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The dual space of precompact groups
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Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. For any topological group G the dual object Ĝ is defined as the set of
equivalence classes of irreducible unitary representations of G equipped with the

Fell topology. If G is compact, Ĝ is discrete. In an earlier paper we proved that

Ĝ is discrete for every metrizable precompact group, i.e. a dense subgroup of a
compact metrizable group. We generalize this result to the case when G is an
almost metrizable precompact group.
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1. Introduction

For a topological group G let Ĝ be the set of equivalence classes of irreducible

unitary representations of G. The set Ĝ can be equipped with a natural topology,
the so-called Fell topology (see Section 2 for a definition).

A topological group G is precompact if it is isomorphic (as a topological group)
to a subgroup of a compact group H (we may assume that G is dense in H). If

H is compact, then Ĥ is discrete. If G is a dense subgroup of H , the natural

mapping Ĥ → Ĝ is a bijection but in general need not be a homeomorphism.

Moreover, for every countable non-metrizable precompact group G the space Ĝ is
not discrete [12, Theorem 5.1], and every non-metrizable compact group H has a

dense subgroupG such that Ĝ is not discrete [12, Theorem 5.2]. (The Abelian case
was considered in [5, 6, 14]). On the other hand, if G is a precompact metrizable

group, then Ĝ is discrete [12, Theorem 4.1]. (The Abelian case was considered in
[2], [4]). The aim of the present paper is to generalize this result to the almost

metrizable case: Ĝ is discrete for every almost metrizable precompact topological
group G. A topological group G is almost metrizable if it has a compact subgroup
K such that the quotient space G/K is metrizable. According to Pasynkov’s
theorem [1, 4.3.20], a topological group is almost metrizable if and only if it is
feathered in the sense of Arhangel’skii.
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We reduce the almost metrizable case to the metrizable case considered in [12,
Theorem 4.1].

2. Preliminaries: Fell topologies

All topological spaces and groups that we consider are assumed to be Hausdorff.
For a (complex) Hilbert space H the unitary group U(H) of all linear isometries of
H is equipped with the strong operator topology (this is the topology of pointwise
convergence). With this topology, U(H) is a topological group.

A unitary representation ρ of the topological groupG is a continuous homomor-
phism G→ U(H), where H is a complex Hilbert space. A closed linear subspace
E ⊆ H is an invariant subspace for S ⊆ U(H) if ME ⊆ E for all M ∈ S. If
there is a closed subspace E with {0} ( E ( H which is invariant for S, then S
is called reducible; otherwise S is irreducible. An irreducible representation of G
is a unitary representation ρ such that ρ(G) is irreducible.

If H = Cn, we identify U(H) with the unitary group of order n, that is, the
compact Lie group of all complex n × n matrices M for which M−1 = M∗. We
denote this group by U(n).

Two unitary representations ρ : G→ U(H1) and ψ : G→ U(H2) are equivalent
if there exists a Hilbert space isomorphism M : H1 → H2 such that ρ(x) =

M−1ψ(x)M for all x ∈ G. The dual object of a topological group G is the set Ĝ
of equivalence classes of irreducible unitary representations of G.

If G is a precompact group, the Peter-Weyl Theorem (see [15]) implies that all
irreducible unitary representation of G are finite-dimensional and determine an
embedding of G into the product of unitary groups U(n).

If ρ : G→ U(H) is a unitary representation, a complex-valued function f on G
is called a function of positive type (or positive-definite function) associated with

ρ if there exists a vector v ∈ H such that f(g) = (ρ(g)v, v) (here (·, ·) denotes the
inner product in H). We denote by P ′

ρ the set of all functions of positive type
associated with ρ. Let Pρ be the convex cone generated by P ′

ρ, that is, the set of
sums of elements of P ′

ρ.
Let G be a topological group, R a set of equivalence classes of unitary represen-

tations of G. The Fell topology on R is defined as follows: a typical neighborhood
of [ρ] ∈ R has the form

W (f1, · · · , fn, C, ǫ) = {[σ] ∈ R : ∃g1, · · · , gn ∈ Pσ ∀x ∈ C |fi(x)− gi(x)| < ǫ},

where f1, · · · , fn ∈ Pρ (or ∈ P ′

ρ), C is a compact subspace of G, and ǫ > 0.

