The $\sup = \max$ problem for the extent of generalized metric spaces

Yasushi Hirata, Yukinobu Yajima

Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.

Keywords: extent, Lindelöf degree, Σ -space, strict *p*-space, semi-stratifiable Classification: Primary 54A25, 54D20; Secondary 03E10, 54E18

1. Introduction

Let φ be a cardinal function and X a space. Some cardinal functions are defined in terms of

 $\varphi(X) = \sup\{|S| : S \subset X \text{ has a property } \mathcal{P}_{\varphi}\} + \omega.$

The sup = max problem for φ is the one when $\varphi(X) = |S|$ holds for some $S \subset X$ having the property \mathcal{P}_{φ} . Whenever we deal with the sup = max problem for φ , note that $\varphi(X)$ should be a limit cardinal. Otherwise, this problem becomes trivial.

As a typical cardinal function for the sup = max problem, let us recall the spread s(X) of a space X which is defined by

 $s(X) = \sup\{|D| : D \text{ is a discrete subset in } X\} + \omega.$

First, Hajnal-Juhász [5] proved that for a Hausdorff space X with $|X| \ge \kappa$, if κ is a singular strong limit cardinal, then there is a discrete subset of size κ in X. Moreover, they also proved the following.

Theorem 1.1 (Hajnal-Juhász [6]). Let κ be a singular cardinal with $cf(\kappa) = \omega$. If X is a regular T_1 -space with $s(X) = \kappa$, then there is a discrete subset of size κ in X.

This research was supported by Grant-in-Aid for Scientific Research (C) 24540147.

The case of κ being a singular cardinal with $cf(\kappa) = \omega$ seemed to be specially interesting. In fact, Roitman [14] proved that there is consistently a zerodimensional regular T_1 -space X with $s(X) = \omega_{\omega_1}$ and with no discrete subset of size ω_{ω_1} in X. And it had been naturally asked whether Theorem 1.1 holds for a Hausdorff space X. A complete answer to this problem was given by the following.

Theorem 1.2 (Kunen-Roitman [11]). Let κ be a singular cardinal with $cf(\kappa) = \omega$. Then there is a Hausdorff space X with $s(X) = \kappa$ and with no discrete subset of size κ if and only if there is a set $S \subset 2^{\omega}$ of size κ such that every subset of S of size κ is not meager.

Thus, the sup = max problem for spread seemed to be settled before 1980. The reader might find the details of the sup = max problem in the books [9], [10]. In particular, the details of Theorems 1.1 and 1.2 are found in [10, Chapter 4].

Now, let us recall that the *extent* e(X) of a space X is defined by

$$e(X) = \sup\{|D| : D \text{ is a closed discrete subset in } X\} + \omega.$$

Obviously, we have $e(X) \leq s(X)$. Since the definition of extent looks similar to that of spread, it is natural to consider the sup = max problem for extent. However, it looks vain as seen from Example 2.1 below. Due to this kind of examples, the sup = max problem for extent seems to have been never dealt with so far. Nevertheless, the situation is changed when we restrict the extent to a generalized metric space such as a Σ -space, a strict *p*-space or a semi-stratifiable space. Our results depend on the topological structure of a space rather than the cardinal condition of extent. In fact, for a cardinal κ , we only assume $cf(\kappa) > \omega$ instead of $cf(\kappa) = \omega$.

Next, let us recall that the Lindelöf degree L(X) of a space X is defined by

 $L(X) = \min\{\kappa : \text{ every open cover of } X \text{ has a subcover of cardinality } \leq \kappa\} + \omega.$

Then $e(X) \leq L(X)$ holds. Since Lindelöf degree is usually defined not by supremum but minimum as above, the sup = max problem for it does not seem to occur at a glance. In order to consider the sup = max problem for extent, we introduce a new type of the sup = max problem for Lindelöf degree. Indeed, the sup=max problem for Lindelöf degree is rather easier to deal with than that of extent in some cases.

Throughout this paper, all spaces are assumed to be *Hausdorff*, and κ and τ denote uncountable cardinals. For a cardinal κ , $cf(\kappa)$ denotes the cofinality of κ , and the spaces κ and $\kappa + 1$ mean the spaces $[0, \kappa)$ and $[0, \kappa]$ with the usual order topology, respectively.

2. A simple example and a motivation

The following simple example seems to be a reason why the $\sup = \max$ problem for extent has been never discussed so far. **Example 2.1.** For every limit cardinal κ , there is a space X_{κ} with one nonisolated point such that $e(X_{\kappa}) = |X_{\kappa}| = \kappa$, but there is no closed discrete subset of size κ in X_{κ} . If $cf(\kappa) = \omega$, the space X_{κ} is metrizable.

PROOF: Let κ be a limit cardinal. Take the subspace $X_{\kappa} = \{\alpha + 1 : \alpha \in \kappa\} \cup \{\kappa\}$ of $\kappa + 1$. Then X_{κ} has the only one non-isolated point κ with $|X_{\kappa}| = \kappa$.

Since $\{\alpha + 1 \in X_{\kappa} : \alpha < \beta\}$ is a closed discrete subset in X_{κ} for each $\beta \in \kappa$, we have $e(X_{\kappa}) = \kappa$. Let D be a closed discrete subset in X_{κ} . Take an open neighborhood U_0 of κ in X_{κ} with $|U_0 \cap D| \leq 1$. Take a $\beta_0 \in \kappa$ with $X_{\kappa} \cap (\beta_0, \kappa] \subset U_0$. Since $|D \setminus U_0| \leq |\beta_0| < \kappa$, we have $|D| < \kappa$.

When $\operatorname{cf}(\kappa) = \omega$, let $\{\tau_n\}$ be a sequence of cardinals with $\tau_n < \tau_{n+1}$ for each $n \in \omega$ and $\kappa = \sup_{n \in \omega} \tau_n$. Let $\mathcal{B}_n = \{\{\alpha+1\} : \alpha < \tau_n\}$ and $\mathcal{B}_{\kappa,n} = \{X_{\kappa} \cap (\tau_n, \kappa]\}$ for each $n \in \omega$. Then $\bigcup_{n \in \omega} (\mathcal{B}_n \cup \mathcal{B}_{\kappa,n})$ is a σ -discrete base of X_{κ} . Hence X_{κ} is metrizable.

