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Remarks on strongly star-Menger spaces

YAN-KUI SONG

Abstract. A space X is strongly star-Menger if for each sequence (Un : n € N) of
open covers of X, there exists a sequence (Kn : n € N) of finite subsets of X such
that {St(Kn,Un) : n € N} is an open cover of X. In this paper, we investigate the
relationship between strongly star-Menger spaces and related spaces, and also study
topological properties of strongly star-Menger spaces.
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1. Introduction

By a space we mean a topological space. Let us recall that a space X is
countably compact if every countable open cover of X has a finite subcover. Van
Douwen et al. [2] defined a space X to be strongly starcompact if for every open
cover U of X, there exists a finite subset F' of X such that St(F,U) = X, where
St(F,U) = J{U e U : UNF # (}. They proved that every countably com-
pact space is strongly starcompact and every T» strongly starcompact space is
countably compact, but this does not hold for Tj-spaces (see [10, Example 2.5]).

Van Douwen et al. [2] defined a space X to be strongly star-Lindeldf if for every
open cover Y of X, there exists countable subset F' of X such that St(F,U) = X.

In [5], a strongly starcompact space is called starcompact and in [8], a strongly
star-Lindel6f space is called star-Lindelof.

Kocinac [6], [7] defined a space X to be strongly star-Menger if for each sequence
(Up, : n € N) of open covers of X, there exists a sequence (K, : n € N) of finite
subsets of X such that {St(Kpn,Uy) : n € N} is an open cover of X.

From the above definitions, it is not difficult to see that every strongly star-
compact space is strongly star-Menger and every strongly star-Menger space is
strongly star-Lindelof.

The purpose of this paper is to investigate the relationship between strongly
star-Menger spaces and related spaces, and study topological properties of strong-
ly star-Menger spaces.

The author acknowledges the support from the National Natural Science Foundation (grant
11271036) of China.
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Throughout this paper, let w denote the first infinite cardinal, wy the first
uncountable cardinal, ¢ the cardinality of the set of all real numbers. For a
cardinal &, let kT be the smallest cardinal greater than x. For each ordinals «,
B with a < 8, we write [a,8) = {7:a < 7 < A}, (@8] = {y:a <7 < 8},
(,8) ={y:a<~vy<B}and [o,8] = {v: a <~ < B} Asusual, a cardinal is
an initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is
often viewed as a space with the usual order topology. Other terms and symbols
that we do not define follow [4].

2. Strongly star-Menger spaces

First we give some examples showing relationships between strongly star-Men-
ger spaces and related spaces.

Example 2.1. There exists a Tychonoff strongly star-Menger space X which is
not strongly starcompact.

PROOF: Let

X = ([0,w] x [0,w]) \ {{w,w)}

be the subspace of the product space [0,w] X [0,w]. Then X is not countably
compact, since {{w,n) : n € w} is a countable discrete closed subset of X. Hence
X is not strongly starcompact.

Next we show that X is strongly star-Menger. To this end, let {Uy, : n € N}
be a sequence of open covers of X. For each n € N, let F, = ([0,w] x {n —1}) U
({n =1} x [0,w]). Then X = J,,cn Fn and Fy, is a compact subset of X for each
n € N. We can find a finite subset K, of F}, such that Fy, C St(Kp,Uy,) for each
n € N. Thus the sequence (K : n € N) witnesses for (U : n € N) that X is
strongly star-Menger. (I

Next we give an example of a Tychonoff strongly star-Lindel6f space which is
not strongly star-Menger by using the following example from [1]. We make use of
two of the cardinals defined in [3]. Define “w as the set of all functions from w to
itself. For all f,g € “w, we say f <* g if and only if f(n) < g(n) for all but finitely
many n. The unbounding number, denoted by b, is the smallest cardinality of
an unbounded subset of (Yw, <*). The dominating number, denoted by 9, is the
smallest cardinality of a cofinal subset of (“w, <*). It is not difficult to show that
w1 <b<0d<canditis known that wi <b=c,wi<d=candw; <b<d=c¢
are all consistent with the axioms of ZFC (see [3] for details).