In particular, the Fell topology is defined on the dual object Ĝ. If G is locally

compact, the Fell topology on Ĝ can be derived from the Jacobson topology
on the primitive ideal space of C∗(G), the C∗-algebra of G [7, Section 18], [3,
Remark F.4.5].
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Every onto homomorphism f : G → H of topological groups gives rise to a

continuous injective dual map f̂ : Ĥ → Ĝ. A mapping h : X → Y between
topological spaces is compact-covering if for every compact set L ⊂ Y there exists
a compact set K ⊂ X such that h(K) = L.

Lemma 2.1. If f : G → H is a compact-covering onto homomorphism of topo-

logical groups, the dual map f̂ : Ĥ → Ĝ is a homeomorphic embedding.

Proof: This easily follows from the definition of Fell topology. �

Let π be a unitary representation of a topological group G on a Hilbert space
H. Let F ⊆ G and ǫ > 0. A unit vector v ∈ H is called (F, ǫ)-invariant if
‖π(g)v − v‖ < ǫ for every g ∈ F .

A topological group G has property (T ) if and only if there exists a pair (Q, ǫ)
(called a Kazhdan pair), where Q is a compact subset of G and ǫ > 0, such that
for every unitary representation ρ having a unit (Q, ǫ)-invariant vector there ex-
ists a non-zero invariant vector. Equivalently, G has property (T) if and only if
the trivial representation 1G is isolated in R ∪ {1G} for every set R of equiva-
lence classes of unitary representations of G without non-zero invariant vectors
[3, Proposition 1.2.3].

Compact groups have property (T) [3, Proposition 1.1.5], but countable Abelian
precompact groups do not have property (T) [12, Theorem 6.1].

We refer to Fell’s papers [9], [10], the classical text by Dixmier [7] and the recent
monographs by de la Harpe and Valette [13], and Bekka, de la Harpe and Valette
[3] for basic definitions and results concerning Fell topologies and property (T).

3. Almost metrizable groups

If A is a subset of a topological space X , the character χ(A,X) of A in X
is the least cardinality of a base of neighborhoods of A in X . (If this definition
leads to a finite value of χ(A,X), we replace it by ω, the first infinite cardinal,
and similarly for other cardinal invariants.) If A is a closed subset of a compact
space X , the character χ(A,X) equals the pseudocharacter ψ(A,X) — the least
cardinality of a family γ of open subsets of X such that

⋂
γ = A. In particular,

if A is a closed Gδ-subset of a compact space X , then χ(A,X) = ω.
If K is a compact subgroup of a topological group, then G/K is metrizable

if and only if χ(K,G) = ω [1, Lemma 4.3.19]. Let G be an almost metrizable
topological group, K the collection of all compact subgroups K ⊂ G such that
χ(K,G) = ω. Then for every neighborhood O of the neutral element there is
K ∈ K such that K ⊂ O [1, Proposition 4.3.11]. We now show that if G is
additionally ω-narrow, then K can be chosen normal (in the algebraic sense).
Recall that a topological group G is ω-narrow [1] if for every neighborhood U of
the neutral element there exists a countable set A ⊂ G such that AU = G.

Lemma 3.1. Let G be an ω-narrow almost metrizable group, N the collection

of all normal (= invariant under inner automorphisms) compact subgroups K of

G such that the quotient group G/K is metrizable (equivalently, χ(K,G) = ω).
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Then for every neighborhood O of the neutral element there exists K ∈ N such

that K ⊂ O.

