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Abstract. The class of s-spaces is studied in detail. It includes, in particular, all
Čech-complete spaces, Lindelöf p-spaces, metrizable spaces with the weight ≤ 2ω ,
but countable non-metrizable spaces and some metrizable spaces are not in it. It
is shown that s-spaces are in a duality with Lindelöf Σ-spaces: X is an s-space
if and only if some (every) remainder of X in a compactification is a Lindelöf
Σ-space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable

spaces, Fund. Math. 220 (2013), 71–81]. A basic fact is established: the weight
and the networkweight coincide for all s-spaces. This theorem generalizes the
similar statement about Čech-complete spaces. We also study hereditarily s-
spaces, provide various sufficient conditions for a space to be a hereditarily s-
space, and establish that every metrizable space has a dense subspace which
is a hereditarily s-space. It is also shown that every dense-in-itself compact
hereditarily s-space is metrizable.
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1. Introduction

We provide a systematic study of s-spaces. These spaces are intimately related,
via the remainder duality, to Lindelöf Σ-spaces [13]. Various sufficient conditions
for a space to be an s-space are provided (see Sections 2 and 3). This leads
to a deeper study of hereditarily s-spaces in Sections 4 and 6 culminating in
the following theorem: if a dense-in-itself Lindelöf Σ-space is a hereditarily s-
space, then X has a countable base. As a part of technique, we provide new
results on separation of Lindelöf Σ-subspaces by continuous mappings to separable
metrizable spaces (Section 6, Theorem 6.1).

“A space” in this article stands for “a Tychonoff space” unless the restrictions
on separation axioms are explicitly stated. A compactification bX of a space X
is a compact space which contains X as a dense subspace. By a remainder of a
space X we mean the subspace bX \X of a compactification bX of X .
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A spaceX is of countable type if every compact subspace P of X is contained in
a compact subspace F ⊂ X which has a countable base of open neighbourhoods
in X . All metrizable spaces and all locally compact spaces are of countable type
[7], [4]. Here is a famous classical result of M. Henriksen and J. Isbell [21]:

Theorem 1.1. A space X is of countable type if and only if the remainder in
any (in some) compactification of X is Lindelöf [21].

A Lindelöf p-space is a preimage of a separable metrizable space under a perfect
mapping [7]. Continuous images of Lindelöf p-spaces are called Lindelöf Σ-spaces
[23]. For the definition of a p-space, see [7]. We denote by w(X) the weight of
X , d(X) stands for the density of X , and nw(X) is the networkweight of X . For
further terminology and notation, see [19].

2. s-spaces and their basic properties

In this section, we provide a systematic study of s-spaces. We use a character-
ization of s-spaces given in [13] to establish some basic properties of s-spaces.

Suppose that S is a family of subsets of a space X . Then Sδ denotes the family
of all sets that can be represented as the intersection of some nonempty subfamily
of S, and Sδσ denotes the family of all sets that can be represented as the union
of some subfamily of Sδ. We say that S is a source for a space Y in X if Y is a
subspace of X such that Y ∈ Sδσ.

Clearly, the same family S may serve as a source for many spaces. A source
S for Y in X is open (closed) if every member of S is an open (respectively,
closed) subset of the space X . A source S is countable if S is countable. For some
early appearances of open sources in literature, see [1], [16], and [19, 3.9.E]. The
concepts of an open source and of a countable open source have been considered
lately in [15] in connection with embeddings in compacta. A space X is called an
s-space if there exists a countable open source for X in some compactification bX
of X [15], [13]. Obviously, we have:

Proposition 2.1. Every Čech-complete space is an s-space.

For a space Z, we denote by Bor1(Z) the smallest family of subsets of Z such
that every open subset of Z is in Bor1(Z), and for any countable subfamily γ of
Bor1(Z) we have

⋂
γ ∈ Bor1(Z) and

⋃
γ ∈ Bor1(Z). Members of Bor1(Z) are

called Borelian subsets of Z of the first type. A space X is a Borelian space of

the first type if for some compactification bX of X , X ∈ Bor1(bX).

Proposition 2.2. Every Borelian space X of the first type is an s-space. Even
more, every member of Bor1(bX) is an s-space.

Proposition 2.3. Every separable metrizable space is an s-space.

In fact, the next more general statement holds [15]:

Proposition 2.4. Every Lindelöf p-space is an s-space.
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Thus, the class of s-spaces is very wide and includes many classical objects.
We also see that to be an s-space is not a completeness type property.

We show below that Lindelöf Σ-spaces need not be s-spaces. But they can be
characterized in terms of closed sources [23]:

Proposition 2.5. A space X is a Lindelöf Σ-space if and only if there exists a
countable closed source for X in some (in every) compact space B such that X
is a subspace of B.

The next statement is obvious.

Proposition 2.6. Let X be a subset of a set B, Y = B \X , and S be a family
of subsets of B. Then S is a source for X in B if and only if {B \ P : P ∈ S} is
a source for Y in B.

Theorem 2.7. Suppose that X is a space with a remainder Y in some compact-
ification bX of X . Then the following conditions are equivalent:

(i) X is an s-space,
(ii) Y is a Lindelöf Σ-space,
(iii) X has a countable open source in bX .

Proof: (i)⇒ (ii). Since X is an s-space, there exists a compactification b1X of X
such that Y1 = b1X \X is a Lindelöf Σ-space. It follows that Y is also a Lindelöf
Σ-space, since the class of Lindelöf Σ-spaces is preserved by perfect mappings in
both directions.

(ii)⇒ (iii). By Proposition 2.5, there exists a countable closed source for Y in bX .
Hence, by Proposition 2.6, X has a countable open source in bX .

(iii)⇒ (i). This follows immediately from the definition of an s-space. �

By Theorem 2.7, the definition of s-space can be complemented as follows:

Proposition 2.8. If X is an s-space, then X has a countable open source in
every compactification bX of X .

