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Connected LCA groups are sequentially connected
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Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. We prove that every connected locally compact Abelian topological
group is sequentially connected, i.e., it cannot be the union of two proper disjoint
sequentially closed subsets. This fact is then applied to the study of extensions
of topological groups. We show, in particular, that if H is a connected locally
compact Abelian subgroup of a Hausdorff topological group G and the quotient
space G/H is sequentially connected, then so is G.
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1. Introduction

Connectedness is a subtle topological property which appears in a great number
of important results in General Topology and Topological Algebra. The influence
of connectedness on the algebraic structure of locally compact Abelian (LCA, for
short) topological groups is especially strong — see [5, Sections 24 and 25].

Sequential connectedness is a natural strengthening of connectedness. A space
is called sequentially connected if it cannot be represented as the union of two
non-empty disjoint sequentially closed subsets. As usual, a subset Y of a space is
sequentially closed in X if Y contains the limits of all convergent sequences lying
in Y . Unlike connectedness, the notion of sequential connectedness is much less
understood [4], [6], [9].

Our aim is to partially fill in this gap and show that every connected LCA group
is sequentially connected (Theorem 2.5). We also prove in Theorem 3.5 that if H
is a closed, sequentially connected, feathered subgroup of a Hausdorff topological
group and the quotient space G/H is sequentially connected, then so is G. In
particular, if H is a connected, LCA subgroup of a Hausdorff topological group G,
then G is sequentially connected iff so is the quotient space G/H (Corollary 3.6).

2. Sequential connectedness in LCA groups

The following result will be used in the proof of Theorem 2.4:
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Lemma 2.1. Let K be a metrizable topological group and τ be a cardinal.
Suppose that an element x ∈ Kτ and a set S ⊆ Kτ satisfy the following conditions:

(1) the set C(x) = {x(α) : α ∈ τ} is countable;
(2) if β, β′ ∈ τ and x(β) = x(β′), then y(β) = y(β′) for each y ∈ S.

Then the subgroup 〈S〉 of Kτ generated by S is metrizable.

Proof: For every z ∈ C(x), choose αz ∈ τ such that x(αz) = z. Then A =
{αz : z ∈ C(x)} is a countable subset of τ . It is easy to verify, using (2), that the
restriction of the projection πA : Kτ → KA to 〈S〉 is a topological isomorphism of
〈S〉 onto 〈πA(S)〉. Since A is countable and K is metrizable, the groups 〈πA(S)〉
and 〈S〉 are metrizable. �

Let us call an element x of a topological group G metrizable if the cyclic
subgroup of G generated by x is metrizable. Notice that by [1, Proposition 3.6.20],
an element x ∈ G is metrizable if and only if the closure of 〈x〉 in G is metrizable.

Corollary 2.2. Let K be a metrizable topological group and τ be a cardinal. If
x ∈ Kτ and the set C(x) = {x(α) : α ∈ τ} is countable, then the element x is
metrizable.

Proof: The conclusion follows from Lemma 2.1 if one takes S = {x}. �

Lemma 2.3. Let K be a compact connected metrizable group and τ be an
arbitrary cardinal number. If x ∈ Kτ is a metrizable element of Kτ and the set
C(x) is countable, then x is contained in a closed connected metrizable subgroup
of Kτ .

Proof: For every z ∈ C(x), take αz ∈ τ such that z = x(αz). Then A = {αz :
z ∈ C(x)} is a non-empty countable subset of τ . Let πA be the projection of Kτ

onto KA. Since the group K is divisible (see [1, Theorem 9.6.15]) we can define,
for every α ∈ A, a sequence {b(α, n) : n ∈ N+} in K such that b(α, 1) = x(α)
and nb(α, n) = b(α, n − 1) for each integer n ≥ 2. For every n ∈ N, denote by
yn the element of KA such that yn(α) = b(α, n) for each α ∈ A. It is clear from
our definitions that y1 = πA(x) and nyn = yn−1 for each integer n ≥ 2. We now
define a sequence {xn : n ∈ N+} in Kτ as follows. First, let x1 = x. If n ≥ 2,
let xn(α) = b(α, n) if α ∈ A, and xn(β) = xn(α) provided that β ∈ τ \A, α ∈ A,
and x(β) = x(α). Then the elements xn’s satisfy πA(xn) = yn and nxn = xn−1