Example 2.2 ([1]). Let A be an almost disjoint family of infinite subsets of w
(i.e., the intersection of every two distinct elements of A is finite) and let X = wUA
be the Isbell-Mréwka space constructed from A ([2], [4]). Then X is strongly star-
Menger if and only if |A] < .
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Example 2.3. There exists a Tychonoff strongly star-Lindelof space X which is
not strongly star-Menger.

ProOOF: Let X = wU A be the Isbell-Mréwka space, where A is the maximal

almost disjoint family of infinite subsets of w with |A] = ¢. Then X is not
strongly star-Menger by Example 2.2. Since w is a countable dense subset of X,
X is strongly star-Lindel6f. Thus we complete the proof. ([

Since strong starcompactness is equivalent to countable compactness for Haus-
dorff spaces (see [2]), the extent e(X) of every T» strongly starcompact space X is
finite. Assuming 0 = ¢, let X = wU A be the Isbell-Mréwka space with |A| = wy.
Then, by Example 2.2, X is a strongly star-Menger space with e(X) = wy, since
A is a discrete closed subset of X.

The author does not know if there exists a Tychonoff strongly star-Menger
space X such that e(X) > c.

For a Ti-space X, the extent e(X) of a strongly star-Menger space can be
arbitrarily large.

Example 2.4. For every infinite cardinal k, there exists a 77 strongly star-
Menger space X such that e(X) > «.

PROOF: Let k be an infinite cardinal and let D = {dy : @ < K} be a set of
cardinality . Let X = [0,x7) U D. We topologize X as follows: [0, xT) has the
usual order topology and is an open subspace of X; a basic neighborhood of a
point do € D takes the form

Op(da) = {da} U (B,kT) where B <™.

Then X is a T} space and e(X) = &, since D is discrete closed in X. To show that
X is strongly star-Menger, we only prove that X is strongly starcompact, since
every strongly starcompact space is strongly star-Menger. To this end, let U be
an open cover of X. Without loss of generality, we can assume that U consists
of basic open subsets of X. Thus it is sufficient to show that there exists a finite
subset F of X such that St(F,U) = X. Since [0,x7) is countably compact, it is
strongly starcompact (see [2, 8]). Then we can find a finite subset Fy of [0, k™)
such that [0,x%) C St(Fy,U). On the other hand, for each o < k, there exists
Ba < T such that Op, (dy) is included in some member of U. If we choose
B < kT with 8 > sup{fa : @ < K}, then D C St(B,U). Let F = F; U{B}. Then
F is finite and St(F,U) = X. Hence X is strongly star-Menger. O

Next we study topological properties of strongly star-Menger spaces. In [11],
the author gave an example that assuming 0 = ¢, there exists a Tychonoff strongly
star-Menger space having a regular-closed subspace which is not strongly star-
Menger. But the author does not know if there exists an example in ZFC (that
is, without any set-theoretic assumption) showing that a regular-closed subspace
(or zero-set) of a strongly star-Menger space is strongly star-Menger.
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For a space X, recall that the Alexandroff duplicate A(X) of X is constructed
in the following way: The underlying set of A(X) is X x {0,1}; each point of
X x {1} is isolated and a basic neighborhood of (x,0) € X x {0} is a set of the
form (U x {0}) U (U x {1})\ {{z,1)}), where U is a neighborhood of = in X. It
is well known that a space X is countably compact if and only if so is A(X). In
the following, we give two examples to show that the result cannot be generalized
to strongly star-Menger spaces.

Example 2.5. Assuming 0 = ¢, there exists a Tychonoff strongly star-Menger
space X such that A(X) is not strongly star-Menger.

PROOF: Assuming ? = ¢, let X = wUA be the Isbell-Mréwka space with |A| = wy.
Then X is strongly star-Menger by Example 2.2 with e(X) = wi, since A is
discrete closed in X. However A(X) is not strongly star-Menger. In fact, the
set A x {1} is an open and closed subset of X with | A x {1}| = w1, and each
point {a, 1) is isolated for each a € A. Hence A(X) is not strongly star-Menger,
since every open and closed subset of a strongly star-Menger space is strongly
star-Menger and A x {1} is not strongly star-Menger. O

Now we give a positive result. For showing the result, first we give a lemma.
Lemma 2.6. For Tj-space X, e(X) = e(A(X)).

