions are reflected by closures of discrete
subspaces. For example, a compact space X has countable character (tightness)
if and only if the closure of every discrete subspace of X has countable character
(or countable tightness respectively).

The paper [BT] provided some results on discrete reflexivity for countably
compact spaces generalizing the corresponding theorems of [ATW] established for
compact spaces. Such a generalization turned out to be possible for the case of
weight less or equal to ω1. It was proved, in particular, that countable tightness
and countable character are discretely reflexive in countably compact spaces of
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weight less or equal to ω1. It was also shown in [BT] that, at least, countable
compactness cannot be omitted in these results.

It turns out that some non-discretely reflexive properties improve their behavior
in X×X for an arbitraryX . It was proved in [BT] that for any countably compact
space X , if D is metrizable for any discrete D ⊂ X × X then X is metrizable
and hence compact. Another result from [BT] states that, for any topological
property P preserved by continuous maps, if X is compact and D has P for any
discrete D ⊂ X3 then X has P . It was asked in [BT] whether X3 could be
replaced with X2. We give a positive answer to this question developing an idea
of Juhász and Szentmiklóssy in [JSz] where they proved that for every compact
space X , we can find a discrete D ⊂ X ×X with |D| = d(X).

We show that for every Lindelöf p-space X there exists a discrete D ⊂ X ×X
such that ∆ ⊂ D and therefore the projection of D onto the first coordinate is
dense in X ; in particular, the set ∆ is a retract of D. Here ∆ = {(x, x) : x ∈ X} is
the diagonal of the space X . As a consequence, if X is compact and D is Corson
(Eberlein) compact for any discreteD ⊂ X×X then X itself is Corson (Eberlein),
i.e., we give a positive answer to the corresponding questions from [BT]. The same
conclusion cannot be derived if the closures of discrete subsets of X are Eberlein
since there exist examples of compact spaces X which fail to be Corson while
D is second countable for any discrete D ⊂ X . Another property, which is not
discretely reflexive is zero-dimensionality. However, a Lindelöf p-space X is zero-
dimensional if and only if D is zero-dimensional for any discrete D ⊂ X ×X .

As a generalization of the mentioned result of Juhász and Szentmiklóssy in
another direction, we establish that for any Lindelöf Σ-space X we can find a
discrete set D ⊂ X ×X such that |D| = d(X) and hence Xω is d-separable. We
also give an example of a countably compact space X such that Xω is not d-
separable. Another example constructed under CH shows that a countable space
X can be maximal while all discrete subspaces of X ×X are closed. Therefore,
under CH, the diagonal of a countable space is not necessarily contained in the
closure of a discrete set.

1. Notation and terminology

All spaces under consideration are assumed to be Tychonoff. Given a space X ,
the family τ(X) is its topology and τ∗(X) = τ(X)\{∅}. We denote by R the
real line with the natural topology, the set Q consists of the rational points of
R and N = ω\{0}. The expression X ≃ Y means that the spaces X and Y are
homeomorphic. A space X is Lindelöf p if it is a perfect preimage of a second
countable space. The space X is crowded if it has no isolated points. A crowded
space X is called maximal if any strictly stronger (not necessarily Tychonoff)
topology on X has isolated points. The space X is ultradisconnected if any two
disjoint crowded subspaces of X have disjoint closures. We say that a space X is
ω-bounded if A is compact for any countable A ⊂ X .
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Given a space X , a family N of subsets of X is a network modulo a cover C
of X if for every C ∈ C and U ∈ τ(X) with C ⊂ U there exists N ∈ N such
that C ⊂ N ⊂ U . A network of X modulo the cover {{x} : x ∈ X} is called a
network in X . The spaces with a countable network are called cosmic. A space
X is Lindelöf Σ if it has a countable network modulo a compact cover of X .
Furthermore, nw(X) = min{|N | : N is a network in X}. The cardinal nw(X) is
called the network weight of X . Let s(X) = sup{|D| : D is a discrete subspace
of X}; the cardinal s(X) is called the spread of X .

The set ∆X = {(x, x) : x ∈ X} is called the diagonal of the space X ; we denote
the diagonal of X by ∆ if X is clear. Given a topological property P , we say that
a space X is discretely P if D has P for any discrete subspace D ⊂ X . A property
P is called discretely reflexive if a space X has P if and only if X is discretely P .

The rest of our terminology is standard and can be found in [En] and [Tk2].

2. Large discrete subspaces of squares

This work was inspired by a theorem of Juhász and Szentmiklóssy about exis-
tence of large discrete subsets in X ×X for compact spaces X . Our purpose is to
show that the same result holds for Lindelöf Σ-spaces and strengthen it for the
compact case.