Every metrizable space M has a σ -discrete base \mathcal{B} with $|\mathcal{B}| = w(M)$, where w(M) denotes the weight of M. It is well known that for a metrizable space M, we have $e(M) = s(M) = w(M) = \kappa$. So adding the assumption of $cf(\kappa) > \omega$, the following is easy to see.

Proposition 2.2. Let M be a metrizable space with $e(M) = \kappa$. Assume $cf(\kappa) > \omega$. Then there is a closed discrete subset of size κ in M.

In view of Example 2.1 and Proposition 2.2, it is natural to ask

Problem 0. Let X be a generalized metric space with $e(X) = \kappa$, where $cf(\kappa) > \omega$. When is there a closed discrete subset of size κ in X?

This problem is a motivation of this paper, and we will give a couple of affirmative answers to this one. As Gruenhage gave a nice survey [4] for generalized metric spaces, we sometimes quote it.

For the reader's convenience, we state the following implications for generalized metric spaces which will be dealt with.

3. Σ -spaces

First, for the reader's convenience, we show

Fact 3.1 (folklore). Let \mathcal{A} be an infinite collection of non-empty subsets in a space X. If \mathcal{A} is locally finite in X, then there is a closed discrete subset D of size $|\mathcal{A}|$.

PROOF: Let $\kappa = |\mathcal{A}| \geq \omega$. We can inductively construct a subcollection $\{A_{\alpha} : \alpha \in \kappa\}$ of \mathcal{A} and a sequence $\{x_{\alpha} : \alpha \in \kappa\}$ of points in X, satisfying that $x_{\alpha} \in A_{\alpha}$ and $\{x_{\beta} : \beta < \alpha\} \cap A_{\alpha} = \emptyset$ for each $\alpha \in \kappa$. Then $D := \{x_{\alpha} : \alpha \in \kappa\}$ is a closed discrete subset of X with $|D| = \kappa$.

Let X be a space and \mathcal{K} a closed cover of X. A closed cover \mathcal{F} of X is a $(mod \ \mathcal{K})$ -network for X if, whenever $K \in \mathcal{K}$ and U is open in X with $K \subset U$, there is $F \in \mathcal{F}$ with $K \subset F \subset U$ (see [13]). A space X is a $(strong) \ \Sigma$ -space [12] if there is a σ -locally finite $(mod \ \mathcal{K})$ -network for some closed cover \mathcal{K} of X by countably compact (compact) sets (cf. [4, 4.13 Definition]).

Theorem 3.2. If X is a Σ -space with $e(X) = \kappa$, where $cf(\kappa) > \omega$, then there is a closed discrete subset of size κ in X.

PROOF: Let \mathcal{K} be a closed cover of X by countably compact sets and \mathcal{F} a σ locally finite (mod \mathcal{K})-network for X. First, we show $|\mathcal{F}| \geq \kappa$. Let D be any closed discrete subset in X. Let $\mathcal{F}_D = \{F \in \mathcal{F} : |F \cap D| < \omega\}$. Pick an $x \in D$. Take a $K_x \in \mathcal{K}$ with $x \in K_x$. Since K_x is countably compact, we have $|K_x \cap D| < \omega$. Let $U = X \setminus (D \setminus K_x)$. Then U is an open set in X with $K_x \subset U$. There is an $F_0 \in \mathcal{F}$ with $K_x \subset F_0 \subset U$. Then we have $K_x \cap D = F_0 \cap D$. We conclude that $F_0 \in \mathcal{F}_D$ and $x \in K_x \subset F_0$. Thus \mathcal{F}_D covers D. This means that

$$|D| = |\bigcup \{F \cap D : F \in \mathcal{F}_D\}| \le |\mathcal{F}_D| \cdot \omega \le |\mathcal{F}| \cdot \omega.$$

Hence $\kappa = e(X) \leq |\mathcal{F}| \cdot \omega$ holds. By $\kappa > \omega$, we obtain $|\mathcal{F}| \geq \kappa = e(X)$.

Let $\mathcal{F} = \bigcup_{n \in \omega} \mathcal{F}_n$, where each \mathcal{F}_n is locally finite in X. By $cf(\kappa) > \omega$, there is $m \in \omega$ with $|\mathcal{F}_m| \ge \kappa$. It follows from Fact 3.1 that there is a closed discrete subset D^* in X with $|D^*| = |\mathcal{F}_m| \ge \kappa$. By $e(X) = \kappa$, $|D^*|$ must be equal to κ . \Box

4. The $\sup = \max$ problem for Lindelöf degree

Since Lindelöf degree is usually defined by minimum, the sup = max problem does not seem to occur. However, using another expression, Lindelöf degree can be defined by supremum.

For a collection \mathcal{U} of open sets in a space X, let

$$L(\mathcal{U}) = \min\{|\mathcal{V}| : \mathcal{V} \subset \mathcal{U} \text{ with } \bigcup \mathcal{V} = \bigcup \mathcal{U}\} + \omega.$$

First, we have to check the following basic fact.

Fact 4.1. For a space X, $L(X) = \sup\{L(\mathcal{U}) : \mathcal{U} \text{ is an open cover of } X\}$ holds.

PROOF: Let $\kappa = \sup\{L(\mathcal{U}) : \mathcal{U} \text{ is an open cover of } X\}$. Take any open cover \mathcal{U} of X. Since there is a subcover \mathcal{V} of \mathcal{U} with $|\mathcal{V}| \leq L(X)$, we have $L(\mathcal{U}) \leq L(X)$. Hence $\kappa \leq L(X)$ holds. Take any open cover \mathcal{U} of X again. By $L(\mathcal{U}) \leq \kappa$, there is a subcover \mathcal{V} of \mathcal{U} with $|\mathcal{V}| \leq \kappa$. Hence $L(X) \leq \kappa$ holds. \Box

Thus, we can consider the sup = max problem for Lindelöf degree as the problem when there is an open cover \mathcal{U} of a space X with $L(X) = L(\mathcal{U})$.