Proof: Let L ⊂ O be a compact subgroup of G such that the quotient space
G/L = {xL : x ∈ G} is metrizable. It suffices to prove that K =

⋂
{gLg−1 : g ∈

G}, the largest normal subgroup of G contained in L, belongs to N .
There exists a compatible metric on G/L which is invariant under the action

of G by left translations. To construct such a metric, consider a countable base
U1, U2, . . . of neighborhoods of L in G. We may assume that for each n we have
Un = U−1

n = UnL and U2
n+1 ⊂ Un. Let γn = {gUn : g ∈ G}. The open cover γn of

G is invariant under left G-translations and under right L-translations, and γn+1

is a barycentric refinement of γn. The pseudometric on G that can be constructed
in a canonical way from the sequence (γn) of open covers (see [8, Theorem 8.1.10])
gives rise to a compatible G-invariant metric on G/L. A similar construction was
used in [1, Lemma 4.3.19].

If an ω-narrow group transitively acts on a metric space X by isometries, then
X is separable [1, 10.3.2]. ThusX = G/L is separable. Let Y be a dense countable
subset of X . Then K = {g ∈ G : gx = x for every x ∈ X} = {g ∈ G : gx = x for
every x ∈ Y } is a Gδ-subset of L, hence χ(K,L) = ω. It follows that χ(K,G) ≤
χ(K,L)χ(L,G) = ω ([8, Exercise 3.1.E]). �

4. Main theorem

Theorem 4.1. If G is a precompact almost metrizable group, then Ĝ is discrete.

Proof: Let ρ be an irreducible unitary representation of G. We must prove that

[ρ] is isolated in Ĝ. It suffices to find a discrete open subset D ⊂ Ĝ such that
[ρ] ∈ D.

Precompact groups are ω-narrow, so Lemma 3.1 applies to G. Let N , as above,
be the collection of all normal compact subgroups K ⊂ G such that χ(K,G) = ω.
Then N is closed under countable intersections, and it follows from Lemma 3.1
that for everyGδ-subset A of G containing the neutral element there existsK ∈ N
such that K ⊂ A. In particular, there exists K ∈ N such that K lies in the kernel

of ρ. Let D ⊂ Ĝ be the set of all classes [σ] ∈ Ĝ such that K is contained in the
kernel of σ. Then [ρ] ∈ D. It suffices to verify that D is open and discrete.

Step 1. We verify that D is open. Let R be the set of equivalence classes of all
finite-dimensional unitary representations (which may be reducible) of K without
non-zero invariant vectors. Let τn be the trivial n-dimensional representation
1K ⊕ · · · ⊕ 1K (n summands) of K, n = 1, 2 . . . . In the notation of Section 2, Pτn

does not depend on n and is the set of non-negative constant functions on K. It
follows that in the space S = R ∪ {[τn] : n = 1, 2, . . .}, equipped with the Fell
topology, the points [τn] are indistinguishable: any open set containing one of
these points contains all the others. Since K has property (T), [τ1] = [1K ] is not
in the closure of R. Therefore R is closed in S and S \ R is open in S.
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We claim that for every irreducible unitary representation σ of G the class of
the restriction σ|K belongs to S. In other words, the claim is that σ|K is trivial
if it admits a non-zero invariant vector. Let V be the (finite-dimensional) space
of the representation σ. For g ∈ G and x ∈ V we write gx instead of σ(g)x.
The space V ′ = {x ∈ V : gx = x for all g ∈ K} of all K-invariant vectors is
G-invariant. Indeed, if x ∈ V ′, g ∈ G and h ∈ K, then g−1hgx = x because
g−1hg ∈ K and x is K-invariant. It follows that hgx = gx which proves that
gx ∈ V ′. Since σ is irreducible, either V ′ = {0} or V ′ = V . Accordingly, either
σ|K admits no non-zero invariant vectors or else is trivial.

We have just proved that the restriction map r : Ĝ→ S is well-defined. Clearly

r is continuous, and therefore D = r−1(S \ R) is open in Ĝ.

Step 2. We verify that D is discrete. Let p : G → G/K be the quotient

map. Then D is the image of the dual map p̂ : Ĝ/K → Ĝ. According to
[12, Theorem 4.1], the dual space of a metrizable precompact group is discrete.

Thus Ĝ/K is discrete. Since p is a perfect map, it is compact-covering, and

Lemma 2.1 implies that p̂ : Ĝ/K → Ĝ is a homeomorphic embedding. Therefore,

D = p̂(Ĝ/K) is discrete. �
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