PROOF: Since X is homeomorphic to the closed subset X x {0} of A(X), we
have e(X) < e(A(X)). On the other hand, let F is any closed discrete subset
of A(X). Then F N (X x {0}) is closed in X x {0} by the construction of the
topology of A(X). Hence |F N (X x {0})|] < e(X). Moreover it is not difficult
to see that {(x,0) : (z,1) € F} is closed discrete in X x {0}. This implies that
|[FN (X x{1})] < e(X). Thus e(A(X)) < e(X). Therefore e(X) = e(A(X)). O

Theorem 2.7. If X is a strongly star-Menger space with e(X) < w1, then A(X)
is strongly star-Menger.

PROOF: We show that A(X) is strongly star-Menger. To this end, let (Uy, : n € N)
be a sequence of open covers of A(X). For each n € N and each z € X, choose
an open neighborhood W, = (V5,, x {0,1}) \ {{(z,1)} of (z,0) satisfying that
there exists some U € Uy, such that W, C U, where V,,, is an open subset of
X containing z. For each n € N, let Vy, = {Vy,, : « € X}. Then (V) : n € N) is
a sequence of open covers of X. There exists a sequence (K], : n € N) of finite
subsets of X such that |J,cy St(K},, Va) = X, since X is strongly star-Menger.
For each n € N, let K] = K|, x {0,1}. Then K/ is a finite subset of A(X) and
X x {0} C Upen St Un). Let A = A(X)\ Upen SHK,,,Up). Then A is a
discrete closed subset of A(X). By Lemma 2.6, the set A is countable and we can
enumerate A as {a, : n € N}. For each n € N, let K,, = (K} x {0,1}) U {an}.
Then K, is a finite subset of A(X) and A(X) = U, ey St(Kn,Un), which shows
that A(X) is strongly star-Menger. O
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From the proof of Example 2.5, it is not difficult to show the following result.

Theorem 2.8. If X is a Ti-space and A(X) is a strongly star-Menger space,
then e(X) < wi,

PROOF: Suppose that e(X) > wy. Then there exists a discrete closed subset B
of X such that |B| > wj. Hence B x {1} is an open and closed subset of A(X)
and every point of B x {1} is an isolated point. Thus A(X) is not strongly star-
Menger, since every open and closed subset of a strongly star-Menger space is
strongly star-Menger and B x {1} is not strongly star-Menger. O

We have the following corollary from Theorems 2.7 and 2.8.

Corollary 2.9. If X is a strongly star-Menger Ti-space, then A(X) is strongly
star-Menger if and only if e(X) < wy.

Remark 2.10. The author does not know if there is a space X such that A(X) is
strongly star-Menger, but X is not strongly star-Menger.
It is not difficult to show the following result.

Theorem 2.11. A continuous image of a strongly star-Menger space is strongly
star-Menger.

Next we turn to consider preimages. We show that the preimage of a strongly
star-Menger space under a closed 2-to-1 continuous map need not be strongly
star-Menger,

Example 2.12. There exist spaces X and Y, and a closed 2-to-1 continuous map
f X — Y such that Y is a strongly star-Menger space, but X is not strongly
star-Menger.

PROOF: Let Y be the space w U A of Example 2.5, and X be the Alexandroff
duplicate of Y. Then Y is strongly star-Menger, but X is not. Let f : X — Y be
the projection. Then f is a closed 2-to-1 continuous map, which completes the
proof. O

Now, we give a positive result:

Theorem 2.13. Let f be an open and closed, finite-to-one continuous map from
a space X onto a strongly star-Menger space Y. Then X is strongly star-Menger.