The next result follows directly from Theorem 2.7:

Corollary 2.9. Suppose that X is a nowhere locally compact space with a re-
mainder Y . Then X is a Lindelöf Σ-space if and only if Y is an s-space.

Clearly, the assumption in 2.9 that X is nowhere locally compact cannot be
dropped.

We can use the well known facts of the theory of Lindelöf Σ-spaces to establish
properties of s-spaces. We also get an idea how to extend the concepts of s-space
and Lindelöf Σ-space from the countable case to the case of an arbitrary infinite
cardinal τ : we want Theorem 2.7 to remain true in the general situation.

A space X will be called an sτ -space if there exists an open source S for X in
some compactification bX of X such that |S| ≤ τ . A space X will be called an
nτ -space if there exists a closed source S for X in some compactification bX of X
such that |S| ≤ τ . It can be shown that these definitions do not depend on the
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choice of the compactification bX . All statements about s-spaces and Lindelöf
Σ-spaces presented so far remain valid when they are reformulated for sτ -spaces
and nτ -spaces. We continue to formulate the results for the countable case. The
next statement is obvious.

Proposition 2.10. Suppose that X is an s-space. Then:

(a) every closed subspace of X is an s-space;
(b) every open subspace of X is an s-space;
(c) the intersection of any countable family of s-subspaces of X is an s-space.

Proposition 2.11. Every s-space is a space of countable type.

Proof: This is so by Theorem 1.1, since every remainder of X is Lindelöf. �

Hence, any countable non-first-countable space is a non-s-space. We also see
that the union of a countable family of s-spaces need not be an s-space. Here is
another corollary to Proposition 2.11:

Corollary 2.12. Every s-space X is a k-space (even, a k2-space).

Proof: Indeed, every space of point-countable type is a k-space (even, a k2-
space) [4], [3]. So it is enough to apply Proposition 2.11. �

Theorem 2.13. Suppose that f is a perfect mapping of a spaceX onto a space Y .
Then Y is an s-space if and only if X is an s-space.

Proof: We can take the continuous extension f∗ : βX → βY of f to the Stone-
Čech compactifications of X and Y . The restriction of f∗ to the remainders rX
and rY of X and Y in βX and βY is a perfect mapping of rX onto rY . Therefore,
rX is a Lindelöf Σ-space if and only if rY is a Lindelöf Σ-space. It remains to
apply Theorem 2.7. �

The union of two subspaces which are s-spaces need not be an s-space. To
see this, take the countable Fréchet-Urysohn fan. However, the next addition
theorem holds:

Theorem 2.14. If a space X is the union of a countable family η of dense
subspaces of X such that each Z ∈ η is an s-space, then X is also an s-space.

Proof: Fix a compactification bX of X . Take any Z ∈ η. Clearly, Z is dense
in bX , that is, bX is a compactification of Z. Since Z is an s-space, we can fix a
countable open source SZ for Z in bX . Then, obviously, the family S =

⋃
{SZ :

Z ∈ η} is a countable open source for X in bX . �

Theorem 2.15. The topological product of any countable family η of s-spaces
is an s-space.

Proof: Let η = {Xi : i ∈ ω}. For each i ∈ ω, fix a compactification biXi of Xi,
and let X be the topological product of the family η, and B be the topological
product of the family {biXi : i ∈ ω}. Clearly, B is compact and X is dense in B.
Thus, B is a compactification bX of X . Put Y = B \X , Pi(i) = biXi \Xi, for



A generalization of Čech-complete spaces and Lindelöf Σ-spaces 125

i ∈ ω, and Pj(i) = bjXj for i, l ∈ ω such that j 6= i. Then, clearly, the topological
product of the family {Pj(i) : j ∈ ω} is a Lindelöf Σ-space. We denote this space
by Hi. Obviously, Y =

⋃
{Hi : i ∈ ω}. Hence, Y is a Lindelöf Σ-space as well

[23]. Since B is compact, it follows from Theorem 2.7 that X is an s-space. �

3. Some subclasses of the class of s-spaces

We have seen that the class of s-spaces lies between the class of Čech-complete
spaces and the class of spaces of countable type. Below we establish further results
on which spaces are s-spaces.

A space X is perfect if every closed subset of X is a Gδ-set in X . We have [15]:

Theorem 3.1. Every perfect s-space is a p-space.

Observe that an s-space need not be a p-space. This follows from the next
result [13]:

Theorem 3.2. If X is a space with a σ-disjoint base such that |X | ≤ 2ω, then
X is an s-space.

The famous Michael line [19] satisfies the restrictions in the above theorem
and hence, is an s-space, but is not a p-space (otherwise it would have been
metrizable).

Corollary 3.3 ([13]). If the cardinality of a metrizable space X does not exceed
2ω, then X is an s-space.

The cardinality restriction in the last statement is essential. Indeed, it has
been established in [12] that a remainder of a metrizable space can fail to be a
Lindelöf Σ-space. Theorem 2.7 permits to reformulate this result in the following
way:

Theorem 3.4. There exists a metrizable space which is not an s-space.

Example 3.5. Theorem 3.2 cannot be extended to spaces X with a point-
countable base such that |X | ≤ 2ω. To see this, we take a non-metrizable he-
reditarily Lindelöf space X with a point-countable base constructed under [CH ]
in [18]. This space X is not a p-space, since otherwise it would have been metriz-
able as a Lindelöf p-space with a point-countable base. Notice that X is a perfect
space, since it is hereditarily Lindelöf. Therefore, by Theorem 3.1, X is not an
s-space. It has been shown in [13] that no remainder of this space X is a Lindelöf
Σ-space.

Theorem 3.6. Every countably compact s-space X is Čech-complete.