for n ≥ 2.
Furthermore, we claim that the element x and the set {xn : n ∈ N+} satisfy

conditions (1) and (2) of Lemma 2.1. Since C(x) is countable, it suffices to verify
that if n ∈ N+, β, β′ ∈ τ , and x(β) = x(β′), then xn(β) = xn(β

′). Indeed, our
claim is immediate if either β ∈ A or β′ ∈ A. Suppose therefore that β, β′ ∈ τ \A.
Since z = x(β) ∈ C(x), we see that α = αz ∈ A and x(α) = z = x(β). Again,
the equalities xn(β) = xn(β

′) = xn(α) follow from the definition of xn. Applying
Lemma 2.1 we conclude, therefore, that the subgroup D of Kτ generated by the
set {xn : n ∈ ω} is metrizable. Hence the closure of D in Kτ , say, D is also
metrizable. Notice that x ∈ D ⊆ D.
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It remains to verify that the subgroup D of Kτ is connected. First, it follows
from the equalities nxn = xn−1 for n ≥ 2 that the group D is divisible. Since the
closure of a divisible subgroup of a compact group is again divisible, the group D
is connected by [1, Theorem 9.6.15]. This completes the proof of the lemma. �

Theorem 2.4. Every compact connected Abelian group is sequentially con-
nected.

Proof: Let G be a compact connected Abelian group. The Pontryagin dual G∧

of G is a discrete torsion-free Abelian group [1, Theorem 9.6.11]. By [12, 4.1.6],
the group G∧ can be embedded into a divisible Abelian group, say, D. Let T
be the torsion part of D. Clearly, T ∩ G∧ = {eD}. Denote by p the quotient
homomorphism of D onto D/T . Then the group D/T is divisible, torsion-free,
and p(G∧) is an isomorphic copy of G∧ in D/T . Therefore, we can assume without
loss of generality that the group D is torsion-free.

Since D is divisible and torsion-free, it is isomorphic to a direct sum of copies
of the group of rationals, Q. In other words, D ∼= Q(κ), for some cardinal κ (see
[12, 4.1.5]). In what follows D carries the discrete topology. Let r : D∧ → G∧∧

be the mapping defined by r(χ) = χ↾G∧, for each χ ∈ D∧. By [1, Proposi-
tion 9.6.2], r is a continuous homomorphism of D∧ onto G∧∧. It follows from
[1, Proposition 9.6.25] that D∧ ∼= Kτ , where K = (Qd)

∧ and Qd is the discrete
group of rationals. By the Pontryagin duality theorem (see [1, Theorem 9.5.20]),
the groups G and G∧∧ are topologically isomorphic. Therefore, r is a continuous
homomorphism of the compact group Kτ onto G. Since K∧ ∼= Qd is torsion-free,
the group K is connected by [1, Theorem 9.6.11]. In addition, the group K is
divisible according to [1, Theorem 9.6.15].

Let M be the union of all metrizable connected subgroups of Kτ . We claim
that M is a dense subgroup of Kτ . First, M contains the neutral element of Kτ .
It is also clear that M−1 = M . If x, y ∈ M , then there are metrizable connected
subgroups Cx and Cy of Kτ such that x ∈ Cx and y ∈ Cy. Let Fx and Fy

be the closures of Cx and Cy, respectively, in Kτ . Then both Fx and Fy are
compact connected metrizable groups, and so is the subgroup Fx +Fy of Kτ as a
continuous homomorphic image of the product group Fx × Fy . Thus the element
x + y is contained in a connected metrizable group Fx + Fy, whence it follows
that M +M ⊆ M . Hence M is a subgroup of Kτ . The density of M in Kτ is
almost evident. Indeed, every element of the Σ-product ΣKτ (see [1, Section 1.6])
is contained in a connected metrizable subgroup, so ΣKτ ⊆ M . Since ΣKτ is
dense in Kτ , so is M .