2.1 Definition. If X is a space and U ⊂ τ∗(X), we say that a set A ⊂ X is
dense in U if A ∩ U 6= ∅ for any U ∈ U .

2.2 Lemma. Given a Lindelöf Σ-space X , suppose that κ is a cardinal and

U ⊂ τ∗(X) is a non-empty family of cozero subsets of X such that nw(U) ≥ κ
for any U ∈ U . Consider the following conditions:

(a) |U| ≤ κ;
(b) |D| < κ for any discrete set D ⊂ X ×X ;

(c) there exists a discrete set D ⊂ X ×X dense in the family Û = {U × U :
U ∈ U}.

Then (a) implies (c) and (b) implies (c).

Proof: We will prove both implications simultaneously. If κ < ω then both (a)
and (b) imply that U is finite so (c) trivially holds. Therefore we can assume,
without loss of generality, that κ is an infinite cardinal and hence each U ∈ U
is infinite. Observe first that every U ∈ U must be a Lindelöf Σ-space being an
Fσ-subset of X . Choose an enumeration {Gα : α < λ} for a family U ; if we prove
that (a)=⇒(c) then λ = κ.

Take a point x0 ∈ G0; pick any y0 ∈ G0\{x0} and let z0 = (x0, y0). We can
find disjoint open sets U0 and V0 such that x0 ∈ U0 and y0 ∈ V0. Proceeding by
induction let z0 = (x0, y0) and assume that α < κ and we have a set {zβ : β < α}
and a family {Uβ, Vβ : β < α} ⊂ τ(X) with the following properties:

(1) zβ = (xβ , yβ) ∈ (X ×X)\∆ for any β < α;
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(2) xβ ∈ Uβ , yβ ∈ Vβ and Uβ ∩ Vβ = ∅ for every β < α;

(3) zβ /∈ {zγ : γ < β} for all β < α;
(4) zβ /∈ Hβ =

⋃
{Uγ × Vγ : γ < β} for each β < α;

(5) {zγ : γ ≤ β} ∩ (Gβ ×Gβ) 6= ∅ for any β < α.

Let Dα = {zβ : β < α}. If the set Dα is dense in Û then we set D = Dα and

stop the induction for both proofs. If Dα is not dense in Û , then the property (5)
shows that γ = min{β : Dα ∩ (Gβ ×Gβ) = ∅} ≥ α.

Suppose that the set (Gγ ×Gγ)\∆ is contained in Hα =
⋃
{Uβ × Vβ : β < α}.

Then the family H = {Uβ ∩Gγ , Vβ ∩Gγ : β < α} is T2-separating in Gγ . If κ = ω
then we obtain a finite T2-separating family on an infinite set which is impossible.
If κ > ω then it follows from [Gr, Corollary 7.10] that nw(Gγ ) ≤ |H| · ω < κ
which is a contradiction.

Therefore (Gγ ×Gγ)\∆ is not contained in Hα and hence we can find distinct
points xα, yα ∈ Gγ such that zα = (xα, yα) /∈ Hα. Choose disjoint open sets
Uα, Vα such that xα ∈ Uα and yα ∈ Vα. It is immediate that the conditions
(1)–(5) are still satisfied for all β ≤ α.

If our inductive construction stops for some α < κ then D is dense in Û for both
proofs so assume that we have the set D = {zα : α < κ}. If we prove (a)=⇒(c)

then the set D is dense in Û by the property (5). If we prove that (b)=⇒(c) then
(b) holds and hence D cannot be discrete.

Therefore it suffices to show that Dα is discrete for any α ≤ κ. Fix any
β < α and observe that it follows from (3) that zβ /∈ {zγ : γ < β}. Besides, we
have the inclusion {zγ : γ > β} ⊂ (X × X)\(Uβ × Vβ) by the property (4) so

zβ /∈ {zγ : γ > β} and hence the set Dα is discrete. �

The following result generalizes Theorem 3 of [JSz].

2.3 Theorem. If X is a Lindelöf Σ-space then there exists a discrete subspace

D ⊂ X ×X such that |D| ≥ d(X).

Proof: Call a non-empty open set U ⊂ X adequate if nw(U) = nw(V ) for any
V ∈ τ∗(U). Every non-empty open subset ofX contains a non-empty cozero set of
minimal network weight; it is evident that such a set will be adequate. Therefore
the family B of adequate cozero sets is a π-base of X . Let G be a maximal disjoint
subfamily of B; then

⋃
G is dense in X and hence

∑
{d(G) : G ∈ G} = d(X).