Proof: Fix a compactification bX of X . Then Y = bX \ X has a countable
closed source S in bX . We fix it, and put Sy = {P ∈ S : y ∈ P} for each y ∈ Y .
The family Sy has the following properties:

(i) every member of Sy is a closed compact subset of bX ,
(ii) y ∈

⋂
{P : P ∈ Sy} ⊂ Y ,
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(iii) Sy is countable.

It follows from (i), (ii), and (iii) that ηy = {P ∩ X : P ∈ Sy} is a countable
family of closed subsets of X with the empty intersection. Therefore, since X is
countably compact, the intersection of some finite subfamily of ηy is empty. Hence,
X ∩ (

⋂
µy) = ∅, for some finite subfamily µy of S. Since y is an arbitrary point of

Y , we have: Y =
⋃
{K : K ∈ K}, where K is the family of all compact subspaces

of Y which are intersections of some finite subfamily of S. Clearly, K is countable,
since S is countable. Hence, Y is σ-compact, and X is Čech-complete. �

Corollary 3.7. If a remainder of a nowhere locally compact Lindelöf Σ-space X
is countably compact, then X is σ-compact.

Proof: It is enough to apply Theorem 3.6 and Corollary 2.9. �

Here is another application of Theorem 3.6:

Theorem 3.8. If a topological groupG is a Lindelöf Σ-space, and some remainder
Y of G is normal, then either G is σ-compact, or G is a Lindelöf p-space.

Proof: By the Dichotomy Theorem for remainders of topological groups [11],
Y is either Lindelöf or pseudocompact. In the first case G must be a p-space,
since G is a topological group [11]. In the second case Y is countably compact,
since it is normal and pseudocompact. We may assume that G is nowhere locally
compact, since otherwise it is locally compact and hence, is a p-space. Now it
follows from Corollary 3.7 that G is σ-compact. �

4. T0-separators and hereditarily s-spaces

In this section, we provide a few sufficient conditions for a space to be a here-
ditarily s-space.

Remark. Now we need some terminology more general than that of sources. Let
X and Y be subspaces of a space Z, and γ be a family of subsets of Z such that for
any distinct x, y, where x ∈ X and y ∈ Y , there exists P ∈ γ such that x ∈ P and
y /∈ P . Then we say that γ is a T0-separator in Z for the pair (X,Y ). If, in the
same situation, one can find disjoint P,Q ∈ γ such that x ∈ P and y ∈ Q, we say
that γ is a Hausdorff separator in Z for (X,Y ). We call a separator open (closed)
if all its members are open (respectively, closed) (in Z). Clearly, if Y = Z \X ,
then γ is a T0-separator for the pair (X,Y ) if and only if γ is a source for X in Z.

Lemma 4.1. Suppose that X is a subspace of a space Z. Then any two of the
following conditions are equivalent:

(i) X has a (countable) open T0-separator in X for (X,X),
(ii) X has a (countable) closed T0-separator in X for (X,X),
(iii) X has a (countable) open T0-separator in Z for (X,X),
(iv) X has a (countable) closed T0-separator in Z for (X,X).
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Proof: To see that (iv)⇒ (ii) and (iii)⇒ (i), we take the traces on X of members
of a T0-separator in Z. To show that (i)⇒ (iii), we expand each member V of
a T0-separator S in X to an open subset UV of Z such that UV ∩ X = V , and
take {UV : V ∈ S}. The equivalence of (i) and (ii) is also obvious. �

The role of countable T0-separators in X for (X,X) is emphasized by the next
fact:

Proposition 4.2. If X is an s-space with a countable T0-separator γ in X for
(X,X) which is either open or closed, and bX is an arbitrary compactification
of X , then there exists a countable family S of open subsets of bX such that S is
a source for every subspace M of X . Hence, X is a hereditarily s-space.

Proof: Fix a countable open source S1 for X in bX . By Lemma 4.1, we can also
find a countable open T0-separator γ in bX for (X,X). It is easy to verify that
the family S = S1 ∪ γ is a countable open source for M in bX . �

A natural sufficient condition for a space X to have a countable open T0-
separator in X for (X,X) is the existence of a countable pseudobase in X . In
particular, we have:

Proposition 4.3. If there exists a one-to-one continuous mapping f of a space
X onto a T1-space H with a countable base B, then X has a countable open
T0-separator in X for (X,X).

Proof: Clearly, S = {f−1(V ) : V ∈ B} is a countable open T0-separator in X
for (X,X). �

Corollary 4.4. Let X be an s-space satisfying at least one of the following
conditions:

(a) X admits a one-to-one continuous mapping f onto a T1-space H with a
countable base;

(b) X has a countable pseudobase.

Then every subspace of X is an s-space.

Corollary 4.5. Suppose that B is a compact space, and that a Lindelöf Σ-space
L is a subspace of B. Furthermore, suppose that the subspaceM = B \L admits
a one-to-one continuous mapping f onto a T1-space H with a countable base.
Then any subspace X of B such that L ⊂ X is a Lindelöf Σ-space.

Proof: It is enough to refer to Propositions 4.2, 2.5, and 2.6. �

Corollary 4.6. Let B be a compact space, and M be a metrizable subspace of
B dense in B with w(M) ≤ 2ω.

Then any X ⊂ B such that B \M ⊂ X is a Lindelöf Σ-space.

Proof: This is so by Corollary 4.5, since every metrizable space X of the cardi-
nality not greater than 2ω is an s-space [13] and admits a one-to-one continuous
mapping onto a separable metrizable space. �
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5. Point-finite and boundedly point-finite families of sets, T0-separa-
tors, and hereditarily s-spaces

We provide below further sufficient conditions for a spaceX to have a countable
closed T0-separator in X for (X,X) and, based on them, sufficient conditions for
a space to be a hereditarily s-space. These conditions are related to the following
fact established in [13]: if X is a space with a σ-disjoint base such that |X | ≤ 2ω,
then every subspace of X is an s-space (see Theorem 3.2). A typical result in this
section is the next statement which follows from Corollary 5.4 below.