As a trivial case, for a Lindelöf and non-compact space X, the sup = max problems for L(X) are affirmative. On the other hand, taking the space X_{κ} as in Example 2.1, it is easily seen that $L(X_{\kappa}) = \kappa$ but $L(\mathcal{U}) < \kappa$ for any open cover \mathcal{U} of X_{κ} .

A space X is submetalindelöf (or $\delta\theta$ -refinable) if for every open cover \mathcal{U} of X, there is a sequence $\{\mathcal{V}_n\}$ of open refinements satisfying that for each $x \in X$ one can choose $n_x \in \omega$ such that \mathcal{V}_{n_x} is point-countable at x. Related to this property, we have the following implications:

Lemma 4.2 (Aull). If X is a submetalindelöf space, then e(X) = L(X) holds.

This can be shown by an easy modification of the proof of [1, Theorem 1]. For a space $X, A \subset X$ and a collection \mathcal{U} of subsets in X, we let

$$\operatorname{St}(A, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap A \neq \emptyset \}.$$

In particular, we use St(x, U) instead of $St(\{x\}, U)$, where $x \in X$.

In the proof of Lemma 4.2 (or [1, Theorem 1]), the following result is used.

Lemma 4.3 ([1, Lemmas 1 and 3]). Let X be a space, $A \subset X$ and \mathcal{U} be an open cover of X. Then there is a closed discrete subset D in X such that $D \subset A \subset \operatorname{St}(D,\mathcal{U})$.

Fact 4.4 (folklore). Let X be a space with $e(X) = L(X) = \kappa$. If there is a closed discrete subset D of size κ in X, then there is an open cover \mathcal{U} of X with $L(\mathcal{U}) = \kappa$.

PROOF: Let $\mathcal{U} = \{X \setminus (D \setminus \{d\}) : d \in D\}$. Since \mathcal{U} has no proper subcover of X, it is an open cover of X with $L(\mathcal{U}) = |\mathcal{U}| = |D| = \kappa$.

Theorem 4.5. Let X be a submetalindelöf space with $e(X) = \kappa$, where $cf(\kappa) > \omega$. Then there is a closed discrete subset D of size κ in X if and only if there is an open cover \mathcal{U} of X with $L(\mathcal{U}) = L(X) = \kappa$.

PROOF: First, by Lemma 4.2, note that $L(X) = e(X) = \kappa$ holds. It suffices by Fact 4.4 to show the "if" part. Let \mathcal{U} be an open cover of X with $L(\mathcal{U}) = \kappa$. Since X is submetalindelöf, there is a sequence $\{\mathcal{V}_n\}$ of open refinements of \mathcal{U} satisfying that for each $x \in X$ one can choose $n_x \in \omega$ such that \mathcal{V}_{n_x} is point-countable at x. For each $n \in \omega$, let

$$X_n = \{x \in X : \mathcal{V}_n \text{ is point-countable at } x\}.$$

Then we have $X = \bigcup_{n \in \omega} X_n$. Pick an $n \in \omega$. By Lemma 4.3, there is a closed discrete subset D_n in X with $D_n \subset X_n \subset \bigcup \operatorname{St}(D_n, \mathcal{V}_n)$. Let $\mathcal{W}_n = \{V \in \mathcal{V}_n : V \cap D_n \neq \emptyset\}$. By the choice of X_n , we have $|\mathcal{W}_n| \leq |D_n| \cdot \omega \leq \kappa$.

Now, assume that $|D_n| < \kappa$ for each $n \in \omega$. Let $\tau = \sup_{n \in \omega} |D_n| \cdot \omega$. By $cf(\kappa) > \omega$, we have $\tau < \kappa$. Let $\mathcal{W} = \bigcup_{n \in \omega} \mathcal{W}_n$. Since $X_n \subset St(D_n, \mathcal{V}_n) = \bigcup \mathcal{W}_n$ for each $n \in \omega$ and $X = \bigcup_{n \in \omega} X_n$, \mathcal{W} covers X. So \mathcal{W} is an open refinement of \mathcal{U} . On the other hand, since

$$|\mathcal{W}| = \sup_{n \in \omega} |\mathcal{W}_n| \le \sup_{n \in \omega} |D_n| \cdot \omega = \tau,$$

we conclude that $L(\mathcal{U}) \leq \tau < \kappa = L(X)$. This contradicts $L(\mathcal{U}) = \kappa$. Hence we obtain $|D_m| = \kappa = e(X)$ for some $m \in \omega$.

Since a regular strong Σ -space is subparacompact, it is submetalindelöf. So the following is an immediate consequence of Lemma 4.2, Theorems 3.2 and 4.5.

Corollary 4.6. If a regular space X is a strong Σ -space with $L(X) = \kappa$, where $cf(\kappa) > \omega$, then there is an open cover \mathcal{U} of X with $L(\mathcal{U}) = \kappa$.

Remark 4.7. Since every space with one non-isolated point is paracompact, it follows from Example 2.1 that the sup = max problems for L(X) and e(X) are both negative for a submetalindelöf space X without any additional condition.

However, we do not know the following.

Problem 1. Assume that a space X has a point-countable base with $e(X) = \kappa$, where $cf(\kappa) > \omega$. Is there a closed discrete subset of size κ in X?

