
Comment.Math.Univ.Carolin. 54,2 (2013) 245–257 245

The sup = max problem for the extent

of generalized metric spaces

Yasushi Hirata, Yukinobu Yajima

Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. It looks not useful to study the sup = max problem for extent, because
there are simple examples refuting the condition. On the other hand, the sup
= max problem for Lindelöf degree does not occur at a glance, because Lindelöf
degree is usually defined by not supremum but minimum. Nevertheless, in this
paper, we discuss the sup = max problem for the extent of generalized metric
spaces by combining the sup = max problem for the Lindelöf degree of these
spaces.
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1. Introduction

Let ϕ be a cardinal function and X a space. Some cardinal functions are
defined in terms of

ϕ(X) = sup{|S| : S ⊂ X has a property Pϕ}+ ω.

The sup = max problem for ϕ is the one when ϕ(X) = |S| holds for some S ⊂ X
having the property Pϕ. Whenever we deal with the sup = max problem for
ϕ, note that ϕ(X) should be a limit cardinal. Otherwise, this problem becomes
trivial.

As a typical cardinal function for the sup = max problem, let us recall the
spread s(X) of a space X which is defined by

s(X) = sup{|D| : D is a discrete subset in X}+ ω.

First, Hajnal-Juhász [5] proved that for a Hausdorff space X with |X | ≥ κ, if κ
is a singular strong limit cardinal, then there is a discrete subset of size κ in X .
Moreover, they also proved the following.

Theorem 1.1 (Hajnal-Juhász [6]). Let κ be a singular cardinal with cf(κ) = ω.
If X is a regular T1-space with s(X) = κ, then there is a discrete subset of size κ
in X .
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The case of κ being a singular cardinal with cf(κ) = ω seemed to be spe-
cially interesting. In fact, Roitman [14] proved that there is consistently a zero-
dimensional regular T1-space X with s(X) = ωω1

and with no discrete subset
of size ωω1

in X . And it had been naturally asked whether Theorem 1.1 holds
for a Hausdorff space X . A complete answer to this problem was given by the
following.

Theorem 1.2 (Kunen-Roitman [11]). Let κ be a singular cardinal with cf(κ) = ω.
Then there is a Hausdorff space X with s(X) = κ and with no discrete subset of
size κ if and only if there is a set S ⊂ 2ω of size κ such that every subset of S of
size κ is not meager.

Thus, the sup = max problem for spread seemed to be settled before 1980.
The reader might find the details of the sup = max problem in the books [9], [10].
In particular, the details of Theorems 1.1 and 1.2 are found in [10, Chapter 4].

Now, let us recall that the extent e(X) of a space X is defined by

e(X) = sup{|D| : D is a closed discrete subset in X}+ ω.

Obviously, we have e(X) ≤ s(X). Since the definition of extent looks similar
to that of spread, it is natural to consider the sup = max problem for extent.
However, it looks vain as seen from Example 2.1 below. Due to this kind of
examples, the sup = max problem for extent seems to have been never dealt with
so far. Nevertheless, the situation is changed when we restrict the extent to a
generalized metric space such as a Σ-space, a strict p-space or a semi-stratifiable
space. Our results depend on the topological structure of a space rather than the
cardinal condition of extent. In fact, for a cardinal κ, we only assume cf(κ) > ω
instead of cf(κ) = ω.

Next, let us recall that the Lindelöf degree L(X) of a space X is defined by

L(X) = min{κ : every open cover of X has a subcover of cardinality ≤ κ}+ ω.

Then e(X) ≤ L(X) holds. Since Lindelöf degree is usually defined not by supre-
mum but minimum as above, the sup = max problem for it does not seem to
occur at a glance. In order to consider the sup = max problem for extent, we
introduce a new type of the sup = max problem for Lindelöf degree. Indeed, the
sup=max problem for Lindelöf degree is rather easier to deal with than that of
extent in some cases.

Throughout this paper, all spaces are assumed to be Hausdorff , and κ and τ
denote uncountable cardinals. For a cardinal κ, cf(κ) denotes the cofinality of κ,
and the spaces κ and κ+ 1 mean the spaces [0, κ) and [0, κ] with the usual order
topology, respectively.

2. A simple example and a motivation

The following simple example seems to be a reason why the sup = max problem
for extent has been never discussed so far.
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Example 2.1. For every limit cardinal κ, there is a space Xκ with one non-
isolated point such that e(Xκ) = |Xκ| = κ, but there is no closed discrete subset
of size κ in Xκ. If cf(κ) = ω, the space Xκ is metrizable.