Let us show that M is sequentially dense in Kτ , i.e., for every point y ∈ Kτ ,
there exists a sequence in M converging to y. Clearly, it suffices to take y ∈
Kτ \M . Let d be an invariant metric on K which generates the topology of K.
For every x ∈ K and every ε > 0, denote by B(x, ε) the open ball {x′ ∈ K :
d(x, x′) < ε}. Given a positive integer n, we can find a finite set Bn ⊆ K such
that K is covered by the open balls B(x, 1/n) with x ∈ Bn.
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For every α ∈ τ and every integer n > 0, take an element b(α, n) ∈ Bn such
that d(y(α), b(α, n)) < 1/n and define a point xn ∈ Kτ by xn(α) = b(α, n) for
each α ∈ τ . Our definition of the elements xn’s implies that xn(α) → y(α) for
each α ∈ τ . Hence the sequence {xn : n ∈ N+} converges to y.

Further, each coordinate of xn belongs to the finite set Bn, so the element
xn ∈ Kτ is metrizable by Corollary 2.2. Since the set C(xn) is finite, Lemma 2.3
implies that xn is contained in a connected metrizable subgroup of Kτ . We have
thus proved that {xn : n ∈ ω} ⊆ M and that y is in the sequential closure of M .
Since y is an arbitrary element of Kτ , the sequential closure of M is the whole
group Kτ .

Suppose for a contradiction that the space Kτ fails to be sequentially closed.
Then there exist non-empty disjoint sequentially closed subsets R and T of Kτ

such that R ∪ T = Kτ . We can assume that R contains the neutral element
e of Kτ . Take an arbitrary connected metrizable subgroup L of Kτ . Then L is
covered by the disjoint sets L∩R and L∩T , where L∩R 6= ∅. Since L is metrizable,
the sets L ∩ R and L ∩ T are closed in L. Hence the connectedness of L implies
that the set L ∩ T is empty, i.e., L ⊆ R. It now follows that M ⊆ R. Since R is
sequentially closed in Kτ and the sequential closure of M is Kτ , we conclude that
R = Kτ . This contradiction shows that the group Kτ is sequentially connected.

Finally, the group G is the image of Kτ under a continuous homomorphism r.
Since sequential connectedness is preserved by continuous onto mappings, G is
also sequentially connected. �

Let us show that the conclusion of Theorem 2.4 can be extended to the wider
class of locally compact Abelian groups.

Theorem 2.5. Every connected locally compact Abelian group G is sequentially
connected.

Proof: Since G is a LCA group, it follows from [5, Theorem 24.30] that it has
the form Rn × C, where R is the group of reals with the usual topology, n is
a non-negative integer, and C is a locally compact group containing an open
compact subgroup. The group C is a continuous homomorphic image of G under
the natural projection of Rn × C onto C, so C is connected. Therefore every
open subgroup of C coincides with C and, hence, C is compact. By Theorem 2.4,
C is sequentially connected. Since the space Rn is connected and metrizable, it
is sequentially connected. Hence the product space G = Rn × C is sequentially
connected by [6, Theorem 4.2]. �

It is worth noting that the sequential connectedness of the space Rn × C at
the end of the proof of Theorem 2.5 can also be deduced from [4, Theorem 2.2]:
A space is sequentially connected if and only if it is a continuous image of a
connected metrizable space.

Although our proof of Theorem 2.4 makes use of the Pontryagin–van Kampen
duality theorem, we hope that the following problem has a good chance to be
solved affirmatively:
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Problem 2.6. Does Theorem 2.4 remain valid in the non-Abelian case, i.e., can
one drop “Abelian” in the theorem?