Proposition 5.1. If X is a space with a σ-discrete network, and |X | ≤ 2ω, then
X has a countable closed T0-separator in X for (X,X).

The next fact is essentially known, and its standard proof is omitted.

Lemma 5.2. Suppose that γ is a family of subsets of a set X such that |γ| ≤ 2ω.
Then there exists a countable family W of subfamilies of γ satisfying the following
condition:

(u) For any finite subfamilies µ1, µ2 of γ such that µ1 ∩ µ2 = ∅, there exists
η ∈ W such that µ1 ⊂ η and µ2 ∩ η = ∅.

Proposition 5.3. Suppose that X is a set, M is a subset of X , and S = {γn :
n ∈ ω} is a sequence of families of subsets of X satisfying the following conditions
for every n ∈ ω:

(i) |γn| ≤ 2ω,
(ii) γn is point-finite,
(iii) for any pair (x, y) of distinct points such that x ∈ M and y ∈ X , there

exists k ∈ ω such that x ∈
⋃
γk, and no member of γk contains both x

and y.

Then X has a countable T0-separator E in X for (M,X) such that E ⊂
⋃
{Un :

n ∈ ω}, where Un = {
⋃
η : η ⊂ γn}.

Proof: Fix n ∈ ω. By Lemma 5.2, we can find a countable family Wn of
subfamilies of γn satisfying the following condition.

(u) For any pair of finite subfamilies µ1, µ2 of γn such that µ1 ∩ µ2 = ∅, there
exists η ∈ Wn such that µ1 ⊂ η and µ2 ∩ η = ∅. Clearly, we can also assume that
γn ∈ Wn.

Put E = {
⋃
η : η ∈ Wn, n ∈ ω}. Clearly, E is a countable family of subsets of

X , and E ⊂
⋃
{Un : n ∈ ω}.

It remains to show that E is a T0-separator in X for (M,X).
Take any distinct points x, y such that x ∈ M and y ∈ X . By (iii), there

exists k ∈ ω such that x ∈
⋃
γk, and no member of γk contains both x and y. If

y /∈
⋃
γk, then we have nothing to prove, since

⋃
γk ∈ E and x ∈

⋃
γk.

Let y ∈
⋃
γk. Put µ1 = {V ∈ γk : x ∈ V } and µ2 = {V ∈ γk : y ∈ V }. Both

families µ1, µ2 are finite by (ii). It follows from (iii) that µ1 ∩ µ2 = ∅. Hence,
by condition (u), there exists η ∈ Wk such that µ1 ⊂ η and µ2 ∩ η = ∅. Put
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W =
⋃
η. Then W ∈ E, and x ∈

⋃
µ1 ⊂W . On the other hand, y /∈ W , since no

member of µ2 is in η. Hence, E is a T0-separator in X for (M,X). �

Usually, applying the last result we will assume that M = X .
Recall that a family γ of closed subsets of a space X is called conservative if

the union of every subfamily of γ is closed. Proposition 5.1 obviously follows from
the next more general statement which is a corollary to the last result:

Corollary 5.4. Suppose that X is a space with a family S = {γn : n ∈ ω} of
families of closed subsets of X satisfying the following conditions for every n ∈ ω:

(i) |γn| ≤ 2ω,
(ii) γn is point-finite and conservative,
(iii) for any pair (x, y) of distinct points of X , there exists k ∈ ω such that

x ∈
⋃
γk, and no member of γk contains both x and y.

Then:

(a) X has a countable closed T0-separator E in X for (X,X);
(b) if, in addition, X is an s-space, then every subspace of X is an s-space.

Proof: Clearly, Proposition 5.3 is applicable. Under the assumptions made in
5.4, the countable T0-separator E in X for (X,X) constructed in the proof of
Proposition 5.3 is closed. �

Corollary 5.5. Suppose that X is an s-space such that |X | ≤ 2ω, and S =
{γn : n ∈ ω} is a family of families of closed subsets of X satisfying the following
conditions for every n ∈ ω:

(i) γn is point-finite and conservative,
(ii) for any x ∈ X and any open neighbourhood Ox of x in X , there exists

k ∈ ω such that x ∈
⋃
{V ∈ γk : x ∈ V } ⊂ Ox.

Then every subspace of X is an s-space and a p-space.

Proof: Proposition 4.2, and Corollary 5.4 imply that every subspace of X is
an s-space. It follows from conditions (i) and (ii) that the space X is perfect.
Hence, every subspace of X is perfect. By Theorem 3.1, every subspace of X is a
p-space. �

Corollary 5.6. Suppose that X is a space, M is a subset of X , and S = {γn :
n ∈ ω} is a family of point-finite families of open subsets of X satisfying the
following conditions for every n ∈ ω:

(i) |γn| ≤ 2ω,
(ii) for any pair (x, y) of distinct points where x ∈M and y ∈ X , there exists

k ∈ ω such that x ∈
⋃
γk, and no member of γk contains both x and y.

Then X has a countable open T0-separator E in X for (M,X).

Proof: Clearly, Proposition 5.3 is applicable. Under the additional assumptions
made in Corollary 5.6, the countable T0-separator E in X for (M,X) constructed
in the proof of Proposition 5.3 is open. �
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We will now apply the above techniques to a class of spaces which is more wide
than the class of spaces with a σ-disjoint base, and to a natural subclass of the
class of spaces with a uniform base.