If we find a discrete set DG ⊂ G ×G such that |DG| ≥ d(G) for every G ∈ G
then D =

⋃
{DG : G ∈ G} ⊂ X ×X will be a discrete subspace of X ×X such

that |D| =
∑

{|DG| : G ∈ G} ≥ d(X).
So take any set G ∈ G and observe that G is a Lindelöf Σ-space because it

is an Fσ-subset of X . Let κ = nw(G). If there is a discrete DG ⊂ G × G with
|DG| ≥ κ then there is nothing to prove because d(G) ≤ nw(G) = κ. If such a
set does not exist then we can apply the implication (b)=⇒(c) of Lemma 2.2 for
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the family U = τ∗(G) to see that there exists a discrete DG ⊂ G × G such that
DG is dense in {U × U : U ∈ U} and hence the projection of the set DG on the
first coordinate is dense in G so |DG| ≥ d(G). �

2.4 Corollary. If X is a Lindelöf Σ-space then Xω is d-separable.

Proof: Apply Theorem 2.3 and Theorem 6 of [JSz]. �

Recall that X is a Lindelöf p-space if there exists a perfect map of X onto a
second countable space. Evidently, all compact spaces and all second countable
spaces are Lindelöf p-spaces. The following theorem also generalizes Theorem 3
of the paper [JSz].

2.5 Theorem. For any Lindelöf p-space X there exists a discrete D ⊂ X ×X
such that ∆X ⊂ D and hence p1(D) is dense in X . Here p1(x, y) = x for any

(x, y) ∈ X ×X , i.e., p1 : X ×X → X is the projection onto the first coordinate.

Proof: Call a non-empty open set U ⊂ X adequate if nw(U) = nw(V ) for
any V ∈ τ∗(U). Every non-empty open subset of X contains a non-empty open
Fσ-set of minimal network weight; it is evident that such a set will be adequate.
Therefore the family B of adequate open Fσ-sets is a π-base of X . Let G be a
maximal disjoint subfamily of B; then

⋃
G is dense in X .

If we find a discrete set DG ⊂ G × G such that ∆DG
⊂ DG for every G ∈ G

then D =
⋃
{DG : G ∈ G} ⊂ X ×X will be a discrete set such that ∆X ⊂ D. So

take any G ∈ G and observe that G is a Lindelöf Σ-space because it is Lindelöf p
being a cozero subset of a Lindelöf p-space. Besides, πw(G) ≤ w(G) = nw(G) (see
Corollary 4.3 of [Ar]) so we can choose a π-base U in G with |U| ≤ κ = nw(G).
The set G being adequate, we have nw(U) = κ ≥ |U| for any U ∈ U so we
can apply the implication (a)=⇒(c) of Lemma 2.2 to conclude that there exists
a discrete DG ⊂ G × G such that DG is dense in {U × U : U ∈ U} and hence
∆DG

⊂ DG. �

2.6 Corollary. Suppose that X is a Lindelöf p-space and P is a closed-hereditary

topological property. If the closure of every discrete D ⊂ X ×X has P then X
also has P .

Proof: It suffices to observe that the diagonal ∆X of the space X is homeomor-
phic to X and apply Theorem 2.5. �

2.7 Corollary. Suppose that X is a Lindelöf p-space and P is a topological

property preserved by quotient maps. If the closure of every discrete D ⊂ X ×X
has P then X also has P .

Proof: By Theorem 2.5 there exists a discrete D ⊂ X ×X such that ∆ ⊂ D.
The set ∆ is a retract of X ×X so it is also a retract of D. Finally observe that
∆ is homeomorphic to X and every retraction is a quotient map. �
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2.8 Corollary. Given a cardinal κ suppose that X is a Lindelöf p-space and P
is a property from the following list M0 = {character≤κ, weight≤κ, i-weight≤κ,
pseudocharacter≤κ, tightness≤κ, κ-monolithity}. If the closure of every discrete

subspace of X ×X has P then X has P .

2.9 Corollary. Suppose thatX is a Lindelöf p-space and P is a property from the

following list M1 = {Fréchet-Urysohn property, sequentiality, k-property, zero-
dimensionality, the covering dimension dim does not exceed n for some n ∈ N}.
If the closure of every discrete subspace of X ×X has P then X has P .

The following corollary answers Problems 4.8 and 4.9 from [BT].

2.10 Corollary. Suppose that X is a compact space and D is Corson (Eberlein)
compact for any discrete D ⊂ X ×X . Then X is Corson (Eberlein) compact.

2.11 Example. Zero-dimensionality is not discretely reflexive even in compact
metrizable spaces.

Proof: If X = [0, 1] ⊂ R then the closure of every discrete subset of X is nowhere
dense in X and hence zero-dimensional. However, X is not zero-dimensional. �

We are going to show next that, at least, Theorem 2.5 cannot be proved for
Lindelöf Σ-spaces. We precede the corresponding example with two technical
lemmas.

2.12 Lemma. If Z is any space and A ⊂ Z is a countable metrizable crowded

subspace of Z then, for any a ∈ A, we can find a crowded set B ⊂ A such that

a ∈ B and B is nowhere dense in Z.

Proof: It suffices to find a crowded B ⊂ A such that a ∈ B and B is nowhere
dense in A. Using the fact that A ≃ Q ≃ Q×Q, it is easy to find a disjoint family
{An : n ∈ ω} of nowhere dense crowded subspaces of A such that A =

⋃
n∈ω An.