5. Strict *p*-spaces

A Tychonoff space X is called a *p*-space (respectively, strict *p*-space) if there is a sequence $\{\mathcal{O}_n\}$ of collections of open sets in βX such that each \mathcal{O}_n covers X and $\bigcap_{n\in\omega} \operatorname{St}(x,\mathcal{O}_n) \subset X$ (respectively, $\bigcap_{n\in\omega} \operatorname{St}(x,\mathcal{O}_n) = \bigcap_{n\in\omega} \overline{\operatorname{St}(x,\mathcal{O}_n)}^{\beta X} \subset X$) for each $x \in X$ (cf. [4, 3.15 Definition]).

Here we make use of the following characterization of p-spaces by Burke [2] (cf. [4, 3.21 Theorem]) instead of the definition.

Lemma 5.1. A Tychonoff space X is a p-space if and only if there is a sequence $\{\mathcal{G}_n\}$ of open covers of X satisfying the following condition: If $G_n \in \mathcal{G}_n$ for each $n \in \omega$ with $\bigcap_{n \in \omega} G_n \neq \emptyset$, then

(i) $\bigcap_{n \in \omega} \overline{G_n}$ is compact, and

(ii) every open set U in X containing $\bigcap_{n \in \omega} \overline{G_n}$ contains some $\bigcap_{i \leq m} \overline{G_i}$.

Lemma 5.2. Let X be a space and \mathcal{K} a closed cover of X by compact sets. If \mathcal{F} is a (mod \mathcal{K})-network for X, then $L(X) \leq |\mathcal{F}| \cdot \omega$ holds.

PROOF: Take any open cover \mathcal{U} of X. Let

 $\mathcal{F}^* = \{ F \in \mathcal{F} : \text{ there is a finite } \mathcal{W} \subset \mathcal{U} \text{ with } F \subset [] \mathcal{W} \}.$

For each $F \in \mathcal{F}^*$, one can assign a finite subcollection $\mathcal{V}(F)$ of \mathcal{U} which covers F. Let $\mathcal{V} = \bigcup \{\mathcal{V}(F) : F \in \mathcal{F}^*\}$. Then we have $|\mathcal{V}| = |\mathcal{F}^*| \cdot \omega \leq |\mathcal{F}| \cdot \omega$. To show $L(X) \leq |\mathcal{F}| \cdot \omega$, it suffices to show that \mathcal{V} covers X. Pick an $x \in X$. Take $K_x \in \mathcal{K}$ with $x \in K_x$. Since K_x is compact, there is a finite $\mathcal{W} \subset \mathcal{U}$ which covers K_x . Then there is $F_0 \in \mathcal{F}$ with $K_x \subset F_0 \subset \bigcup \mathcal{W}$. So we have $F_0 \in \mathcal{F}^*$. It follows that $x \in K_x \subset F_0 \subset \bigcup \mathcal{V}(F_0) \subset \bigcup \mathcal{V}$. Hence \mathcal{V} is a subcover of \mathcal{U} .

Lemma 5.3. Let X be a p-space with $L(X) = \kappa$, where $cf(\kappa) > \omega$. Then there is an open cover \mathcal{U} of X with $L(\mathcal{U}) = \kappa$.

PROOF: Assume that $L(\mathcal{U}) < \kappa$ for any open cover \mathcal{U} of X. There is a sequence $\{\mathcal{G}_n\}$ of open covers of X, described in Lemma 5.1. For each $n \in \omega$, letting $\tau_n = L(\mathcal{G}_n)$, there is a subcover \mathcal{H}_n of \mathcal{G}_n with $|\mathcal{H}_n| = \tau_n$. Let $\tau = \sup_{n \in \omega} \tau_n$. Since $\tau_n < \kappa$ for each $n \in \omega$ and $cf(\kappa) > \omega$, we have $\tau < \kappa$. Let

$$\mathcal{F} = \{\bigcap_{i \le n} \overline{H_i} : H_i \in \mathcal{H}_i, i \le n \text{ and } n \in \omega\}.$$

Since $|\bigcup_{n\in\omega}\mathcal{H}_n| \leq \tau$, note that $|\mathcal{F}| \leq \tau$. Let

$$\mathcal{K} = \{\bigcap_{n \in \omega} \overline{H_n} : H_n \in \mathcal{H}_n \text{ for each } n \in \omega \text{ with } \bigcap_{n \in \omega} H_n \neq \emptyset\}$$

Since each \mathcal{H}_n covers X, it follows from Lemma 5.1(i) that \mathcal{K} is a closed cover of X by compact sets. Take any $K \in \mathcal{K}$ and any open set U in X with $K \subset U$. Then there is a sequence $\{H_n\}$ of open sets in X such that $K = \bigcap_{n \in \omega} \overline{H_n}$, where $H_n \in \mathcal{H}_n$ with $\bigcap_{n \in \omega} H_n \neq \emptyset$. By Lemma 5.1(ii), there is $m \in \omega$ with $\bigcap_{i \leq m} \overline{H_i} \subset U$. Then we have $\bigcap_{i \leq m} \overline{H_i} \in \mathcal{F}$ such that $K \subset \bigcap_{i \leq m} \overline{H_i} \subset U$. Thus \mathcal{F} is a (mod \mathcal{K})-network for X. It follows from Lemma 5.2 and $\kappa > \omega$ that $\kappa = L(X) \leq |\mathcal{F}| \leq \tau < \kappa$ holds. This is a contradiction.

Theorem 5.4. If X is a strict p-space with $e(X) = \kappa$, where $cf(\kappa) > \omega$, then there is a closed discrete subset of size κ in X.

PROOF: It follows from Jiang's result [7] that every strict *p*-space is submetacompact. Since X is submetalindelöf, it follows from Lemma 4.2 that $e(X) = L(X) = \kappa$ holds. Since X is *p*-space and $cf(\kappa) > \omega$, it follows from Lemma 5.3 that there is an open cover \mathcal{U} of X with $L(\mathcal{U}) = \kappa$. It follows from Theorem 4.5 that there is a closed discrete subset D in X with $|D| = \kappa$.

In view of Lemma 5.3 and Theorem 5.4, it is natural to ask

Problem 2. Let X be a p-space with $e(X) = \kappa$, where $cf(\kappa) > \omega$. Is there a closed discrete subset of size κ in X?