Let X be a space, and γ be a family of subsets of X . We will say that the order
of γ at x ∈ X does not exceed n ∈ ω if x belongs to at most n members of γ. We
will write in this case ordx(γ) ≤ n. If there exists n ∈ ω such that ordx(γ) ≤ n
for every x ∈ X , then we say that the pointwise order of γ on X is uniformly

bounded (by n).

Proposition 5.7. Suppose that X is a space with a sequence S = {γn : n ∈ ω} of
families of open subsets of X satisfying the following conditions for every n ∈ ω:

(i) |γn| ≤ 2ω,
(ii) γn is of uniformly bounded pointwise order on X ,
(iii) for any x ∈ X and any open neighbourhood Ox of x, there exists k ∈ ω

such that x ∈
⋃
γk and Stγk

(x) ⊂ Ox.

Furthermore, suppose that bX is a compactification of X .
Then X has a countable open T0-separator E in bX for (X, bX).

Proof: Take any n ∈ ω. For any V ∈ γn, fix an open subset UV of bX such that
UV ∩X = V , and put ξn = {UV : V ∈ γn}.

Claim 1 : ξn is of uniformly bounded pointwise order on bX .
The pointwise order of γn is bounded by some k ∈ ω. We claim that the

pointwise order of ξn on bX is bounded by the same k.
Assume the contrary. Then there exist distinct V (i) ∈ γn, i = 1, . . . , k + 1,

such that W =
⋂
{UV (i) : i = 1, . . . , k + 1} is nonempty. Since W is open in

bX , and X is dense in bX , we have X ∩W 6= ∅. For any x ∈ W ∩ X we have:
x ∈

⋂
{V (i) : i = 1, . . . , k + 1}, a contradiction with ordx(γn) ≤ k. Claim 1 is

proved.

Claim 2 : X in the role of M , bX in the role of X , and S1 = {ξn : n ∈ ω}
in the role of S satisfy all assumptions in Corollary 5.6. Indeed, we have seen
that each ξn is a point-finite family of open subsets of bX (Claim 1). Clearly,
|ξn| ≤ |γn| ≤ 2ω, that is, (i) holds. Let us verify (iii). Take any x ∈ X , y ∈ bX
such that x 6= y, and fix an open neighbourhood Ox of x in bX such that y is not
in the closure of Ox in bX . By (iii) in 5.7, there exists k ∈ ω such that x ∈

⋃
γk

and Stγk
(x) ⊂ Ox. Since V is dense in UV , we have:

Stξk(x) ⊂ Stγk
(x) ⊂ Ox,

where the closure is taken in bX . Since y /∈ Ox, we conclude that y /∈ Stξk(x).
On the other hand, x ∈

⋃
γk ⊂

⋃
ξk. Thus, (iii) in 5.6 holds.

Now, by Corollary 5.6, X has a countable open T0-separator E in bX for
(X, bX). �

The next statement easily follows from the results already obtained, so its proof
is omitted.
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Theorem 5.8. Suppose that X is a space with a sequence S = {γn : n ∈ ω} of
families of open subsets of X satisfying the following conditions for every n ∈ ω:

(i) |γn| ≤ 2ω,
(ii) γn is of uniformly bounded pointwise order on X ,
(iii) for any x ∈ X and any open neighbourhood Ox of x, there exists k ∈ ω

such that x ∈
⋃
γk and Stγk

(x) ⊂ Ox.

Furthermore, suppose that bX is a compactification of X .
Then:

(a) X is a hereditarily s-space,
(b) the remainder bX \X , as well as any remainder of any subspace of X , is

a Lindelöf Σ-space,
(c) there exists a countable family S of open subsets of bX such that S is a

source in bX for any subspace of X .

We call below a space X boundedly submetacompact if every open covering of
X can be refined by an open covering γ =

⋃
{γn : n ∈ ω}, where each γn is

a family of uniformly bounded pointwise order. In particular, every screenable
space is boundedly metacompact. Recall that a space X is called screenable, if
every open covering of X can be refined by a σ-disjoint open covering [17]. The
next result immediately follows from the last theorem.

Corollary 5.9. Every boundedly submetacompact Moore space X with w(X) ≤
2ω is a hereditarily s-space. Hence, all remainders of X are Lindelöf Σ-spaces.

Recall that a σ-space is a space with a σ-discrete network.

Theorem 5.10. Suppose that E is a first-countable σ-space which is also an
s-space. Furthermore, suppose that M is a subspace of E with |M | ≤ 2ω. Then
every subspace of M is an s-space.

Proof: Let X be the closure of M in E. Clearly, X is a σ-space and s-space,
and |X | ≤ 2ω. By Corollary 5.5, every subspace of X is an s-space. Hence, M is
a hereditarily s-space. �

Corollary 5.11. If a Moore space M with |M | ≤ 2ω can be topologically em-
bedded in a Moore s-space X , then M is a hereditarily s-space.

In particular, we have:

Corollary 5.12. If a Moore spaceM with |M | ≤ 2ω can be topologically embed-
ded in a Čech-complete Moore space X , then every subspace of M is an s-space.

Notice that a special case of Corollaries 5.12 and 5.11 is the statement [13] that
every metrizable space M with |M | ≤ 2ω is a hereditarily s-space.
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6. Separation of Lindelöf Σ-spaces by continuous maps, with applica-

tions to s-spaces

One of basic results on remainders is the theorem that every remainder of any
Lindelöf p-space is a Lindelöf p-space [10]. Knowing this, it is natural to conjec-
ture that every remainder of a Lindelöf Σ-space is a Lindelöf Σ-space. However,
something almost opposite happens.

Theorem 6.1. Suppose that X is a space, and X1, X2 are disjoint Lindelöf
Σ-subspaces of X .

Then there is a continuous mapping φ of X onto a separable metrizable space
such that the sets φ(X1) and φ(X2) are disjoint.