There exists n ∈ ω with a ∈ An so we can take B = An. �

2.13 Lemma. Suppose that Z is a second countable crowded space and D ⊂
Z × Z is a discrete subspace of Z × Z. Then

(a) if x 6= y and (x, y) /∈ D then there exist disjoint nowhere dense crowded

sets P,Q ⊂ Z such that (x, y) ∈ P ×Q ⊂ (Z × Z)\D;

(b) if x ∈ Z and (x, x) /∈ D then there exists a nowhere dense crowded set

P ⊂ Z such that (x, x) ∈ P × P ⊂ (Z × Z)\D.

Proof: Take a metric d on the space Z which generates the topology of Z and
let d(a,A) = inf{d(a, b) : b ∈ A} for any a ∈ Z and A ⊂ Z. To prove (a) let
x0 = x, y0 = y and consider the sets P0 = {x0} and Q0 = {y0}. Proceeding by
induction, assume that n ∈ ω and we have finite sets P0, . . . , Pn and Q0, . . . , Qn

with the following properties:

(6) Pi ⊂ Pi+1 and Qi ⊂ Qi+1 for any i < n;



Diagonals and discrete subsets of squares 75

(7) Pi ∩Qi = ∅ for any i ≤ n;
(8) (Pi ×Qi) ∩D = ∅ for any i ≤ n;
(9) if i < n and p ∈ Pi then there exists a point p′ ∈ Pi+1 such that p′ 6= p

and d(p, p′) < 2−i;
(10) if i < n and q ∈ Qi then there exists a point q′ ∈ Qi+1 such that q′ 6= q

and d(q, q′) < 2−i.

For any point p ∈ Pn the set {z ∈ Z : (p, z) ∈ D} is discrete and hence
nowhere dense in Z. Therefore the set H = {z ∈ Z : (p, z) ∈ D for some
p ∈ Pn} is the finite union of nowhere dense subsets of Z and therefore the set
E = Z\(H ∪Pn ∪Qn) is dense in Z. As a consequence, we can choose a finite set
Q′ ⊂ E such that d(q,Q′) < 2−n for any q ∈ Qn; let Qn+1 = Qn ∪Q′.

Analogously, the set H ′ = {z ∈ Z : (z, q) ∈ D for some q ∈ Qn+1} is the finite
union of nowhere dense subsets of Z and therefore the set E′ = Z\(H ′∪Pn∪Qn+1)
is dense in Z. As a consequence, we can choose a finite set P ′ ⊂ E′ such that
d(p, P ′) < 2−n for any p ∈ Pn; let Pn+1 = Pn ∪ P ′.

It is straightforward that the conditions (6)–(10) are still satisfied if we replace
n with n + 1 so our inductive procedure can be continued to construct families
{Pn : n ∈ ω} and {Qn : n ∈ ω} for which the properties (6)–(10) hold for all
n ∈ ω. Letting S =

⋃
n∈ω Pn and T =

⋃
n∈ω Qn we obtain crowded sets such

that (x, y) ∈ S×T ⊂ (Z×Z)\D. Use Lemma 2.12 to find nowhere dense crowded
sets P,Q ⊂ Z such that x ∈ P ⊂ S and y ∈ Q ⊂ T . This gives the promised sets
P and Q so (a) is proved.

To prove (b) make the evident changes in the above construction to obtain
a family {Pn : n ∈ ω} satisfying the conditions (6), (8) and (9) for Pi = Qi

for all i ≤ n. It is immediate that T =
⋃

n∈ω Pn is a crowded set such that
(x, x) ∈ T × T ⊂ (Z × Z)\D. Finally, use Lemma 2.12 to find a nowhere dense
crowded set P ⊂ Z such that x ∈ P ⊂ T ; this gives the promised set P . �

Recall that a space X is maximal , if it is crowded but no strictly stronger (not
necessarily Tychonoff) topology on X is crowded.

2.14 Example. Under CH, there exists a maximal countable space X such that
every discrete subspace of X ×X is closed.

Proof: Let Y be the set Q and denote by τ0 its usual topology of subspace of
R. We will also need the set L of all countably infinite limit ordinals. Let E be
the family of all infinite subsets of Y and choose an enumeration {Eα : α ∈ L} of
the family E .

It is easy to choose an enumeration {Dα : α ∈ ω1\L} of the family D of all
infinite subsets of Y × Y such that every D ∈ D occurs ω1-many times in the
family {Dα+n : α ∈ L} for any n ∈ N. Let {(xn, yn) : n ∈ N} be a faithful
enumeration of the set Y × Y .
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We will inductively construct a collection {τα : α < ω1} of crowded regular
second countable topologies on Y with the following properties:

(11) if α ≤ β < ω1 then τα ⊂ τβ ;
(12) if α > 0 is a limit ordinal then τα is the topology generated by

⋃
{τβ :

β < α};
(13) if α is a limit ordinal and both Eα and Y \Eα are crowded subsets of

(Y, τα) then {Eα, Y \Eα} ⊂ τα+1;
(14) if n ∈ N, α ∈ L, the set D = Dα+n is discrete in (Y, τα+n) × (Y, τα+n)

and (xn, yn) ∈ D\D (the closure is taken in (Y, τα+n) × (Y, τα+n)) then
there exist U, V ∈ τα+n+1 such that (xn, yn) ∈ U × V ⊂ (Y × Y )\D.