The referee noted that if the answer to the above problem is affirmative, then
Theorem 2.5 is also valid in the non-Abelian case. Indeed, by a theorem of Davis
[2], every locally compact topological group G is homeomorphic to the product
space C×Rn×D, where C is a compact subgroup of G, n is a non-negative integer,
and D is a discrete space. If G is connected, then so is C and D is a singleton.
Hence the sequential connectedness of C would imply the same property of G.

3. Sequential connectedness in extensions of topological groups

It was shown in [10, Theorem 4.7] that if a topological group G contains a
locally compact, metrizable, connected, invariant subgroup H such that the quo-
tient group G/H is sequentially connected, then G is also sequentially connected.
We prove in Theorem 3.5 below that if H is a closed, sequentially connected,
feathered subgroup of a topological group G and the quotient space G/H is se-
quentially connected, then so is G. Since every first countable connected space is
sequentially connected, our result implies Theorem 4.7 of [10].

The proof of Theorem 3.5 requires several auxiliary results. Let us note that
Lemma 3.1 is a more general version of [1, Theorem 1.5.20], while Lemma 3.3
itself is a generalization of [10, Theorem 4.7].

Lemma 3.1. Let H and K be closed subgroups of a topological group G such
that K ⊆ H . Suppose that X is a subspace of G/K and that the spaces H/K
and Y = πK

H (X) ⊆ G/H are first countable, where πK
H is the natural quotient

mapping of G/K onto G/H . Then X is first countable as well.

Proof: We assume that both G/K and G/H are left quotient spaces. Denote
by πK and πH the quotient mappings of G onto G/K and G/H , respectively.
Then πH = πK

H ◦ πK . Let e be the neutral element of G. Since the space G/K is
homogeneous, we can assume that eK = πK(e) ∈ X . Clearly, it suffices to verify
that X is first countable at eK .

Let {Wn : m ∈ ω} and {Un : n ∈ ω} be families of symmetric open neighbor-
hoods of e in G such that {πK(Wn)∩πK(H) : n ∈ ω} is a base of πK(H) ∼= H/K
at the point eK , {πH(Un)∩ Y : n ∈ ω} is a base for Y at πH(e), and W 2

n+1 ⊆ Wn

for each n ∈ ω. We claim that the family

γ = {πK(Ui ∩Wj) ∩X : i, j ∈ ω}

is a base for X at eK .
Indeed, take an arbitrary neighborhood O of eK in G/K and let V be an open

neighborhood of e in G such that πK(V 2) ⊆ O. It follows from our choice of the
family {Wn : n ∈ ω} that there exists m ∈ ω such that πK(Wm) ∩ πK(H) ⊆
πK(V ). Similarly, we can find an integer k ∈ ω such that πH(Uk) ∩ Y ⊆ πH(V ∩
Wm+1). Let us show that πK(Uk ∩Wm+1) ∩X ⊆ O.
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Take an arbitrary element x ∈ πK(Uk ∩ Wm+1) ∩ X and choose an element
v ∈ Uk ∩Wm+1 such that πK(v) = x. Then

πH(v) = πK
H (x) ∈ πK

H (πK(Uk) ∩X) ⊆ πH(Uk) ∩ Y ⊆ πH(V ∩Wm+1).

Therefore, v ∈ (V ∩Wm+1)H . Further, since v ∈ Wm+1 = W−1
m+1 and W 2

m+1 ⊆
Wm, we see that v /∈ Wm+1 · (G \Wm). Hence we conclude that v ∈ (V ∩Wm+1) ·
(H ∩Wm). Notice that πK(H ∩Wm) ⊆ πK(H) ∩ πK(Wm) ⊆ πK(V ), whence it
follows that H ∩Wm ⊆ V K. Therefore,

x = πK(v) ∈ πK [(V ∩Wm+1) · (H ∩Wm)] ⊆ πK(V V K) = πK(V 2) ⊆ O.

This completes the proof of the inclusion πK(Uk ∩Wm+1) ∩X ⊆ O. Thus γ is a
countable local base for X at eK and the space X is first countable. �

The following result is a step towards the proof of Proposition 3.4.