Proof: Let κ be a limit cardinal. Take the subspace Xκ = {α+1 : α ∈ κ}∪{κ}
of κ+ 1. Then Xκ has the only one non-isolated point κ with |Xκ| = κ.

Since {α + 1 ∈ Xκ : α < β} is a closed discrete subset in Xκ for each β ∈ κ,
we have e(Xκ) = κ. Let D be a closed discrete subset in Xκ. Take an open
neighborhood U0 of κ in Xκ with |U0∩D| ≤ 1. Take a β0 ∈ κ with Xκ∩ (β0, κ] ⊂
U0. Since |D \ U0| ≤ |β0| < κ, we have |D| < κ.

When cf(κ) = ω, let {τn} be a sequence of cardinals with τn < τn+1 for each
n ∈ ω and κ = supn∈ω τn. Let Bn = {{α+1} : α < τn} and Bκ,n = {Xκ∩ (τn, κ]}
for each n ∈ ω. Then

⋃

n∈ω(Bn ∪ Bκ,n) is a σ-discrete base of Xκ. Hence Xκ is
metrizable. �

Every metrizable space M has a σ-discrete base B with |B| = w(M), where
w(M) denotes the weight of M . It is well known that for a metrizable space M ,
we have e(M) = s(M) = w(M) = κ. So adding the assumption of cf(κ) > ω, the
following is easy to see.

Proposition 2.2. Let M be a metrizable space with e(M) = κ. Assume cf(κ) >
ω. Then there is a closed discrete subset of size κ in M .

In view of Example 2.1 and Proposition 2.2, it is natural to ask

Problem 0. LetX be a generalized metric space with e(X) = κ, where cf(κ) > ω.
When is there a closed discrete subset of size κ in X?

This problem is a motivation of this paper, and we will give a couple of affir-
mative answers to this one. As Gruenhage gave a nice survey [4] for generalized
metric spaces, we sometimes quote it.

For the reader’s convenience, we state the following implications for generalized
metric spaces which will be dealt with.

metric space

��

// Moore space

��

// strict p-space // p-space

stratifiable space // σ-space

((❘
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

// strong Σ-space // Σ-space

semi-stratifiable

3. Σ-spaces

First, for the reader’s convenience, we show

Fact 3.1 (folklore). Let A be an infinite collection of non-empty subsets in a
space X . If A is locally finite in X , then there is a closed discrete subset D of
size |A|.
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Proof: Let κ = |A| ≥ ω. We can inductively construct a subcollection {Aα :
α ∈ κ} of A and a sequence {xα : α ∈ κ} of points in X , satisfying that xα ∈ Aα

and {xβ : β < α} ∩ Aα = ∅ for each α ∈ κ. Then D := {xα : α ∈ κ} is a closed
discrete subset of X with |D| = κ. �

Let X be a space and K a closed cover of X . A closed cover F of X is a
(mod K)-network for X if, whenever K ∈ K and U is open in X with K ⊂ U ,
there is F ∈ F with K ⊂ F ⊂ U (see [13]). A space X is a (strong) Σ-space [12]
if there is a σ-locally finite (mod K)-network for some closed cover K of X by
countably compact (compact) sets (cf. [4, 4.13 Definition]).

Theorem 3.2. If X is a Σ-space with e(X) = κ, where cf(κ) > ω, then there is
a closed discrete subset of size κ in X .

Proof: Let K be a closed cover of X by countably compact sets and F a σ-
locally finite (mod K)-network for X . First, we show |F| ≥ κ. Let D be any
closed discrete subset in X . Let FD = {F ∈ F : |F ∩ D| < ω}. Pick an
x ∈ D. Take a Kx ∈ K with x ∈ Kx. Since Kx is countably compact, we have
|Kx ∩D| < ω. Let U = X \ (D \Kx). Then U is an open set in X with Kx ⊂ U .
There is an F0 ∈ F with Kx ⊂ F0 ⊂ U . Then we have Kx ∩ D = F0 ∩ D. We
conclude that F0 ∈ FD and x ∈ Kx ⊂ F0. Thus FD covers D. This means that

|D| = |
⋃

{F ∩D : F ∈ FD}| ≤ |FD| · ω ≤ |F| · ω.