We already have τ0 so assume that 0 < β < ω1 and we have constructed a
topology τα for each α < β. If β is a limit ordinal then let τβ be the topology
generated by the family

⋃
{τα : α < β} as a base. This guarantees that the

property (12) will hold.
If β = α + 1 for a limit ordinal α then look at the sets Eα and Y \Eα. If one

of them is not crowded then we let τβ = τα. If they are both crowded then let τβ
be the topology generated by the family τα ∪ {Eα} ∪ {Y \Eα}. It is evident that
this guarantees that we will have the property (13).

Now, if β = α + n + 1 for some limit ordinal α and n ∈ N then consider
the set D = Dα+n and the point z = (xn, yn). If the set D is not discrete or
z /∈ D\D in (Y, τα+n) × (Y, τα+n) then let τβ = τα+n. If the set D is discrete

and z ∈ D\D in (Y, τα+n)× (Y, τα+n) then we can use Lemma 2.13(b) if xn = yn
(or Lemma 2.13(a) if xn 6= yn) to find a nowhere dense crowded set P (disjoint
nowhere dense crowded sets P and Q) such that z ∈ P × P ⊂ (Y × Y )\D (or
z ∈ P × Q ⊂ (Y × Y )\D respectively) and let τβ be the topology generated
by τα+n ∪ {P} ∪ {Y \P} as a subbase (or the topology generated by the family
τα+n∪{P}∪{Q}∪{Y \(P∪Q)} respectively). Clearly, this shows the property (14)
so we can construct the promised ω1-sequence {τα : α < ω1}.

Denote by τ the topology generated by the family
⋃
{τα : α < ω1} and consider

the space X = (Y, τ).
Suppose that A is a crowded subspace of X such that X\A is also crowded.

There is a limit ordinal α > 0 such that A = Eα; it follows from the property (13)
that A ∈ τα+1 ⊂ τ and X\A ∈ τα+1 ⊂ τ which shows that A is a clopen subset
of X , i.e., X is ultradisconnected.

Suppose that some discrete subset D of X ×X is not closed in X ×X and fix
a point z ∈ D\D. There exists a countable family U ⊂ τ such that U witnesses
discreteness of the set D, i.e., for every d ∈ D there are U, V ∈ U such that
(U × V ) ∩ D = {d}. Since B =

⋃
{τα : α < ω1} is a base of τ , we can assume,

without loss of generality, that U ⊂ B and hence there exists γ < ω1 such that
U ⊂ τγ and hence D is a discrete subset of (Y, τα)× (Y, τα) for any α ≥ γ. There
exist α > γ and n ∈ N such that z = (xn, yn) and D = Dα+n. It follows from
(14) that there exist U, V ∈ τα+n+1 such that z ∈ U × V ⊂ (Y × Y )\D. The set
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U × V is also open in X ×X so z /∈ D which is a contradiction.
Thus, every discrete subset of X ×X is closed in X ×X and therefore every

discrete subspace of X is closed in X . This together with ultradisconnectedness
of X implies that X is a maximal space (see Fact 1.15 and Theorem 2.2 of [vD]).
Since all discrete subsets of X × X are closed, there is no discrete D ⊂ X × X
such that ∆X ⊂ D. �

2.15 Proposition. If X is a pseudocompact space with w(X) ≤ ω1 then there

exists a discrete D ⊂ X ×X such that |D| ≥ d(X).

Proof: There is nothing to prove if d(X) ≤ ω. So assume that d(X) = ω1 and
hence X has a left-separated subspace L with |L| = ω1. If s(X × X) ≤ ω and
there is a right-separated R ⊂ X with |R| = ω1 then it is easy to see that L× R
has an uncountable discrete subspace which is a contradiction. Therefore X is
hereditarily Lindelöf and hence compact. So we can apply Theorem 3 of [JSz] to
conclude that s(X ×X) ≥ ω1 which is a contradiction. �

2.16 Corollary. If X is a pseudocompact space and w(X) ≤ ω1 then the space

Xω is d-separable.

Proof: Apply Theorem 2.11 and Theorem 6 of [JSz]. �

We will show next that in some models of ZFC there exist countably compact
spaces X such that Xω is not d-separable. Since the proofs depend heavily on
the construction of certain special trees, let us recall some basic notions and facts
about trees.