Lemma 3.2. Let H and K be closed subgroups of a Hausdorff topological group
G such that K ⊆ H and the quotient space H/K is metrizable. If a sequence
{yn : n ∈ ω} in G/H converges to a point y∗ ∈ G/H , then there exists a sequence
{xn : n ∈ ω} in G/K converging to a point x∗ ∈ G/K such that πK

H (x∗) = y∗

and πK
H (xn) = yn, for each n ∈ ω.

Proof: Again we assume that G/H and G/K are left quotient spaces. As in the
proof of Lemma 3.1, let πH and πK be the quotient mappings of G onto G/H and
G/K, respectively. Let also πK

H be the natural quotient mapping of G/K onto
G/H . Then πH = πK

H ◦ πK , whence it follows that the mapping πK
H is continuous

and open.
Suppose that a sequence {yn : n ∈ ω} ⊆ G/H converges to a point y∗. Then

Y = {y∗}∪{yn : n ∈ ω} is a compact metrizable subspace of G/H . By Lemma 3.1,
the subspace X = (πK

H )−1(Y ) of G/K is first countable. It is also clear that the
restriction of πK

H to X is a continuous open mapping of X onto Y . Take a point
x∗ ∈ G/K such that πK

H (x∗) = y∗. Then x∗ ∈ X , and there exists a countable
base {Vk : k ∈ ω} for X at x∗. Since yn → y∗ in G/H , each Vk meets almost

all fibers (πK
H )−1(yn), n ∈ ω. Using this property of Vk’s, one defines elements

xn ∈ (πK
H )−1(yn) by induction on k (not on n) such that each Vk contains almost

all xn’s. Hence the sequence {xn : n ∈ ω} ⊆ X converges to x∗, πK
H (x∗) = y∗,

and πK
H (xn) = yn for each n ∈ ω. �

Lemma 3.3. Let H and K be closed subgroups of a Hausdorff topological group
G such that K ⊆ H . If the quotient space G/H is sequentially connected and
the quotient space H/K is metrizable and connected, then G/K is sequentially
connected.

Proof: Again we assume that G/H and G/K are left quotient spaces. As in the
proof of Lemma 3.1, let πH and πK be the quotient mappings of G onto G/H and
G/K, respectively. Let also πK

H be the natural quotient mapping of G/K onto
G/H . Then πH = πK

H ◦ πK , whence it follows that the mapping πK
H is open.
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Suppose for a contradiction that G/K fails to be sequentially connected. Then
we can find non-empty disjoint sequentially closed sets A and B in G/K such that
G/K = A∪B. Notice that each fiber (πK

H )−1(x), with x ∈ G/H , is homeomorphic
to the metrizable connected space H/K which is clearly sequentially connected.
Hence each fiber of the mapping πK

H lies either in A or in B and the sets C =
πK
H (A) and D = πK

H (B) are disjoint, non-empty, and cover G/H . Notice that A =
(πK

H )−1(C) and D = (πK
H )−1(B). Since the space G/H is sequentially connected,

one of the sets C, D must contain a sequence converging to a point outside of the
set. Suppose that this set is C and that a sequence {yn : n ∈ ω} ⊆ C converges
to a point y∗ ∈ D. Applying Lemma 3.2, we find a sequence {xn : n ∈ ω} ⊆ G/K
converging to an element x∗ ∈ G/K such that πK

H (x∗) = y∗ and πK
H (xn) = yn for

each n ∈ ω. It is clear that {x∗}∪{xn : n ∈ ω} ⊆ X . Since {yn : n ∈ ω} ⊆ C and
y∗ ∈ D, we see that {xn : n ∈ ω} ⊆ A and x∗ ∈ B. The latter contradicts our
choice of the set A. Thus the space G/K is sequentially connected. �

We recall that a Hausdorff topological group H is called feathered (see [1,
Section 4.3]) if H contains a non-empty compact subset with a countable neigh-
borhood base in H . By [1, Theorem 4.3.20], H is feathered if and only if it
contains a compact subgroup K such that the quotient space H/K is metrizable.