Hence κ = e(X) ≤ |F| · ω holds. By κ > ω, we obtain |F| ≥ κ = e(X).
Let F =

⋃

n∈ω Fn, where each Fn is locally finite in X . By cf(κ) > ω, there
is m ∈ ω with |Fm| ≥ κ. It follows from Fact 3.1 that there is a closed discrete
subset D∗ in X with |D∗| = |Fm| ≥ κ. By e(X) = κ, |D∗| must be equal to κ. �

4. The sup = max problem for Lindelöf degree

Since Lindelöf degree is usually defined by minimum, the sup = max problem
does not seem to occur. However, using another expression, Lindelöf degree can
be defined by supremum.

For a collection U of open sets in a space X , let

L(U) = min{|V| : V ⊂ U with
⋃

V =
⋃

U}+ ω.

First, we have to check the following basic fact.

Fact 4.1. For a space X , L(X) = sup{L(U) : U is an open cover of X} holds.

Proof: Let κ = sup{L(U) : U is an open cover of X}. Take any open cover U
of X . Since there is a subcover V of U with |V| ≤ L(X), we have L(U) ≤ L(X).
Hence κ ≤ L(X) holds. Take any open cover U of X again. By L(U) ≤ κ, there
is a subcover V of U with |V| ≤ κ. Hence L(X) ≤ κ holds. �

Thus, we can consider the sup = max problem for Lindelöf degree as the
problem when there is an open cover U of a space X with L(X) = L(U).
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As a trivial case, for a Lindelöf and non-compact space X , the sup = max
problems for L(X) are affirmative. On the other hand, taking the space Xκ as in
Example 2.1, it is easily seen that L(Xκ) = κ but L(U) < κ for any open cover U
of Xκ.

A space X is submetalindelöf (or δθ-refinable) if for every open cover U of X ,
there is a sequence {Vn} of open refinements satisfying that for each x ∈ X one
can choose nx ∈ ω such that Vnx

is point-countable at x. Related to this property,
we have the following implications:

paracompact

��

// metacompact

��

// metalindelöf

��

subparacompact // submetacompact // submetalindelöf

Lemma 4.2 (Aull). If X is a submetalindelöf space, then e(X) = L(X) holds.

This can be shown by an easy modification of the proof of [1, Theorem 1].
For a space X , A ⊂ X and a collection U of subsets in X , we let

St(A,U) =
⋃

{U ∈ U : U ∩ A 6= ∅}.

In particular, we use St(x,U) instead of St({x},U), where x ∈ X .

In the proof of Lemma 4.2 (or [1, Theorem 1]), the following result is used.

Lemma 4.3 ([1, Lemmas 1 and 3]). Let X be a space, A ⊂ X and U be an open
cover of X . Then there is a closed discrete subset D in X such that D ⊂ A ⊂
St(D,U).

Fact 4.4 (folklore). Let X be a space with e(X) = L(X) = κ. If there is a
closed discrete subset D of size κ in X , then there is an open cover U of X with
L(U) = κ.

Proof: Let U = {X \ (D \ {d}) : d ∈ D}. Since U has no proper subcover of X ,
it is an open cover of X with L(U) = |U| = |D| = κ. �

Theorem 4.5. Let X be a submetalindelöf space with e(X) = κ, where cf(κ) >
ω. Then there is a closed discrete subset D of size κ in X if and only if there is
an open cover U of X with L(U) = L(X) = κ.

Proof: First, by Lemma 4.2, note that L(X) = e(X) = κ holds. It suffices by
Fact 4.4 to show the “if” part. Let U be an open cover of X with L(U) = κ. Since
X is submetalindelöf, there is a sequence {Vn} of open refinements of U satisfying
that for each x ∈ X one can choose nx ∈ ω such that Vnx

is point-countable at
x. For each n ∈ ω, let

Xn = {x ∈ X : Vn is point-countable at x}.
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Then we have X =
⋃

n∈ω Xn. Pick an n ∈ ω. By Lemma 4.3, there is a closed
discrete subset Dn in X with Dn ⊂ Xn ⊂

⋃

St(Dn,Vn). Let Wn = {V ∈ Vn :
V ∩Dn 6= ∅}. By the choice of Xn, we have |Wn| ≤ |Dn| · ω ≤ κ.