A tree is a partially ordered set (S,<) such that for any s ∈ S the set {t ∈ S :
t < s} is well ordered by <. We write S instead of (S,<). A subset S′ ⊂ S is
called a subtree of the tree S if {t ∈ S : t < s} ⊂ S′ for any s ∈ S′. A subset
C ⊂ S of a tree S is called a chain if s < s′ or s′ < s for any distinct s, s′ ∈ C.
A set A ⊂ S is an antichain if any distinct a, b ∈ A are incomparable, i.e., neither
a < b nor b < a is true. If S is a tree and s ∈ S then ht(s) is the order type of
the well ordered set {t ∈ S : t < s} and Sα = {s ∈ S : ht(s) = α} for any ordinal
α. Given a tree S and an s ∈ S let TS(s) = {t ∈ S : s ≤ t}.

If S is a tree and {sn : n ∈ ω} ⊂ Sα for some α, let T =
∏

∗{TS(sn) : n ∈ ω} =
{f : ω → S : f(ω) ⊂ Sβ for some β and f(n) ≥ sn for all n ∈ ω}. If f, g ∈ T then
f < g if f(n) < g(n) for all n ∈ ω. The pair (T,<) is called the tree product of

the trees {TS(sn) : n ∈ ω}.
In this paper we will work with the tree ω<ω2

1 = {f : f is a function from α to
ω1 for some ordinal α < ω2} and its subtrees with the order defined by f < g if
g extends f .

Recall that a subset C ⊂ ω2 is closed unbounded if it is closed in the order
topology on ω2 and cofinal in ω2. A subset B ⊂ ω2 is called stationary if it
intersects any closed unbounded subset of ω2. Let ω1

2 = {α < ω2 : cf(α) = ω1}.

The set-theoretic principle ♦(ω1
2) says that for each α < ω2 there exists a set
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Aα ⊂ α such that for any A ⊂ ω2 the set {α ∈ ω1
2 : A ∩ α = Aα} is stationary. It

is well known that ♦(ω1
2) is consistent with CH and the usual axioms of ZFC. It

is not difficult to prove that ♦(ω1
2) is equivalent to the following statement:

For an arbitrary set A of cardinality ω2 and any α < ω2 there exists a function
fα : α → A such that for any map f : ω2 → A the set {α ∈ ω1

2 : f |α = fα} is

stationary. The family {fα : α < ω2} is called the ♦(ω1
2)-sequence for A.

2.17 Example. If we assume CH and ♦(ω1
2) then there exists an ω-bounded

(and hence countably compact) space X such that d(X) = ω2 and s(Xω) ≤ ω1.
Therefore there is no discrete D ⊂ X × X with |D| = d(X) and Xω is not
d-separable.

Proof: It was proved in Theorem 4.19 of [DTTW] that under CH and ♦(ω1
2)

there exists a tree S =
⋃
{Sα : 0 < α < ω2} ⊂ ω<ω2

1 with the following properties:

(15) Sα ⊂ ωα
1 and |Sα| = ω1 for any α ∈ [1, ω2);

(16) the tree S has neither chains or antichains of cardinality ω2;
(17) if 0 < α < β < ω2 and x ∈ Sα then x has ω1-many successors in Sβ ;
(18) if 0 < α < ω2 and {xn : n ∈ ω} ⊂ Sα then the tree

∏
∗{TS(xn) : n ∈ ω}

does not have antichains of cardinality ω2.

Let τ be the topology generated on S by the family

S = {TS(s) : s ∈ Sα+1, α ∈ ω2} ∪ {S\TS(s) : s ∈ Sα+1, α ∈ ω2}

as a subbase. Clearly, for each α < ω2 and s ∈ Sα+1 the set TS(s) is clopen
in (S, τ). It is an easy exercise to see that (S, τ) is a Tychonoff space. In what
follows we identify S with the topological space (S, τ) and the subsets of S with
the respective subspaces of (S, τ). Let X = {z ∈ βS : there is a countable
Az ⊂ S such that z ∈ Az}. It is clear that X is ω-bounded and hence countably
compact. Observe that, given α ∈ [1, ω2) and s ∈ Sα, if we take any infinite
subset Q ⊂ TS(s) ∩ Sα+1 then the family {TS(t) : t ∈ Q} is a local π-base of s
in S.

Claim. For any n ∈ N, each discrete subset of Xn has cardinality at most ω1.