Proof: We may assume that X is compact. Since X1 and X2 are Lindelöf Σ-
spaces, and X1 ∩ X2 = ∅, we can fix countable families η1 and η2 of compacta
in X such that η1 ∪ η2 T0-separates X1 from X \X1 and X2 from X \X2. Put
ξ = {

⋂
λ : λ ⊂ (η1 ∪ η2), |λ| < ω}, that is, ξ is the family of intersections of finite

subfamilies of η1 ∪ η2. Clearly, ξ is a countable family of compacta.

Claim: The family ξ is a Hausdorff separator for (X1, X2).
Assume the contrary, and fix xi ∈ Xi, for i = 1, 2, such that x1 and x2 are

not Hausdorff separated by ξ. Put ξi = {P ∈ ξ : xi ∈ P}, for i = 1, 2, and let
ζ = {P1 ∩P2 : Pi ∈ ξi, i = 1, 2}. Since ξ, ξ1, and ξ2 are closed under intersections
of finite subfamilies, the family ζ is centered. Since ζ consists of compacta,

⋂
ζ

is nonempty. Pick y ∈
⋂
ζ. If y ∈ X \X1, then η1 does not T0-separate X1 from

X \ X1, a contradiction. If y ∈ X \ X2, then η2 does not T0-separate X2 from
X \X2, a contradiction. The Claim is proved.

Denote by P the set of all disjoint pairs of members of ξ. For each (P,H) ∈ P,
fix a continuous real-valued function f(P,H) : B → R such that f(P,H)(P ) ⊂ {0}
and f(P,H)(H) ⊂ {1}. This is possible, since members of P are compact.

For the diagonal product φ of the family {f(P,H) : (P,H) ∈ P}, clearly, we

have: φ(X1) ∩ φ(X2) = ∅. Since P is countable, the space RP is homeomorphic
to Rω. Hence, φ(X) is separable and metrizable. �

We say below that a mapping f : X → Rω cleaves X along a subset Y of X if
f−1(f(Y )) = Y .

Theorem 6.2. Suppose that X is a Lindelöf p-space, and that Lindelöf Σ-spaces
X1, X2 are disjoint subspaces of X .

Then there exists a subspace Y of X such that X1 ⊂ Y , Y is a Lindelöf p-
space, Y ∩X2 = ∅, X \Y is a Lindelöf p-space, and there exists a perfect mapping
φ : X → Rω such that φ−1(φ(Y )) = Y , i.e. φ cleaves X along Y .

Proof: Since X is a Lindelöf p-space, there is a perfect mapping g of X onto a
separable metrizable space L. By Theorem 6.1, there is a continuous mapping ψ
of X onto a separable metrizable space Z such that the sets ψ(X1) and ψ(X2)
are disjoint. Then the diagonal product φ of the mappings g and ψ is a perfect
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mapping of X onto a separable metrizable space M such that the sets φ(X1) and
φ(X2) are disjoint.

Put Y = φ−1(M \φ(X2)). Obviously, X1 ⊂ Y . Since the mapping φ is perfect,
Y is a Lindelöf p-space. Clearly, φ−1(φ(Y )) = Y . Therefore, φ−1(φ(X \ Y )) =
X \ Y , which implies that X \ Y is a Lindelöf p-space as well. �

Corollary 6.3. Suppose that X is a Lindelöf p-space and X = X1 ∪X2, where
X1 and X2 are disjoint Lindelöf Σ-spaces. Then:

(a) X is cleavable (over Rω) along Xi, for i = 1, 2, by the same perfect
mapping;

(b) X1 and X2 are p-spaces.

Corollary 6.4. Suppose thatX is a Lindelöf p-space andX = X1∪X2, whereX1

andX2 are disjoint Borelian subsets of X of the first type (i.e.X1, X2 ∈ Bor1(X)).
Then X1 and X2 are Lindelöf p-spaces.

The next version of corollary 6.3 contains one more assumption.

Corollary 6.5. Suppose that B is a compact space such that B = Y ∪Z, where
the subspaces Y and Z satisfy the following conditions:

(1) Y and Z are dense in B,
(2) Y and Z are disjoint,
(3) Y and Z are s-spaces.

Then Y and Z are Lindelöf p-spaces.

Proof: Since Z is a remainder of Y and Y is an s-space, Theorem 2.7 implies that
Z is a Lindelöf Σ-space. Similarly, Y is a Lindelöf Σ-space. By Corollary 6.3(b),
Y and Z are Lindelöf p-spaces. �

Since every p-space with a countable network has a countable base [7], it follows
from Corollary 6.3 that if a space X with a countable network has a compactifi-
cation bX such that bX \X is a Lindelöf Σ-space, then X has a countable base.
Hence, we have:

Corollary 6.6. If an s-space X has a countable network, then X has a countable
base.

In the next statement an important concept is decomposed in two components:

Corollary 6.7. A space X is a Lindelöf p-space if and only if it is a Lindelöf
Σ-space and an s-space.

Example 6.8. Theorem 6.2 does not generalize to the case of disjoint Lindelöf
subspaces. This is witnessed by the famous “double arrow” compactum X : the
arrows cannot be separated by a continuous mapping of X onto a metrizable
space, since the “arrows” are not p-spaces.

Theorem 6.2 has a generalization which resembles the statement: if a compact
space X is the union of a countable family γ of spaces with a countable network,
then each member of γ is separable and metrizable.
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Theorem 6.9. Suppose that X is a Lindelöf p-space, and that X =
⋃
{Xn : n ∈

ω}, where γ = {Xn : n ∈ ω} is a countable disjoint family of Lindelöf Σ-spaces.
Then:

(a) there exists a continuous mapping of bX to Rω that cleaves X along Xn

for every n ∈ ω simultaneously;
(b) Xn is a p-space, for each n ∈ ω; even more, for every A ⊂ ω,

⋃
{Xn : n ∈

ω} is a Lindelöf p-space.