Since locally compact spaces are *p*-spaces, Lemma 5.3 is true for a locally compact space X. However, this is somewhat generalized in what follows. A space X is *locally Lindelöf* if each point of X has an open neighborhood whose closure is Lindelöf.

Proposition 5.5. If X is a locally Lindelöf non-compact space with $L(X) = \kappa$, then there is an open cover \mathcal{G} of X with $L(\mathcal{G}) = \kappa$.

PROOF: Since the case of X being Lindelöf is obvious, we may let $\kappa > \omega$. Let \mathcal{U} be any open cover of X. Take an open cover \mathcal{G} of X such that \overline{G} is Lindelöf for each $G \in \mathcal{G}$. Assume that $L(\mathcal{G}) < \kappa$. There is a subcover \mathcal{H} of \mathcal{G} with $|\mathcal{H}| = L(\mathcal{G})$. For each $G \in \mathcal{H}$, there is a countable subcollection $\mathcal{V}(G)$ of \mathcal{U} covering \overline{G} . Let $\mathcal{V} = \bigcup \{\mathcal{V}(G) : G \in \mathcal{H}\}$. Then \mathcal{V} is a subcover of \mathcal{U} with $|\mathcal{V}| \leq |\mathcal{H}| = L(\mathcal{G}) < \kappa$. This implies that $L(X) \leq L(\mathcal{G}) < \kappa = L(X)$, which is a contradiction. Hence we obtain $L(\mathcal{G}) = \kappa$.

6. Semi-stratifiable spaces

A space X is *semi-stratifiable* [3] if there is a function $g: \omega \times X \to \text{Top}(X)$, where Top(X) denotes the topology of X, satisfying

(i) $\bigcap_{n \in \omega} g(n, x) = \{x\}$ for each $x \in X$,

(ii) $y \in \bigcap_{n \in \omega} g(n, x_n)$ implies that $\{x_n\}$ converges to y

(see also [4, 5.6 Definition]).

For a space X, d(X) denotes the *density* of X, that is,

 $d(X) = \min\{|S| : S \text{ is a dense subset in } X\}.$

Lemma 6.1 (Creed). If X is a semi-stratifiable space, then $d(X) \leq L(X)$ holds.

This was actually showed in the proof of $(1) \Rightarrow (2)$ of [3, Theorem 2.8]. Moreover, the following is obtained by a modification of the proof.

Lemma 6.2. Let X be a semi-stratifiable space with $L(X) = d(X) = \kappa$, where $cf(\kappa) > \omega$. Then there is an open cover \mathcal{U} of X with $L(\mathcal{U}) = \kappa$.

PROOF: Assume that $L(\mathcal{U}) < \kappa$ for any open cover \mathcal{U} of X. Let $g: \omega \times X \to$ Top(X) be a function described as above. Let $\mathcal{G}_n = \{g(n, x) : x \in X\}$ for each $n \in \omega$. Pick an $n \in \omega$. Let $\tau_n = L(\mathcal{G}_n)$. Since \mathcal{G}_n is an open cover of X, we have $\tau_n < \kappa$. There is a subcover \mathcal{H}_n of \mathcal{G}_n with $|\mathcal{H}_n| = \tau_n$. Let $\mathcal{H}_n = \{g(n, x) : x \in T_n\}$, where $T_n \subset X$ with $|T_n| = \tau_n$. Let $\tau = \sup_{n \in \omega} \tau_n$. By $cf(\kappa) > \omega$, we have $\tau < \kappa$. Let $T = \bigcup_{n \in \omega} T_n$. Pick an $x \in X$. For each $n \in \omega$, take $x_n \in T_n$ with $x \in g(n, x_n)$. By the choice of g, $\{x_n\}$ converges to x. Hence T is a dense subset in X with $|T| = \tau$. We conclude that $d(X) \leq |T| = \tau < \kappa = L(X)$. This contradicts the assumption.

A space X is *metalindelöf* if every open cover of X has a point-countable open refinement. The following is easily seen.

Fact 6.3. If X is a metalindelöf space, then $L(X) \leq d(X)$ holds.

A space X is collectionwise Hausdorff if for every closed discrete subset D in X, there is a mutually disjoint collection $\{U_x : x \in D\}$ of open sets such that $x \in U_x$ for each $x \in D$. **Fact 6.4.** If X is a collectionwise Hausdorff space, then $e(X) \leq d(X)$ holds.

Now, we obtain a main result in this section.

Theorem 6.5. Let X be a semi-stratifiable space with $e(X) = \kappa$, where $cf(\kappa) > \omega$. If X is either metalindelöf or collectionwise Hausdorff, then there is a closed discrete subset of size κ in X.

PROOF: Since every semi-stratifiable space is subparacompact (cf. [4, 5.11 Theorem]), Lemma 4.2 assures that $e(X) = L(X) = \kappa$ holds. Moreover, it follows from Lemmas 6.1, Facts 6.3 and 6.4 that $e(X) = L(X) = d(X) = \kappa$ holds. Hence our conclusion follows from Theorem 4.5 and Lemma 6.2.

This immediately yields

Corollary 6.6. If X is a paracompact, semi-stratifiable space with $e(X) = \kappa$, where $cf(\kappa) > \omega$, then there is a closed discrete subset of size κ in X.

The following is well known as Jones' Lemma.

Lemma 6.7 ([8]). If X is a normal space, then $2^{|D|} \leq 2^{d(X)}$ holds for every closed discrete subset D in X.

Lemma 6.8. Let κ be a cardinal with $cf(\kappa) > \omega$ such that $\{2^{\tau} : \tau \text{ is a cardinal} < \kappa\}$ has no maximum. If X is a normal space with $e(X) = \kappa$, then $e(X) \leq d(X)$ holds.