Now, assume that |Dn| < κ for each n ∈ ω. Let τ = supn∈ω |Dn| · ω. By
cf(κ) > ω, we have τ < κ. Let W =

⋃

n∈ω Wn. Since Xn ⊂ St(Dn,Vn) =
⋃

Wn

for each n ∈ ω and X =
⋃

n∈ω Xn, W covers X . So W is an open refinement of
U . On the other hand, since

|W| = supn∈ω |Wn| ≤ supn∈ω |Dn| · ω = τ,

we conclude that L(U) ≤ τ < κ = L(X). This contradicts L(U) = κ. Hence we
obtain |Dm| = κ = e(X) for some m ∈ ω. �

Since a regular strong Σ-space is subparacompact, it is submetalindelöf. So
the following is an immediate consequence of Lemma 4.2, Theorems 3.2 and 4.5.

Corollary 4.6. If a regular space X is a strong Σ-space with L(X) = κ, where
cf(κ) > ω, then there is an open cover U of X with L(U) = κ.

Remark 4.7. Since every space with one non-isolated point is paracompact, it
follows from Example 2.1 that the sup = max problems for L(X) and e(X) are
both negative for a submetalindelöf space X without any additional condition.

However, we do not know the following.

Problem 1. Assume that a space X has a point-countable base with e(X) = κ,
where cf(κ) > ω. Is there a closed discrete subset of size κ in X?

5. Strict p-spaces

A Tychonoff space X is called a p-space (respectively, strict p-space) if there is
a sequence {On} of collections of open sets in βX such that each On coversX and
⋂

n∈ω St(x,On) ⊂ X (respectively,
⋂

n∈ω St(x,On) =
⋂

n∈ω St(x,On)
βX

⊂ X) for
each x ∈ X (cf. [4, 3.15 Definition]).

Here we make use of the following characterization of p-spaces by Burke [2] (cf.
[4, 3.21 Theorem]) instead of the definition.

Lemma 5.1. A Tychonoff space X is a p-space if and only if there is a sequence
{Gn} of open covers of X satisfying the following condition: If Gn ∈ Gn for each
n ∈ ω with

⋂

n∈ω Gn 6= ∅, then

(i)
⋂

n∈ω Gn is compact, and

(ii) every open set U in X containing
⋂

n∈ω Gn contains some
⋂

i≤m Gi.

Lemma 5.2. Let X be a space and K a closed cover of X by compact sets. If
F is a (mod K)-network for X , then L(X) ≤ |F| · ω holds.

Proof: Take any open cover U of X . Let

F∗ = {F ∈ F : there is a finite W ⊂ U with F ⊂
⋃

W}.
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For each F ∈ F∗, one can assign a finite subcollection V(F ) of U which covers F .
Let V =

⋃

{V(F ) : F ∈ F∗}. Then we have |V| = |F∗| · ω ≤ |F| · ω. To show
L(X) ≤ |F| ·ω, it suffices to show that V covers X . Pick an x ∈ X . Take Kx ∈ K
with x ∈ Kx. Since Kx is compact, there is a finite W ⊂ U which covers Kx.
Then there is F0 ∈ F with Kx ⊂ F0 ⊂

⋃

W . So we have F0 ∈ F∗. It follows that
x ∈ Kx ⊂ F0 ⊂

⋃

V(F0) ⊂
⋃

V . Hence V is a subcover of U . �

Lemma 5.3. Let X be a p-space with L(X) = κ, where cf(κ) > ω. Then there
is an open cover U of X with L(U) = κ.

Proof: Assume that L(U) < κ for any open cover U of X . There is a sequence
{Gn} of open covers of X , described in Lemma 5.1. For each n ∈ ω, letting
τn = L(Gn), there is a subcover Hn of Gn with |Hn| = τn. Let τ = supn∈ω τn.
Since τn < κ for each n ∈ ω and cf(κ) > ω, we have τ < κ. Let

F = {
⋂

i≤n

Hi : Hi ∈ Hi, i ≤ n and n ∈ ω}.

Since |
⋃

n∈ω Hn| ≤ τ , note that |F| ≤ τ . Let

K = {
⋂

n∈ω

Hn : Hn ∈ Hn for each n ∈ ω with
⋂

n∈ω

Hn 6= ∅}.

Since each Hn covers X , it follows from Lemma 5.1(i) that K is a closed cover
of X by compact sets. Take any K ∈ K and any open set U in X with K ⊂ U .
Then there is a sequence {Hn} of open sets in X such that K =

⋂

n∈ω Hn,
where Hn ∈ Hn with

⋂

n∈ω Hn 6= ∅. By Lemma 5.1(ii), there is m ∈ ω with
⋂

i≤m Hi ⊂ U . Then we have
⋂

i≤m Hi ∈ F such that K ⊂
⋂

i≤m Hi ⊂ U . Thus

F is a (mod K)-network for X . It follows from Lemma 5.2 and κ > ω that
κ = L(X) ≤ |F| ≤ τ < κ holds. This is a contradiction. �

Theorem 5.4. If X is a strict p-space with e(X) = κ, where cf(κ) > ω, then
there is a closed discrete subset of size κ in X .