Proof: Let B = bX be any compactification of X . Observe that the remainder
B \X of X in B is a Lindelöf p-space, since X is a Lindelöf p-space [10]. For each
k ∈ ω, put Yk =

⋃
{Xn : n ∈ ω, n 6= k}∪ (B \X). Then B = Xk ∪ Yk, and Xk, Yk

are disjoint. Observe that Yk is a Lindelöf Σ-space, as the union of a countable
family of Lindelöf Σ-spaces. Therefore, by Theorem 6.2, Xk is a p-space, and we
can fix a continuous mapping fk of bX to Rω such that Xk = f−1

k (fk(Xk)), for
k ∈ ω. The diagonal product f of the family {fk : k ∈ ω} is a continuous mapping
of B to Rω that cleaves X along Xk, for every k ∈ ω. Conclusion (b), obviously,
also holds. �

7. Hereditarily s-spaces, compactness, and cardinal invariants

The next theorem shows that p-spaces and s-spaces have a strong property in
common:

Theorem 7.1. If X is an s-space, then w(X) = nw(X).

Proof: Put τ = nw(X). We have to show that w(X) ≤ τ . Fix a compactifica-
tion bX of X . By Theorem 2.7, the remainder Y = bX \X is a Lindelöf Σ-space.
Therefore, we can fix a countable closed source S for Y in bX . Since τ = nw(X),
we can also fix a closed source S1 for X in bX such that |S1| ≤ τ . Put F = S∪S1,
and let ξ be the family of intersections of arbitrary finite subfamilies of F. Then
ξ is a family of compact subspaces of bX , and |F| ≤ τ .

Claim: The family ξ is a Hausdorff separator for (X,Y ).
The proof of the Claim and the rest of the proof of the theorem are practically

the same as in the proof of Theorem 6.2. �

Corollary 7.2. If an s-space X is the union of a countable family of separable
metrizable spaces, then X is also separable and metrizable.

Corollary 7.3. If f : X → Y is a continuous mapping of a space X onto an
s-space Y , then w(Y ) ≤ w(X).

If X is a space such that every subspace of X is a Lindelöf p-space, then X has
a countable base (see [22], [8]). It is not unnatural to ask at this point whether
every compact hereditarily s-space is metrizable. The answer is “no”.

Example 7.4. Let B be the Alexandroff compactification by one point of an
uncountable discrete space. Thus, B = A∪{p}, where the subspace A is discrete.
Every subspace Y of B is either compact or discrete. Hence, B is hereditarily
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Čech-complete. By Proposition 2.1, this implies that B is a hereditarily s-space.
However, B is neither metrizable, nor first-countable.

The last example is complemented by the next result:

Proposition 7.5. Every hereditarily s-space X is Fréchet-Urysohn.

Proof: Every subspace of X is of countable type, by Proposition 2.11. Hence,
every subspace of X is a k-space. However, every hereditarily k-space is Fréchet-
Urysohn [6]. �

Remark. We could refer above to a more general theorem of G. Grabner and
A. Szymanski proved by the same argument in [20]: if a space X is hereditarily
of point-countable type, then X is Fréchet-Urysohn.

Theorem 7.6. If a topological groupG is a hereditarily s-space, then G is metriz-
able.

Proof: There exists a nonempty compact subspace F of G with a countable base
of open neighbourhoods in G, by Proposition 2.11. Now, in a standard way, we
can find a compact subgroup H of G such that H ⊂ F and H has a countable
base of open neighbourhoods in G. By Proposition 7.5, G and H are Fréchet-
Urysohn spaces. Therefore, H is metrizable, since every compact topological
group of countable tightness is metrizable [9]. Since H has a countable base
of open neighbourhoods in G, the space G is first-countable [4]. Hence, G is
metrizable, since G is a topological group. �

The situation with compact hereditarily s-spaces changes drastically when we
add one more natural restriction. We call a space X dense-in-itself if none of the
points of X is isolated.

Theorem 7.7. Suppose that B is a dense-in-itself compact space such that every
subspace of B is an s-space. Then B is separable metrizable.

This theorem follows from a more general result obtained below after a few
simple steps.

Theorem 7.8. Suppose that an s-space X is a dense subspace of a Lindelöf
Σ-space Z. Then the subspace Y = Z \X is a Lindelöf Σ-space as well.

Proof: Fix a compactification bZ of Z. Clearly, bZ is also a compactification of
X . By Theorem 2.7, the remainder Y1 = bZ \X is a Lindelöf Σ-space. We have:
Y = Z ∩ Y1. Therefore, Y is a Lindelöf Σ-space, since Z and Y1 are Lindelöf
Σ-spaces. �

Proposition 7.9. Every subset Y of a dense-in-itself hereditarily s-space X can
be represented as the union of two subsets with empty interiors.

Proof: If U = Int(Y ) = ∅, then we have nothing to prove. So we assume
that U is nonempty. By Proposition 7.5, X and U are Fréchet-Urysohn spaces.
Clearly, U is dense-in-itself. By a theorem of N.V. Veličko from [26, Theorem 2],
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U = A1 ∪ A2, where A1 ∩ A2 = ∅ and the interiors of A1 and A2 are empty. Put
Y1 = (Y \ U) ∪ A1 and Y2 = (Y \ U) ∪ A2. It follows from U = Int(Y ) that
Int(Y1) = ∅ = Int(Y2) and Y = Y1 ∪ Y2. �

Theorem 7.10. Suppose that X is a dense-in-itself space satisfying the following
conditions:

(a) X is a Lindelöf Σ-space;
(b) X is a hereditarily s-space.

Then X has a countable base.