PROOF: Assume that $d(X) < \kappa$ holds. Then we have $2^{d(X)} < 2^{\kappa}$. By the assumption of κ , there is a cardinal $\rho < \kappa$ with $2^{d(X)} < 2^{\rho} < 2^{\kappa}$. Take a closed discrete subset D in X with $\rho < |D| < \kappa$. Then we have $2^{d(X)} < 2^{\rho} \le 2^{|D|}$, which contradicts Jones' Lemma above.

Using Lemma 6.8 instead of Facts 6.3 and 6.4, the following is obtained analogously as Theorem 6.5.

Proposition 6.9. Let κ be a cardinal with $cf(\kappa) > \omega$ such that $\{2^{\tau} : \tau \text{ is a cardinal} < \kappa\}$ has no maximum. If X is a normal, semi-stratifiable space with $e(X) = \kappa$, then there is a closed discrete subset of size κ in X.

For a strong limit cardinal κ (i.e., $2^{\tau} < \kappa$ whenever $\tau < \kappa$), note that $\{2^{\tau} : \tau$ is a cardinal $< \kappa\}$ has no maximum.

Problem 3. Let X be a normal, semi-stratifiable space with $e(X) = \kappa$, where $cf(\kappa) > \omega$. Is there a closed discrete subset of size κ in X without such an assumption of κ as above?

Remark 6.10. As stated in [4, Theorem 7.8(i)], Σ -spaces, strict *p*-spaces and semi-stratifiable spaces are all β -spaces. However, the sup = max equality does not hold for the extent of β -spaces, because each of the space X_{κ} in Example 2.1 is a paracompact β -space.

7. Subspaces of a cardinal

In general, e(X) cannot bound L(X). In fact, for every countably compact non-compact space $X, \omega = e(X) < \omega_1 \leq L(X)$ holds. In particular, if $X = \kappa$ for a cardinal κ with $cf(\kappa) > \omega$, then X is a locally compact space with $e(X) = \omega$ and $L(X) = cf(\kappa)$. Moreover, we have the following result.

Theorem 7.1. Let κ and τ be any cardinals with $\kappa \geq \tau \geq \omega$. Then there is a subspace X of κ such that $L(X) = \kappa$ and $e(X) = \tau$.

PROOF: Let $X = \kappa \setminus (R \cup L)$, where R is the set of all regular cardinals with $< \kappa$ and L is the set of all limit ordinals with $\leq \tau$. Obviously, $L(X) \leq |X| \leq \kappa$ holds. Let D be a closed discrete subset in X. Let $D \setminus \tau = \{\alpha_{\xi} : \xi \in \mu\}$ and $\alpha_{\zeta} < \alpha_{\xi}$ for every $\zeta < \xi < \mu$. Then, $\mu \leq \omega$ holds. Actually, assume that $\mu \geq \omega$. Taking $\{\alpha_n : n \in \omega\} \subset D \setminus \tau$, let $\beta = \sup\{\alpha_n : n \in \omega\}$. Then we have $\beta \notin X$ since D is closed discrete, and $\beta \notin R \cup L$ since $cf(\beta) = \omega \leq \tau \leq \alpha_0 < \alpha_1 \leq \beta$. Therefore, $\beta = \kappa$ holds. If $\mu > \omega$, we have $\alpha_{\omega} \geq \beta = \kappa$, which contradicts $\alpha_{\omega} \in D \setminus \tau \subset \kappa$. So we obtain $\mu \leq \omega$. It follows from $|D \cap \tau| \leq \tau$ and $|D \setminus \tau| \leq \mu \leq \omega$ that $|D| \leq \tau$ holds. Hence we have $e(X) \leq \tau$.

Let λ be a regular cardinal. If $\lambda \leq \tau$, then $D_{\lambda} = \{\alpha + 1 : \alpha \in \lambda\}$ is a closed discrete subset of X, so $\lambda = |D_{\lambda}| \leq e(X)$. Therefore $\tau \leq e(X)$ holds. If $\lambda \leq \kappa$, then $\mathcal{U}_{\lambda} = \{X \cap [0, \alpha] : \alpha < \lambda\} \cup \{(\lambda, \kappa)\}$ is an open cover of X, so we have $\lambda = L(\mathcal{U}_{\lambda}) \leq L(X)$. Therefore $\kappa \leq L(X)$ holds. Thus, we conclude that $e(X) = \tau$ and $L(X) = \kappa$.

Next, we construct a space X with L(X) = e(X) such that Theorem 4.5 does not hold. Of course, such a space X must not be submetalindelöf. A typical example of non-submetalindelöf spaces is a stationary subspace of κ with $cf(\kappa) > \omega$ (it is easily checked by the Pressing Down Lemma). So we try to find such a space in the class of subspaces of a cardinal κ .

For a subset S of κ , we denote by Lim(S) the set of all limit points of S in κ , that is, $\text{Lim}(S) = \{\alpha \in \kappa : \alpha = \sup(S \cap \alpha)\}.$

Theorem 7.2. Let κ be a regular limit cardinal $> \omega$. Then there is a subspace X of κ , satisfying the following;

- (i) $L(X) = e(X) = \kappa$,
- (ii) there is an open cover \mathcal{U} of X with $L(\mathcal{U}) = \kappa$ and
- (iii) there is no closed discrete subset of size κ in X.