Proposition 3.4. Let H be a closed feathered subgroup of a Hausdorff topolog-
ical group G and π : G → G/H be the canonical quotient mapping. If a sequence
{yn : n ∈ ω} in G/H converges to an element y∗ ∈ G/H , then there exists a se-
quence {xn : n ∈ ω} ⊆ G converging to an element x∗ ∈ G such that π(x∗) = y∗

and π(xn) = yn, for each n ∈ ω.

Proof: Take a compact subgroup K of H such that the quotient space H/K
is metrizable. Given a sequence {yn : n ∈ ω} in G/H converging to an element
y∗ ∈ G/H , we can apply Lemma 3.2 to find a sequence {zn : n ∈ ω} in G/K
converging to an element z∗ ∈ G/K such that πK

H (z∗) = y∗ and πK
H (zn) = yn

for each n ∈ ω, where πK
H : G/K → G/H is the canonical quotient mapping. It

remains to “lift” the sequence {zn : n ∈ ω} with its limit z∗ to a convergent
sequence in G.

Since the group K is compact, there exists a cardinal τ ≥ ω and a family
{Kα : α < τ} of closed subgroups of K satisfying the following conditions:

(i) K0 = K;
(ii) Kβ ⊆ Kα if α < β < τ ;
(iii) Kα/Kα+1 is metrizable;
(iv) if β < τ is a limit ordinal, then Kβ =

⋂
α<β Kα;

(v) {e} =
⋂

α<τ Kα, where e is the neutral element of G.

For every α < τ , denote by πα the quotient mapping of G onto G/Kα. If α < β <
τ , then there exists a mapping πβ,α : G/Kβ → G/Kα satisfying πα = πβ,α ◦ πβ .
It is clear that the mappings πα, πβ , and πβ,α are perfect and open.

It follows from (i)–(v) that the space G is the limit of the inverse system
S = {G/Kα, πβ,α : α < β < τ} and that this system is continuous in the sense
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that for every limit ordinal γ ≥ ω, the space G/Kγ is the limit of the inverse
system Sγ = {G/Kα, πβ,α : α < β < γ}.

Let C0 = {z∗} ∪ {zn : n ∈ ω}. Clearly C0 is a countable compact subset of
G/K0. Suppose that γ < τ and, for each α < γ, we have defined compact subsets
(in fact, convergent sequences with the corresponding limit points) Cα ⊆ G/Kα

satisfying the following condition for all α, β with α < β < γ:

(∗) πβ,α↾Cβ is a one-to-one mapping of Cβ onto Cα.

Let z∗α be the unique non-isolated point of Cα, where α < γ.
If γ is a limit ordinal, then the continuity of the system Sγ implies that

Cγ =
⋂

α<γ

π−1
γ,α(Cα)

is a compact subset of G/Kγ and for each α < γ, the restriction of πγ,α to Cγ is
a one-to-one mapping of Cγ onto Cα. Hence Cγ contains a unique non-isolated
point, say, z∗γ and the set Cγ \ {z∗γ} converges to z∗γ . It is clear that πγ,α(z

∗

γ) = z∗α
for each α < γ.

Finally, suppose that γ = α + 1. By (∗), Kα is a convergent sequence with
the limit point z∗α. By (iii), the quotient space Kα/Kγ is metrizable, so we apply
Lemma 3.2 to find a convergent sequence Cγ with the limit point z∗γ such that
πγ,α maps Cγ onto Cα in a one-to-one way. This finishes our construction of the
sets Cα’s.

Let C =
⋂

α<τ π
−1
α (Cα). Again, the continuity of the system S implies that Cα

is a compact subset of G and for each α < τ , πα maps C onto Cα in a one-to-one
way. Therefore C is a convergent sequence in G with a limit point x∗. Evidently,
π0(x

∗) = z∗, and we can enumerate the set C \ {x∗} as {xn : n ∈ ω} such that
π0(xn) = zn for each n ∈ ω. Since π = πK

H ◦ π0, we conclude that π(x∗) = y∗ and
π(xn) = yn for each n ∈ ω. This completes the proof of the theorem. �

The following result answers Question 4.8 of [10] affirmatively.