Proof: Claim 1 : Every subspace Z of X is a Lindelöf Σ-space.
By Proposition 7.9, we can assume that Int(Z) = ∅, since the union of two

Lindelöf Σ-spaces is a Lindelöf Σ-space. Then the subspace Y = X \ Z is dense
in X . Since Y is an s-space and X is a Lindelöf Σ-space, it follows that Z = X \Y
is also a Lindelöf Σ-space, by Theorem 7.8. Claim 1 is proved.

By a theorem of R. Hodel [22], it follows from Claim 1 that X has a countable
network. Hence, by Theorem 7.1, X has a countable base. �

Of course, assumption (a) in the last theorem cannot be dropped, since every
metrizable space with w(X) ≤ 2ω is a hereditarily s-space. However, E.G. Pytkeev
has shown in [25] that the next statement holds (see also [20]): if a dense-in-itself
space X is a hereditarily s-space, then it is first-countable. Hence, we have:

Theorem 7.11. Every dense-in-itself hereditarily s-space is first-countable.

The next result directly follows from Theorems 7.10 and 5.8:

Theorem 7.12. Suppose that X is a dense-in-itself Lindelöf Σ-space with a
sequence S = {γn : n ∈ ω} of families of open subsets of X satisfying the following
conditions for every n ∈ ω:

(i) |γn| ≤ 2ω,
(ii) γn is of uniformly bounded pointwise order on X ,
(iii) for any x ∈ X and any open neighbourhood Ox of x, there exists k ∈ ω

such that x ∈ Stγk
(x) ⊂ Ox.

Then X is a separable metrizable space.

In connection with the last two theorems, it is appropriate to consider the next
example:

Example 7.13. Let RM be the Michael line, that is, RM is the set of reals with
the Michael line topology TM . We also take the discrete space D = {0, 1}. Below
Q is the set of rationals, and P is the set of irrationals.

In the product space X = RM × D we identify (q, 0) with (q, 1), for every
rational number q. The resulting quotient mapping and quotient space are de-
noted by f and Y , respectively. Then the mapping f is perfect, |X | = 2ω, and
X has a σ-disjoint base. Therefore, the product mapping fω of Xω onto Y ω is
also perfect, Xω has a σ-disjoint base, and |Xω| = 2ω. It follows that Xω and
Y ω are hereditarily s-spaces. Now observe that none of the spaces Xω, Y ω has
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isolated points, and that both of them are non-metrizable. In fact, the space Y ω

is not even submetrizable. This was established in [24], where X , f , and Y were
defined by V.V. Popov to show that submetrizability is not preserved in general
by perfect mappings.

We also have the following characterization of separable metrizable spaces:

Theorem 7.14. A space X has a countable base if and only if every subspace of
X is a Lindelöf s-space.

Proof: Suppose that every subspace of X is a Lindelöf s-space. Then X is
perfect. By Proposition 2.1, every subspace of X is a p-space. Therefore, X has a
countable base, since every subspace of X is a Lindelöf p-space (see [8], [22]). �

Another class of hereditarily s-spaces is identified in the next statement:

Theorem 7.15. Every σ-discrete metrizable space X is a hereditarily s-space.

Proof: Fix a Čech-complete metrizable space Z such that X is a dense subspace
of Z. Fix also a compactification bZ of Z. Then bZ is also a compactification of
X . Now let A be any discrete subspace of X (we do not assume that A is closed
in X).

Claim 1 : A is a Gδ-subset of bZ.
We denote by F the closure of A in bZ. Clearly, A is open in F , since A is

discrete. Hence, there exists an open subset U of bZ such that U ∩ F = A. The
set P = F ∩ Z is closed in Z. Since Z is perfect, F ∩ Z = Z ∩ (

⋂
{Vn : n ∈ ω}),

for some countable family η = {Vn : n ∈ ω} of open subsets of bZ. Finally, since
Z is a Gδ-set in bZ, we have Z =

⋂
{Wn : n ∈ ω}, where Wn is open in bZ. Then

U ∩ (
⋂
{Vn : n ∈ ω}) ∩ (

⋂
{Wn : n ∈ ω}) = A. Claim 1 is verified.

It follows from Claim 1 that every σ-discrete subspace of X is the union of a
countable family of Gδ-subsets of bZ. Thus, X has a countable open source in bZ,
which implies that X is an s-space. Since every subspace of X is also metrizable
and σ-discrete, we conclude that X is a hereditarily s-space. �

Corollary 7.16. Every metrizable space has a dense hereditarily s-subspace.

Using the last statement, it is easy to see that a dense-in-itself hereditarily
s-space may have as large cardinality as we wish.

Problem 7.17. Suppose thatX is a metacompact Moore space such that w(X) ≤
2ω. Does it follow that X is an s-space? Equivalently, are remainders of X
Lindelöf Σ-spaces?

Even the answer to the following question is unknown:

Problem 7.18. Suppose that X is a separable Moore space. Does it follow that
X is an s-space? Equivalently, are remainders of X Lindelöf Σ-spaces?

Problem 7.19. Is every Moore space X with w(X) ≤ 2ω an s-space?

Problem 7.20. Is every separable first-countable σ-space X an s-space?
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Problem 7.21. Is every first-countable σ-space X with w(X) ≤ 2ω an s-space?
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point-countable bases from CH , Proc. Amer. Math. Soc. 64 (1977), 139–145.
[19] Engelking R., General Topology , PWN, Warszawa, 1977.
[20] Grabner G., Szymanski A., Spaces hereditarily of κ-type and point κ-type, Rend. Circ. Mat.

Palermo (2) 42 (1993), 382–390.
[21] Henriksen M., Isbell J.R., Some properties of compactifications, Duke Math. J. 25 (1958),

83–106.
[22] Hodel R.E., A theorem of Arhangel’skii concerning Lindelöf p-spaces, Canad. J. Math. 27
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