PROOF: Define a subspace X of κ by putting

$$X = \kappa \setminus \bigcup \{ (\lambda, \lambda + \lambda) \cap \operatorname{Lim}(\kappa) : \lambda \text{ is a cardinal with } \lambda < \kappa \}.$$

Obviously, $e(X) \leq L(X) \leq |X| \leq \kappa$ holds. For each infinite cardinal $\lambda < \kappa$,

$$D_{\lambda} := \{\lambda + \alpha + 1 : \alpha \in \lambda\} \subset X \cap (\lambda, \lambda + \lambda)$$

254

is a closed discrete subset in X, and so we have $\lambda = |D_{\lambda}| \leq e(X)$. Therefore $\kappa \leq e(X)$ holds, thus $L(X) = e(X) = \kappa$. Since κ is regular, $\mathcal{U} := \{X \cap [0, \alpha] : \alpha \in \kappa\}$ is an open cover of X with $L(\mathcal{U}) = \kappa$. Let Z be a subset in X with $|Z| = \kappa$. Then Z is unbounded in κ . Take a sequence $\{\lambda_n : n \in \omega\}$ of infinite cardinals with $< \kappa$ and a sequence $\{\zeta_n : n \in \omega\}$ of members of Z inductively such that $\lambda_n \leq \zeta_n < \lambda_{n+1}$ for each $n \in \omega$. Let $\lambda = \sup\{\lambda_n : n \in \omega\}(= \sup\{\zeta_n : n \in \omega\})$. Since λ is a cardinal and X contains all cardinals less than κ , we have $\lambda \in X \cap \text{Lim}(Z)$. So Z is not a closed discrete subset in X. Hence, there is no closed discrete subset of size κ in X.

Theorem 7.3. Let κ be a singular limit cardinal. Then there is a subspace X of $\kappa + \kappa$ satisfying the following;

- (i) $L(X) = e(X) = \kappa$,
- (ii) there is an open cover \mathcal{U} of X with $L(\mathcal{U}) = \kappa$ and
- (iii) there is no closed discrete subset of size κ in X.

However, there is no subspace of κ satisfying these three conditions.

PROOF: Take a strictly increasing sequence $\{\kappa_{\xi} : \xi \in cf(\kappa) + 1\}$ in $\kappa + 1$ with $\kappa_{cf(\kappa)} = \kappa$ such that for each $\xi \leq cf(\kappa)$, we have

- if ξ is not a limit ordinal, then κ_{ξ} is a regular uncountable cardinal,
- if ξ is a limit ordinal, then $\kappa_{\xi} = \sup\{\kappa_{\eta} : \eta \in \xi\}.$

We define a subspace X of $\kappa + \kappa$ by putting

$$X = (\kappa + \kappa) \setminus \left((\kappa \cap \operatorname{Lim}(\kappa)) \cup \{ \kappa + \kappa_{\xi} : \xi \in \operatorname{cf}(\kappa) \} \right).$$

Obviously, $e(X) \leq L(X) \leq |X| \leq |\kappa + \kappa| = \kappa$ holds. For each infinite cardinal $\lambda < \kappa, D_{\lambda} := \{\alpha + 1 : \alpha \in \lambda\} \subset X \cap \lambda$ is a closed discrete subset in X, and so we have $\lambda = |D_{\lambda}| \leq e(X)$. Therefore $\kappa \leq e(X)$ holds, thus $L(X) = e(X) = \kappa$.

Put $X_{\xi} = (\kappa + \kappa_{\xi}, \kappa + \kappa_{\xi+1})$ for each $\xi \in \operatorname{cf}(\kappa)$, $X_{-1} = (\kappa, \kappa + \kappa_0)$, and $X_{-2} = (\kappa \setminus \operatorname{Lim}(\kappa)) \cup \{\kappa\}$. Then we have $X = \bigoplus_{-2 \leq \xi < \operatorname{cf}(\kappa)} X_{\xi}$. For each $\xi \in \operatorname{cf}(\kappa)$, let

$$\mathcal{U}_{\xi} := \{ (\kappa + \kappa_{\xi}, \kappa + \kappa_{\xi} + \alpha] : 0 < \alpha < \kappa_{\xi+1} \}.$$

Then each \mathcal{U}_{ξ} is an open cover of X_{ξ} with $L(\mathcal{U}_{\xi}) = \kappa_{\xi+1}$, since $\kappa_{\xi+1}$ is a regular cardinal. Therefore $\mathcal{U} := \{X_{-2}, X_{-1}\} \cup \bigcup_{\xi \in cf(\kappa)} \mathcal{U}_{\xi}$ is an open cover of X with $L(\mathcal{U}) = \kappa$.

Let *D* be a closed discrete subset in *X*. For $\kappa \in X$, $D \cap \kappa$ is bounded in κ , and so $|D \cap X_{-2}| < \kappa$. Obviously, $|D \cap X_{-1}| \le \kappa_0 < \kappa$ holds. Pick a $\xi \in cf(\kappa)$. Note that X_{ξ} is homeomorphic to $\kappa_{\xi+1} \setminus \kappa_{\xi}$. Since $\kappa_{\xi+1}$ is countably compact, so is X_{ξ} . Since X_{ξ} is clopen in *X*, $D \cap X_{\xi}$ must be finite. Hence we have

$$|D| = |(D \cap X_{-2}) \cup (D \cap X_{-1}) \cup \bigcup_{\xi \in \mathrm{cf}(\kappa)} (D \cap X_{\xi})|$$
$$\leq \max\{|D \cap X_{-2}|, \kappa_0, \mathrm{cf}(\kappa)\} < \kappa.$$