Proof: It follows from Jiang’s result [7] that every strict p-space is submetacom-
pact. Since X is submetalindelöf, it follows from Lemma 4.2 that e(X) = L(X) =
κ holds. Since X is p-space and cf(κ) > ω, it follows from Lemma 5.3 that there
is an open cover U of X with L(U) = κ. It follows from Theorem 4.5 that there
is a closed discrete subset D in X with |D| = κ. �

In view of Lemma 5.3 and Theorem 5.4, it is natural to ask

Problem 2. Let X be a p-space with e(X) = κ, where cf(κ) > ω. Is there a
closed discrete subset of size κ in X?

Since locally compact spaces are p-spaces, Lemma 5.3 is true for a locally
compact spaceX . However, this is somewhat generalized in what follows. A space
X is locally Lindelöf if each point of X has an open neighborhood whose closure
is Lindelöf.
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Proposition 5.5. If X is a locally Lindelöf non-compact space with L(X) = κ,
then there is an open cover G of X with L(G) = κ.

Proof: Since the case of X being Lindelöf is obvious, we may let κ > ω. Let U
be any open cover of X . Take an open cover G of X such that G is Lindelöf for
each G ∈ G. Assume that L(G) < κ. There is a subcover H of G with |H| = L(G).
For each G ∈ H, there is a countable subcollection V(G) of U covering G. Let
V =

⋃

{V(G) : G ∈ H}. Then V is a subcover of U with |V| ≤ |H| = L(G) < κ.
This implies that L(X) ≤ L(G) < κ = L(X), which is a contradiction. Hence we
obtain L(G) = κ. �

6. Semi-stratifiable spaces

A space X is semi-stratifiable [3] if there is a function g : ω ×X → Top(X),
where Top(X) denotes the topology of X , satisfying

(i)
⋂

n∈ω g(n, x) = {x} for each x ∈ X ,
(ii) y ∈

⋂

n∈ω g(n, xn) implies that {xn} converges to y

(see also [4, 5.6 Definition]).
For a space X , d(X) denotes the density of X , that is,

d(X) = min{|S| : S is a dense subset in X}.

Lemma 6.1 (Creed). If X is a semi-stratifiable space, then d(X) ≤ L(X) holds.

This was actually showed in the proof of (1)⇒(2) of [3, Theorem 2.8]. Moreover,
the following is obtained by a modification of the proof.

Lemma 6.2. Let X be a semi-stratifiable space with L(X) = d(X) = κ, where
cf(κ) > ω. Then there is an open cover U of X with L(U) = κ.

Proof: Assume that L(U) < κ for any open cover U of X . Let g : ω × X →
Top(X) be a function described as above. Let Gn = {g(n, x) : x ∈ X} for
each n ∈ ω. Pick an n ∈ ω. Let τn = L(Gn). Since Gn is an open cover
of X , we have τn < κ. There is a subcover Hn of Gn with |Hn| = τn. Let
Hn = {g(n, x) : x ∈ Tn}, where Tn ⊂ X with |Tn| = τn. Let τ = supn∈ω τn. By
cf(κ) > ω, we have τ < κ. Let T =

⋃

n∈ω Tn. Pick an x ∈ X . For each n ∈ ω, take
xn ∈ Tn with x ∈ g(n, xn). By the choice of g, {xn} converges to x. Hence T is a
dense subset in X with |T | = τ . We conclude that d(X) ≤ |T | = τ < κ = L(X).
This contradicts the assumption. �

A space X is metalindelöf if every open cover of X has a point-countable open
refinement. The following is easily seen.

Fact 6.3. If X is a metalindelöf space, then L(X) ≤ d(X) holds.

A space X is collectionwise Hausdorff if for every closed discrete subset D
in X , there is a mutually disjoint collection {Ux : x ∈ D} of open sets such that
x ∈ Ux for each x ∈ D.
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Fact 6.4. If X is a collectionwise Hausdorff space, then e(X) ≤ d(X) holds.

Now, we obtain a main result in this section.