Proof of the claim: We will proceed by induction on n. Let X0 be a singleton
(the empty function) so it is clear that it has no big discrete subsets. Assume that
n ∈ N and we proved our claim for all k < n. For each i < n let pi : X

n → X
be the projection onto the i-th factor. The set ∆n = {x ∈ Xn : pi(x) = pj(x) for
some distinct i, j < n} is easily seen to be the finite union of subsets homeomorphic

to Xk for some k < n so it suffices to show that s(Xn\∆n) ≤ ω1.
Suppose that a set D ⊂ Xn\∆n is discrete and |D| = ω2. For every point

d = (d0, . . . , dn−1) ∈ D we can find a disjoint family {Ud
0 , . . . , U

d
n−1} of open

neighborhoods of the points d0, . . . , dn−1 respectively in such a way that Ud ∩
D = Ud ∩ D = {d} where Ud = Ud

0 × . . . × Ud
n−1. Using the remark about
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the π-bases, for each point d = (d0, . . . , dn−1) ∈ D and s ∈ Adi ∩ Ud
i choose

a countably infinite set Ps ⊂ S such that {TS(p) : p ∈ Ps} is a π-base at s in S
and

⋃
{TS(p) : p ∈ Ps} ⊂ Udi for all i < n. Let Bdi =

⋃
{Ps : s ∈ Adi ∩ Udi} for

every i < n. We have the following properties for each d = (d0, . . . , dn−1) ∈ D:

(19)
⋃
{TS(s) : s ∈ Bdi} ⊂ Udi for all i < n;

(20) the family {TS(s) : s ∈ Bdi} is a π-network at di for each i < n;

(21) if Ed = {TS(t0) × . . . × TS(tn−1) : ti ∈ Bdi for all i < n} then d ∈
⋃
Ed

but e /∈
⋃
Ed for any e ∈ D\{d}.

Observe that if s ≤ t then TS(t) ⊂ TS(s). As a consequence, if d ∈ D and
for every i < n and s ∈ Bdi we choose in a non-limit level of S an element
f(s) ≥ s then the family {TS(f(s)) : s ∈ Bdi} is still a π-network at the point
di and we have the inclusion

⋃
{TS(f(s)) : s ∈ Bdi} ⊂

⋃
{TS(s) : s ∈ Bdi}. The

property (17) for the tree S implies that for any d = (d0, . . . , dn−1) ∈ D and any
s ∈

⋃
i<nBdi there exists f(s) ∈ Sα+1∩TS(s), where α = sup{ht(s) : s ∈ Bdi and

i < n}. Therefore B′
di

= {f(s) : s ∈ Bdi} ⊂ Sα+1, the family {TS(s) : s ∈ B′
di
} is

a π-network at the point di and
⋃
{TS(s) : s ∈ B′

di
} ⊂

⋃
{TS(s) : s ∈ Bdi} ⊂ Udi

for every i < n. This shows that, without loss of generality, we can assume that the
set Bd0 ∪ . . .∪Bdn−1

is contained in some Sα+1. For any d = (d0, . . . , dn−1) ∈ D,

fix an ordinal µ(d) < ω2 such that
⋃

i<nBdi ⊂ Sµ(d)+1.

Our plan is to find distinct points d, e ∈ D such that for every i < n and
s ∈ Bei there is t ∈ Bdi such that t < s. This will imply

⋃
Ee ⊂

⋃
Ed and hence

e ∈
⋃
Ed which is a contradiction with the property (21).

By CH, there are only ω1-many countable subsets contained in each level of S
and therefore the set {µ(d) : d ∈ D} is cofinal in ω2. This makes it possible to
choose an ω2-sequence of ordinals {γα : α < ω2} so that the following properties
hold:

(22) γα = µ(dα) for some dα = (dα0 , . . . , d
α
n−1) ∈ D;

(23) γβ > sup{γα : α < β} for each β < ω2.

Note that it follows from the properties (22) and (23) that dα 6= dβ if α 6= β. Let
C be the closure of {γα : α < ω2} in ω2 (considered with the interval topology).
Then C is a closed unbounded subset of ω2 and therefore E = C∩ω1

2 is stationary.
For each λ ∈ E consider the ordinal ν(λ) = min{γα : λ < γα}; for every i < n
let F i

λ = Bdαi
and eiλ = dαi , where α is determined by the condition γα = ν(λ).

Note that λ, δ ∈ E, λ < δ implies that ν(λ) < ν(δ) and therefore the points

eλ = (e0λ, . . . , e
n−1
λ

) and eδ = (e0δ , . . . , e
n−1
δ

) are distinct elements of D.

For any λ ∈ ω2 denote by πλ : S\(
⋃
{Sα : α < λ}) → Sλ the restriction map

defined by the formula πλ(s) = s|λ for any s ∈ S with ht(s) ≥ λ. For each λ ∈ E

choose a set Gi
λ ⊂ F i

λ such that πλ|G
i
λ : Gi

λ → πλ(F
i
λ) is a bijection. Since λ has

cofinality ω1, there exists β(λ) < λ such that πβ(λ)|(
⋃

i<nGi
λ) :

⋃
i<nG

i
λ → Sβ(λ)

is an injective map. By the Pressing-Down Lemma, there is δ < ω1 such that the
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set {λ ∈ E : β(λ) = δ} is stationary. Represent ω as Ω0 ∪ . . . ∪ Ωn−1 where the
sets {Ωi : i < n} are disjoint and infinite.