Next, let us assume that there is a subspace X of κ with $e(X) = \kappa$. If $cf(\kappa) > \omega$ and X is stationary in κ , then (ii) fails. Actually, if \mathcal{U} is an open cover of X, then by the Pressing Down Lemma, there is $\gamma < cf(\kappa)$ such that $\{X \cap (\kappa_{\gamma}, \kappa_{\xi})\}$: $\xi \in (\gamma, \mathrm{cf}(\kappa))$ partially refines \mathcal{U} , so $L(\mathcal{U}) \leq \max\{\kappa_{\gamma}, \mathrm{cf}(\kappa)\} < \kappa$. If $\mathrm{cf}(\kappa) = \omega$ or X is non-stationary in κ with $cf(\kappa) > \omega$, then (iii) fails. To see this, take an unbounded subset C of κ such that $X \cap \text{Lim}(C) = \emptyset$. By induction, we can take a strictly increasing sequence $\{c(\xi): \xi \in cf(\kappa)\}$ by members of C and a sequence $\{D_{\xi} : \xi \in \mathrm{cf}(\kappa)\}$ of closed discrete subsets in X such that $D_{\xi} \subset$ $(c(\xi), c(\xi+1))$ and $|D_{\xi}| \geq \kappa_{\xi}$ for each $\xi \in cf(\kappa)$. Actually, if $c(\xi) \in C$ is taken for $\xi \in \kappa$, then by $e(X) = \kappa$, we can take a closed discrete subset D'_{ξ} in X such that $|D'_{\xi}| = \max\{|c(\xi)|, \kappa_{\xi}, cf(\kappa)\}^+ < \kappa$. By $D'_{\xi} = \bigcup_{\zeta \in cf(\kappa)} (D'_{\xi} \cap \kappa_{\zeta})$ and $\operatorname{cf}(\kappa) < |D'_{\xi}| = \operatorname{cf}(|D'_{\xi}|)$, there is $D''_{\xi} \subset D'_{\xi}$ which is bounded in κ and $|D''_{\xi}| = |D'_{\xi}|$. Take $c(\xi+1) \in C$ with $D''_{\xi} \subset c(\xi+1)$ and let $D_{\xi} = D''_{\xi} \cap (c(\xi), c(\xi+1))$. By $D_{\xi}'' = (D_{\xi}'' \cap [0, c(\xi)]) \cup D_{\xi} \text{ and } |D_{\xi}'' \cap [0, c(\xi)]| \le \max\{|c(\xi)|, \omega\} < |D_{\xi}'| = |D_{\xi}''|,$ we have $|D_{\xi}| = |D'_{\xi}| \ge \kappa_{\xi}$. So we can take the required sequences $\{c(\xi) : \xi \in C(\xi) : \xi \in C(\xi)\}$ $cf(\kappa)$ and $\{D_{\xi} : \xi \in cf(\kappa)\}$. Let $D = \bigcup_{\xi \in cf(\kappa)} D_{\xi}$. For $X \cap Lim(C) = \emptyset$, $\{X \cap (c(\xi), c(\xi+1)) : \xi \in cf(\kappa)\}$ is discrete in X. So $\{D_{\xi} : \xi \in cf(\kappa)\}$ is also discrete in X, hence D is a closed discrete subset in X. For each $\xi \in \mathrm{cf}(\kappa)$, we have $\kappa_{\xi} \leq |D_{\xi}| \leq |D|$. Hence $|D| = \kappa$ holds, and so (iii) fails. \square

As stated in Corollary 4.6, the sup = max equality holds for the Lindelöf degree of strong Σ -spaces. However, the following result shows that the sup = max equality does not hold for the Lindelöf degree of Σ -spaces.

Proposition 7.4. Let κ be a limit cardinal. Then there is a countably compact subspace X of $\kappa + 1$ with $L(X) = \kappa$ such that $L(\mathcal{U}) < \kappa$ for any open cover \mathcal{U} of X.

PROOF: Let $X = (\kappa + 1) \setminus \{\xi \in \kappa : cf(\xi) > \omega\}$. Since X contains $\{\xi \in Lim(X) : cf(\xi) = \omega\}$, it is countably compact. Pick a regular uncountable cardinal $\lambda < \kappa$. Letting $\mathcal{U}_{\lambda} = \{X \setminus (\alpha, \lambda) : \alpha \in \lambda\}$, it is an open cover of X. Moreover, we have $L(\mathcal{U}_{\lambda}) = \lambda \leq L(X)$. By $L(X) \leq |X| = \kappa$, we obtain $L(X) = \kappa$.

Let \mathcal{U} be an open cover of X. For each $\alpha \in X$, take $U_{\alpha} \in \mathcal{U}$ with $\alpha \in U_{\alpha}$. By $\kappa \in U_{\kappa}$, there is $\gamma \in \kappa$ with $X \cap (\gamma, \kappa] \subset U_{\kappa}$. Then $\mathcal{V} := \{U_{\alpha} : \alpha \in (X \cap [0, \gamma]) \cup \{\kappa\}\}$ is a subcover of \mathcal{U} with $|\mathcal{V}| \leq |[0, \gamma] \cup \{\kappa\}| < \kappa$. Hence we have $L(\mathcal{U}) < \kappa$. \Box

References

- Aull C.E., A generalization of a theorem of Aquaro, Bull. Austral. Math. Soc. 9 (1973), 105–108.
- [2] Burke D.K., On p-spaces and $w\Delta$ -spaces, Pacific J. Math. **35** (1970), 285–296.
- [3] Creed G.D., Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47–54.
- [4] Gruenhage G., Generalized metric spaces, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 423–501.
- [5] Hajnal A., Juhász I., Discrete subspaces of topological spaces II, Indag. Math. 31 (1969), 18–30.

- [6] Hajnal A., Juhász I., Some remarks on a property of topological cardinal functions, Acta Math. Acad. Sci. Hungar. 20 (1969), 25–37.
- [7] Jiang S., Every strict p-space is θ -refinable, Topology Proc. 11 (1986), 309–316.
- [8] Jones F.B., Concering normal and completely normal spaces, Bull. Amer. Math. Soc. 43 (1937), 671–677.
- [9] Juhász I., Cardinal Functions in Topology, Mathematisch Centrum, Amsterdam, 1971.
- [10] Juhász I., Cardinal Functions in Topology Ten Years Later, Mathematisch Centrum, Amsterdam, 1980.
- [11] Kunen K., Roitman J., Attaining the spread at cardinals of cofinality ω , Pacific J. Math. **70** (1977), 199–205.
- [12] Nagami K., Σ-spaces, Fund. Math. 65 (1969), 169–192.
- [13] Okuyama A., On a generalization of Σ -spaces, Pacific J. Math 42 (1972), 485–495.
- [14] Roitman J., The spread of regular spaces, General Topology and Appl. 8 (1978), 85–91.

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA, 221-8686 JAPAN

E-mail: yhira@jb3.so-net.ne.jp, yajimy01@kanagawa-u.ac.jp

(Received February 27, 2013)