Theorem 6.5. Let X be a semi-stratifiable space with e(X) = κ, where cf(κ) >
ω. If X is either metalindelöf or collectionwise Hausdorff, then there is a closed
discrete subset of size κ in X .

Proof: Since every semi-stratifiable space is subparacompact (cf. [4, 5.11 The-
orem]), Lemma 4.2 assures that e(X) = L(X) = κ holds. Moreover, it follows
from Lemmas 6.1, Facts 6.3 and 6.4 that e(X) = L(X) = d(X) = κ holds. Hence
our conclusion follows from Theorem 4.5 and Lemma 6.2. �

This immediately yields

Corollary 6.6. If X is a paracompact, semi-stratifiable space with e(X) = κ,
where cf(κ) > ω, then there is a closed discrete subset of size κ in X .

The following is well known as Jones’ Lemma.

Lemma 6.7 ([8]). If X is a normal space, then 2|D| ≤ 2d(X) holds for every
closed discrete subset D in X .

Lemma 6.8. Let κ be a cardinal with cf(κ) > ω such that {2τ : τ is a cardinal
< κ} has no maximum. If X is a normal space with e(X) = κ, then e(X) ≤ d(X)
holds.

Proof: Assume that d(X) < κ holds. Then we have 2d(X) < 2κ. By the
assumption of κ, there is a cardinal ρ < κ with 2d(X) < 2ρ < 2κ. Take a closed
discrete subset D in X with ρ < |D| < κ. Then we have 2d(X) < 2ρ ≤ 2|D|, which
contradicts Jones’ Lemma above. �

Using Lemma 6.8 instead of Facts 6.3 and 6.4, the following is obtained anal-
ogously as Theorem 6.5.

Proposition 6.9. Let κ be a cardinal with cf(κ) > ω such that {2τ : τ is a
cardinal < κ} has no maximum. If X is a normal, semi-stratifiable space with
e(X) = κ, then there is a closed discrete subset of size κ in X .

For a strong limit cardinal κ (i.e., 2τ < κ whenever τ < κ), note that {2τ : τ
is a cardinal < κ} has no maximum.

Problem 3. Let X be a normal, semi-stratifiable space with e(X) = κ, where
cf(κ) > ω. Is there a closed discrete subset of size κ in X without such an
assumption of κ as above?

Remark 6.10. As stated in [4, Theorem 7.8(i)], Σ-spaces, strict p-spaces and
semi-stratifiable spaces are all β-spaces. However, the sup = max equality does
not hold for the extent of β-spaces, because each of the space Xκ in Example 2.1
is a paracompact β-space.
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7. Subspaces of a cardinal

In general, e(X) cannot bound L(X). In fact, for every countably compact
non-compact space X , ω = e(X) < ω1 ≤ L(X) holds. In particular, if X = κ for
a cardinal κ with cf(κ) > ω, then X is a locally compact space with e(X) = ω
and L(X) = cf(κ). Moreover, we have the following result.

Theorem 7.1. Let κ and τ be any cardinals with κ ≥ τ ≥ ω. Then there is a
subspace X of κ such that L(X) = κ and e(X) = τ .

Proof: Let X = κ \ (R∪L), where R is the set of all regular cardinals with < κ
and L is the set of all limit ordinals with ≤ τ . Obviously, L(X) ≤ |X | ≤ κ holds.
Let D be a closed discrete subset in X . Let D \ τ = {αξ : ξ ∈ µ} and αζ < αξ

for every ζ < ξ < µ. Then, µ ≤ ω holds. Actually, assume that µ ≥ ω. Taking
{αn : n ∈ ω} ⊂ D \ τ , let β = sup{αn : n ∈ ω}. Then we have β /∈ X since D is
closed discrete, and β /∈ R ∪ L since cf(β) = ω ≤ τ ≤ α0 < α1 ≤ β. Therefore,
β = κ holds. If µ > ω, we have αω ≥ β = κ, which contradicts αω ∈ D \ τ ⊂ κ.
So we obtain µ ≤ ω. It follows from |D∩ τ | ≤ τ and |D \ τ | ≤ µ ≤ ω that |D| ≤ τ
holds. Hence we have e(X) ≤ τ .