PRrOOF: Let (Uy : n € N) be a sequence of open covers of X and let y € Y. Since
ffl(y) is finite, for each n € N there exists a finite subcollection Uy, of Uy, such
that f~1(y) C UUn, and UNf=1(y) # 0 foreach U € Up,,. Since f is closed, there
exists an open neighborhood V;,, of y in ¥ such that f~1(Vy,,) C U{U : U € Uy, }.
Since f is open, we can assume that

(1) Vo, S WFU): U €U}
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For each n € N, taking such open set V;,, for each y € Y, we have an open cover
Vn ={Vn, :y € Y} of Y. Thus (V, : n € N) is a sequence of open covers of Y,
so that there exists a sequence (K, : n € N) of finite subsets of Y such that
{St(Kpn,Vyn) : n € N} is an open cover of Y, since Y is strongly star-Menger.
Since f is finite-to-one, the sequence (f~'(Ky) : n € N) is the sequence of finite
subsets of X. We show that {St(f~'(Kn),Un) : n € N} is an open cover of X.
Let € X. Then there exists n € N and y € Y such that f(z) € V,, and
Vi, N Ky # (. Since

ve [T (Vo) S\ U U et}

we can choose U € Uy, with 2 € U. Then V,, C f(U) by (1), and hence
Un f~YKy,) # 0. Therefore z € St(f~'(Ky,),Uy,). Consequently, we have
{St(f~Y(Kyn),Uy) : n € N} is an open cover of X, which shows that X is strongly
star-Menger. O

Example 2.14. Assuming 0 = ¢, there exists a strongly star-Menger space X
and a compact space Y such that X x Y is not strongly star-Menger.

PROOF: Assuming d = ¢, let X = wUA be the space of Example 2.2 with |A| = wy.
Then X is strongly star-Menger by Example 2.2. Let D = {dy : @ < w1} be
the discrete space of cardinality wy and let Y = D U {yoo} be the one-point
compactification of D. We show that X x Y is not strongly star-Menger. Since
|A| = wi, we can enumerate A as {aq : @ < wy}. For each n € N, let

Un = {({aatUaq) X (Y \{da}):a<w}U{X x{da}:a<wi}U{wxY}.

Then Uy, is an open cover of X x Y. Let us consider the sequence (U, : n € N)
of open covers of X x Y. It suffices to show that |J, ey St(Kn,Un) # X x Y for
any sequence (Kp, : n € N) of finite subsets of X x Y. Let (K, : n € N) be any
sequence of finite subsets of X x Y. For each n € N, since K,, is finite, there
exists ay, < wi such that

KpN (X x{da})=0 for each a> ap.
Let 8 = sup{ay : n € N}. Then 8 < wy and

(U Kp)N(X x {da}) =0 for each a > .
neN

If we pick a > 3, then (aq,dq) ¢ St(Kp,Uy) for each n € N, since X x {dy} is
the only element of U, containing the point {ay,ds). This shows that X x Y is
not strongly star-Menger. (I
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Remark 2.15. Example 2.14 also shows that Theorem 2.13 fails to be true if “open
and closed, finite-to-one” is replaced by “open perfect”.

The following example shows that the product of two strongly star-Menger
spaces (even if countably compact) need not be strongly star-Menger. In fact, the
following well-known example showing that the product of two countably compact
(and hence strongly star-Menger) spaces need not be strongly star-Menger. Here
we give the proof roughly for the sake of completeness.

Example 2.16. There exists two countably compact spaces X and Y such that
X x Y is not strongly star-Menger.

PRrROOF: Let D be a discrete space of cardinality ¢. We can define X = U(KW1 E,
and Y = Ua<w1 F,, where E, and F, are the subsets of 5D which are defined
inductively so as to satisfy the following conditions (1), (2) and (3):

(1) EaNFg =D if a#p5;

(2) |Ea| < cand |F5| <

(3) every infinite subset of Ey, (resp., F,) has an accumulation point in Fq 41

(resp., Fat1)-

These sets E, and Fy, are well-defined since every infinite closed set in 5D has
cardinality 2° (see [9]). Then X x Y is not strongly star-Menger. In fact, the
diagonal {(d,d) : d € D} is an open and closed subset of X x Y with cardinality
¢ and every point of {(d,d) : d € D} is isolated. Then {(d,d) : d € D} is not
strongly star-Menger. Hence X x Y is not strongly star-Menger, since open and
closed subsets of strongly star-Menger spaces are strongly star-Menger. (]

In [2, Example 3.3.3], van Douwen et al. gave an example showing that there
exists a countably compact (and hence strongly star-Menger) space X and a
Lindelof space Y such that X x Y is not strongly star-Lindel6f. Therefore, this
example shows that the product of a strongly star-Menger space X and a Lindel6f
space Y need not be strongly star-Menger.
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