Using CH, we can find a set Pi = {sik : k ∈ Ωi} ⊂ Sδ such that the set

R = {λ ∈ E : πδ(G
i
λ) = Pi for each i < n} has cardinality ω2. The sets

{Gi
λ : i < n} are disjoint by the property (19) so the family {Pi : i < n} is also

disjoint, the set
⋃

i<n Pi being an injective image of
⋃
{Gi

λ : i < n} for any λ ∈ R.

Thus, we can choose a bijection fλ : ω →
⋃

i<nGi
λ such that for each i < n we

have the equalities {fλ(k) : k ∈ Ωi} = Gi
λ and πδ(fλ(k)) = sik for any k ∈ Ωi and

λ ∈ R. Then F = {fλ : λ ∈ R} ⊂ H =
∏

∗{TS(s
i
k) : i < n and k ∈ Ωi} cannot be

an antichain in the tree H by property (18) of the tree S.
Therefore there are distinct λ, β ∈ R, say λ < β, such that fλ(k) < fβ(k) for all

k ∈ ω. If s ∈ F i
β , then s|β = fβ(k)|β for some k ∈ ω and therefore t = fλ(k) ∈ F i

λ

and t = fλ(k) < fβ(k)|β ≤ s. Recall that, for every i < n, we have F i
β = Bei and

F i
λ = Bdi for some distinct elements d = (d0, . . . , dn−1) and e = (e0, . . . , en−1)

of the set D. Consequently, for each s ∈ Bei there is t ∈ Bdi such that t < s. We
saw already that this is a contradiction which completes the proof of our Claim.

As an immediate consequence, we have s(Xn) ≤ ω1 for any n ∈ ω and hence
s(Xω) ≤ ω1. It follows from the definition of X that, for any point x ∈ X there
exists a countable Ax ⊂ S with x ∈ Ax. Therefore, for any set B ⊂ X with

|B| ≤ ω1 we can find α < ω2 such that B ⊂
⋃

0<β<α Sβ . Take any y ∈ Sα+1 and

observe that TS(y) is a clopen subset of S which contains y and does not meet⋃
0<β<α Sβ . As an easy consequence, y does not belong to the closure in X of

the set B.
Therefore d(X) = ω2 so our Claim guarantees that X × X has no discrete

subsets of cardinality d(X). Suppose that Z =
⋃
{Zn : n ∈ ω} is a dense subset

of Xω and every Zn is discrete. Since d(Xω) ≥ d(X) = ω2, we must have
|Z| = ω2 and hence there is n ∈ ω such that |Zn| = ω2 which is a contradiction
with s(Xω) ≤ ω1. Therefore Xω is not d-separable. �

3. Open problems

The authors feel that the topic of this paper is far from being exhausted. An
evidence of this is the fact that there are more unsolved problems here than solved
ones. We list below the most interesting questions we could not answer.

3.1 Problem. Given a Tychonoff space X assume that D is zero-dimensional

for any discrete D ⊂ X ×X . Must X be zero-dimensional?

3.2 Problem. Given a Lindelöf Σ-space X assume that D is zero-dimensional

for any discrete D ⊂ X ×X . Must X be zero-dimensional?

3.3 Problem. Given a space X with a countable network, assume that D is

zero-dimensional for any discrete D ⊂ X ×X . Must X be zero-dimensional?
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3.4 Problem. Given a space X assume that D is countable for any discrete set

D ⊂ X ×X . Must X be countable?

3.5 Problem. Suppose that X is a space such that D has countable i-weight for
any discrete D ⊂ X ×X . Must X have countable i-weight?

3.6 Problem. Suppose that X is a space such that D is σ-compact for any

discrete D ⊂ X ×X . Must X be σ-compact?

3.7 Problem. Suppose that X is a Lindelöf Σ-space such that D is σ-compact

for any discrete D ⊂ X ×X . Must X be σ-compact?

3.8 Problem. Suppose that X is a cosmic space such that D is σ-compact for

any discrete D ⊂ X ×X . Must X be σ-compact?

3.9 Problem. Suppose that X is a space such that D is σ-compact for any

discrete D ⊂ X ×X . Must X be Lindelöf?

3.10 Problem. Suppose that X is a cosmic space such that D is analytic for

any discrete D ⊂ X ×X . Must X be analytic?

3.11 Problem. Suppose that X is a space such that D is Čech-complete for any

discrete D ⊂ X ×X . Must X be Čech-complete?

3.12 Problem. Suppose thatX is a Lindelöf Σ-space. Does there exist a discrete

D ⊂ X ×X such that the projection of D onto the first coordinate is dense in

X?

3.13 Problem. Does there exist in ZFC a countable maximal space X such that

all discrete subspaces of X ×X are closed?

3.14 Problem. Does there exist in ZFC a countably compact space X such that

Xω is not d-separable?
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