Let λ be a regular cardinal. If λ ≤ τ , then Dλ = {α + 1 : α ∈ λ} is a
closed discrete subset of X , so λ = |Dλ| ≤ e(X). Therefore τ ≤ e(X) holds. If
λ ≤ κ, then Uλ = {X ∩ [0, α] : α < λ} ∪ {(λ, κ)} is an open cover of X , so we
have λ = L(Uλ) ≤ L(X). Therefore κ ≤ L(X) holds. Thus, we conclude that
e(X) = τ and L(X) = κ. �

Next, we construct a space X with L(X) = e(X) such that Theorem 4.5 does
not hold. Of course, such a space X must not be submetalindelöf. A typical
example of non-submetalindelöf spaces is a stationary subspace of κ with cf(κ) >
ω (it is easily checked by the Pressing Down Lemma). So we try to find such a
space in the class of subspaces of a cardinal κ.

For a subset S of κ, we denote by Lim(S) the set of all limit points of S in κ,
that is, Lim(S) = {α ∈ κ : α = sup(S ∩ α)}.

Theorem 7.2. Let κ be a regular limit cardinal > ω. Then there is a subspace
X of κ, satisfying the following;

(i) L(X) = e(X) = κ,
(ii) there is an open cover U of X with L(U) = κ and
(iii) there is no closed discrete subset of size κ in X .

Proof: Define a subspace X of κ by putting

X = κ \
⋃

{(λ, λ+ λ] ∩ Lim(κ) : λ is a cardinal with λ < κ}.

Obviously, e(X) ≤ L(X) ≤ |X | ≤ κ holds. For each infinite cardinal λ < κ,

Dλ := {λ+ α+ 1 : α ∈ λ} ⊂ X ∩ (λ, λ+ λ)
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is a closed discrete subset in X , and so we have λ = |Dλ| ≤ e(X). Therefore κ ≤
e(X) holds, thus L(X) = e(X) = κ. Since κ is regular, U := {X∩ [0, α] : α ∈ κ} is
an open cover of X with L(U) = κ. Let Z be a subset in X with |Z| = κ. Then Z
is unbounded in κ. Take a sequence {λn : n ∈ ω} of infinite cardinals with < κ and
a sequence {ζn : n ∈ ω} of members of Z inductively such that λn ≤ ζn < λn+1

for each n ∈ ω. Let λ = sup{λn : n ∈ ω}(= sup{ζn : n ∈ ω}). Since λ is a
cardinal and X contains all cardinals less than κ, we have λ ∈ X ∩Lim(Z). So Z
is not a closed discrete subset in X . Hence, there is no closed discrete subset of
size κ in X . �

Theorem 7.3. Let κ be a singular limit cardinal. Then there is a subspace X of
κ+ κ satisfying the following;

(i) L(X) = e(X) = κ,
(ii) there is an open cover U of X with L(U) = κ and
(iii) there is no closed discrete subset of size κ in X .

However, there is no subspace of κ satisfying these three conditions.

Proof: Take a strictly increasing sequence {κξ : ξ ∈ cf(κ) + 1} in κ + 1 with
κcf(κ) = κ such that for each ξ ≤ cf(κ), we have

• if ξ is not a limit ordinal, then κξ is a regular uncountable cardinal,
• if ξ is a limit ordinal, then κξ = sup{κη : η ∈ ξ}.

We define a subspace X of κ+ κ by putting

X = (κ+ κ) \
(

(κ ∩ Lim(κ)) ∪ {κ+ κξ : ξ ∈ cf(κ)}
)

.

Obviously, e(X) ≤ L(X) ≤ |X | ≤ |κ + κ| = κ holds. For each infinite cardinal
λ < κ, Dλ := {α+ 1 : α ∈ λ} ⊂ X ∩ λ is a closed discrete subset in X , and so we
have λ = |Dλ| ≤ e(X). Therefore κ ≤ e(X) holds, thus L(X) = e(X) = κ.

Put Xξ = (κ + κξ, κ + κξ+1) for each ξ ∈ cf(κ), X−1 = (κ, κ + κ0), and
X−2 = (κ \ Lim(κ)) ∪ {κ}. Then we have X =

⊕

−2≤ξ<cf(κ) Xξ. For each

ξ ∈ cf(κ), let

Uξ := {(κ+ κξ, κ+ κξ + α] : 0 < α < κξ+1}.