Theorem 3.5. Let H be a closed, sequentially connected, feathered subgroup
of a Hausdorff topological group G. If the quotient space G/H is sequentially
connected, then so is G.

Proof: Our argument is close to the one in the proof of Lemma 3.3. Suppose
for a contradiction that G is not sequentially connected. Then G is the union of
disjoint non-empty sequentially closed sets A and B. Denote by π the quotient
mapping of G onto G/H . As in the proof of Lemma 3.3, we see that C = π(A)
and D = π(B) are disjoint subsets of G/H . It is also clear that A = π−1(C)
and B = π−1(D). Since the space G/H is sequentially connected, one of the sets
C or D cannot be sequentially closed in G/H . Let it be C. Then C contains a
sequence {yn : n ∈ ω} converging to a point y∗ ∈ D. Applying Proposition 3.4, we
can “lift” the sequence {yn : n ∈ ω} to a sequence {xn : n ∈ ω} in G converging
to some element x∗ ∈ G. In other words, we have π(x∗) = y∗ and π(xn) = yn,
for each n ∈ ω. Then {xn : n ∈ ω} ⊆ A and x∗ ∈ B, whence it follows that A
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fails to be sequentially closed in G. This contradiction completes the proof of the
theorem. �

Since a locally compact Hausdorff topological group is Răıkov complete and
feathered, the following fact is now almost immediate.

Corollary 3.6. Let H be a connected LCA subgroup of a Hausdorff topological
group G. Then G is sequentially connected iff so is the quotient space G/H .

Proof: It is clear that sequential connectedness is preserved by (sequentially)
continuous onto mappings. Since G/H is a continuous image of G, the necessity
is evident. The sufficiency follows from Theorems 2.5 and 3.5. �

4. Comments and conjectures

Similarly to sequential compactness, sequential connectedness is countably pro-
ductive [6, Theorem 4.2]. We conjecture that sequential connectedness becomes
productive if we take first countable factors:

Conjecture 4.1. Let {Xi : i ∈ I} be a family of first countable connected spaces.
Then the product space

∏
i∈I Xi is sequentially connected.

By the Ivanovsky–Kuz’minov theorem (see [7] and [8]), every compact topo-
logical group is dyadic. Hence one can try to generalize Theorem 2.5 as follows:

Conjecture 4.2. Every connected compact dyadic space is sequentially con-
nected.

Let us repeat Problem 2.6 in the form of a conjecture:

Conjecture 4.3. Every locally compact connected (not necessarily Abelian)
topological group is sequentially connected.

According to [1, Corollary 4.2.2], every compact topological group of countable
tightness is metrizable. Using this fact, we deduce the following more general
result:

Proposition 4.4. Every feathered topological group G of countable tightness is
metrizable.

Proof: There exists a compact subgroup K of G such that the quotient space
G/K is metrizable [1, Theorem 4.3.20]. Since t(K) ≤ t(G) ≤ ω, the group K
is metrizable. Thus, both spaces K and G/K are metrizable, and so is G by [1,
Corollary 1.5.21]. �

Corollary 4.5. Let H be a locally compact sequential subgroup of a Hausdorff
topological group G. If the quotient space G/H is sequential, then so is G.

Proof: Since every locally compact topological group is feathered, Proposi-
tion 4.4 implies that H is metrizable. Hence the group G is sequential by [10,
Theorem 4.3]. �

Since the group H in Corollary 4.5 is metrizable by a complete metric, we can
try to generalize the corollary as follows:
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Conjecture 4.6. Let H be a (completely) metrizable subgroup of a Hausdorff
topological group G. If the quotient space G/H is sequential, so is G.

Modifying Example 2.4.20 in [3], one can show that the product of a normal
second countable space with a normal Fréchet space can fail to be sequential.
This indicates that, probably, the strong form of Conjecture 4.6 is false.

Acknowledgments. The authors are grateful to the referee for useful comments
on our article.
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