Then each Uξ is an open cover of Xξ with L(Uξ) = κξ+1, since κξ+1 is a regular
cardinal. Therefore U := {X−2, X−1} ∪

⋃

ξ∈cf(κ) Uξ is an open cover of X with

L(U) = κ.
Let D be a closed discrete subset in X . For κ ∈ X , D ∩ κ is bounded in κ,

and so |D ∩ X−2| < κ. Obviously, |D ∩X−1| ≤ κ0 < κ holds. Pick a ξ ∈ cf(κ).
Note that Xξ is homeomorphic to κξ+1 \ κξ. Since κξ+1 is countably compact, so
is Xξ. Since Xξ is clopen in X , D ∩Xξ must be finite. Hence we have

|D| = |(D ∩X−2) ∪ (D ∩X−1) ∪
⋃

ξ∈cf(κ)

(D ∩Xξ)|

≤ max{|D ∩X−2|, κ0, cf(κ)} < κ.
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Next, let us assume that there is a subspace X of κ with e(X) = κ. If cf(κ) > ω
and X is stationary in κ, then (ii) fails. Actually, if U is an open cover of X ,
then by the Pressing Down Lemma, there is γ < cf(κ) such that {X ∩ (κγ , κξ] :
ξ ∈ (γ, cf(κ))} partially refines U , so L(U) ≤ max{κγ , cf(κ)} < κ. If cf(κ) = ω
or X is non-stationary in κ with cf(κ) > ω, then (iii) fails. To see this, take
an unbounded subset C of κ such that X ∩ Lim(C) = ∅. By induction, we
can take a strictly increasing sequence {c(ξ) : ξ ∈ cf(κ)} by members of C and
a sequence {Dξ : ξ ∈ cf(κ)} of closed discrete subsets in X such that Dξ ⊂
(c(ξ), c(ξ + 1)) and |Dξ| ≥ κξ for each ξ ∈ cf(κ). Actually, if c(ξ) ∈ C is taken
for ξ ∈ κ, then by e(X) = κ, we can take a closed discrete subset D′

ξ in X

such that |D′
ξ| = max{|c(ξ)|, κξ, cf(κ)}+ < κ. By D′

ξ =
⋃

ζ∈cf(κ)(D
′
ξ ∩ κζ) and

cf(κ) < |D′
ξ| = cf(|D′

ξ|), there is D
′′
ξ ⊂ D′

ξ which is bounded in κ and |D′′
ξ | = |D′

ξ|.
Take c(ξ + 1) ∈ C with D′′

ξ ⊂ c(ξ + 1) and let Dξ = D′′
ξ ∩ (c(ξ), c(ξ + 1)). By

D′′
ξ = (D′′

ξ ∩ [0, c(ξ)]) ∪ Dξ and |D′′
ξ ∩ [0, c(ξ)]| ≤ max{|c(ξ)|, ω} < |D′

ξ| = |D′′
ξ |,

we have |Dξ| = |D′
ξ| ≥ κξ. So we can take the required sequences {c(ξ) : ξ ∈

cf(κ)} and {Dξ : ξ ∈ cf(κ)}. Let D =
⋃

ξ∈cf(κ) Dξ. For X ∩ Lim(C) = ∅,

{X ∩ (c(ξ), c(ξ + 1)) : ξ ∈ cf(κ)} is discrete in X . So {Dξ : ξ ∈ cf(κ)} is also
discrete in X , hence D is a closed discrete subset in X . For each ξ ∈ cf(κ), we
have κξ ≤ |Dξ| ≤ |D|. Hence |D| = κ holds, and so (iii) fails. �

As stated in Corollary 4.6, the sup = max equality holds for the Lindelöf degree
of strong Σ-spaces. However, the following result shows that the sup = max
equality does not hold for the Lindelöf degree of Σ-spaces.

Proposition 7.4. Let κ be a limit cardinal. Then there is a countably compact
subspace X of κ + 1 with L(X) = κ such that L(U) < κ for any open cover U
of X .

Proof: Let X = (κ+ 1) \ {ξ ∈ κ : cf(ξ) > ω}. Since X contains {ξ ∈ Lim(X) :
cf(ξ) = ω}, it is countably compact. Pick a regular uncountable cardinal λ < κ.
Letting Uλ = {X \ (α, λ) : α ∈ λ}, it is an open cover of X . Moreover, we have
L(Uλ) = λ ≤ L(X). By L(X) ≤ |X | = κ, we obtain L(X) = κ.

Let U be an open cover of X . For each α ∈ X , take Uα ∈ U with α ∈ Uα. By
κ ∈ Uκ, there is γ ∈ κ withX∩(γ, κ] ⊂ Uκ. Then V := {Uα : α ∈ (X∩[0, γ])∪{κ}}
is a subcover of U with |V| ≤ |[0, γ] ∪ {κ}| < κ. Hence we have L(U) < κ. �
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