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Continua with unique symmetric product

José G. Anaya, Enrique Castañeda-Alvarado, Alejandro Illanes

Abstract. Let X be a metric continuum. Let Fn(X) denote the hyperspace of
nonempty subsets of X with at most n elements. We say that the continuum X

has unique hyperspace Fn(X) provided that the following implication holds: if Y
is a continuum and Fn(X) is homeomorphic to Fn(Y ), then X is homeomorphic
to Y . In this paper we prove the following results: (1) if X is an indecomposable
continuum such that each nondegenerate proper subcontinuum of X is an arc,
then X has unique hyperspace F2(X), and (2) let X be an arcwise connected
continuum for which there exists a unique point v ∈ X such that v is the vertex
of a simple triod. Then X has unique hyperspace F2(X).
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1. Introduction

A continuum is a compact connected metric space with more that one point.
Given a continuum X and a positive integer n, we consider the following hyper-
spaces of X :

2X = {A ⊂ X : A is closed and nonempty},

C(X) = {A ∈ 2X : A is connected},

Cn(X) = {A ∈ 2X : A has at most n components},

Fn(X) = {A ∈ 2X : A has at most n points}.

All these hyperspaces are considered with the Hausdorff metric HX [13, The-
orem 2.2].

The hyperspace Fn(X) is called the nth-symmetric product of X .
Let H(X) denote one of the hyperspaces 2X , C(X), Cn(X) or Fn(X). We say

that the continuum X has unique hyperspace H(X) provided that the following
implication holds: if Y is a continuum and H(X) is homeomorphic to H(Y ), then
X is homeomorphic to Y .

The topic of this paper is inserted in the following general problem.

Problem 1. Find conditions on the continuum X in order that X has unique
hyperspace H(X).
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Problem 1 has been widely studied by a number of authors. The recently pub-
lished paper [10] contains a detailed survey on this subject. For n ≥ 4, the most
general result on uniqueness of symmetric products is Theorem 5 of [5] that says
that if n ≥ 4 and X is a wired continuum, then X has unique hyperspace Fn(X).
Since the class of wired continua includes finite graphs, dendrites with closed set of
end points, fans, compactifications of the ray [0,∞), compactifications of the real
line and indecomposable arc continua, we have that Theorem 5 of [5] generalizes
previous results in [1], [3], [6], [7], [9] and [12].

A continuum X is indecomposable provided that X is not the union of two
proper subcontinua. An arc continuum is a continuum such that all its nonde-
generate proper subcontinua are arcs. A simple triod is a continuum Y such that
Y = L1 ∪ L2 ∪ L3 where each Li is an arc, and there exists a point v in Y such
that v is an end point of each Li and if i 6= j, then Li ∩Lj = {v}. The point v is
called the vertex of Y .

In [10, Question 42] it is asked if indecomposable arc continua have unique
hyperspaces F2(X) and F3(X) (see also [5, Question 27]).

In this paper we prove the following theorems.

Theorem. Let X be an indecomposable arc continuum. Then X has unique

hyperspace F2(X).

Theorem. Let X be an arcwise connected continuum for which there exists a

unique point v ∈ X which is the vertex of a simple triod. Then X has unique

hyperspace F2(X).

The following questions remain open [10, Question 42].

Question 2. Let X be an indecomposable arc continuum. Does X have unique

hyperspace F3(X)?

Question 3. Let X be an arcwise connected continuum for which there exists a

unique point v ∈ X which is the vertex of a simple triod. Does X have unique

hyperspace F3(X)?

2. Indecomposable arc continua

We need the following conventions.
Given a continuum X , A ⊂ X , x ∈ X and ε > 0, let B(x, ε) be the open ε-ball

around x in X and N(A, ε) =
⋃
{B(x, ε) ⊂ X : x ∈ A}.

Given a topological space Y and a point e ∈ Y . The point e is an end point of
Y provided that e is an end point of each arc in Y containing e. Let

F1(Y ) = {{y} : y ∈ Y },

E(Y ) = {e ∈ Y : e is an end point of Y } and

AC(Y ) = {K ⊂ Y : K is an arc component of Y}.
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We consider the following families of continua:

A = {X : X is a continuum and there exists ε > 0 such that if A is

a subcontinuum of X and 0 < diameter(A) < ε, then A is an arc},

DC = {X : X is a continuum and for each K ∈ AC(X), K is dense in X},

W = {X ∈ A ∩DC : X has uncountably many arc components}.

Given X ∈ W, let

N∂F2(X) = {A ∈ F2(X) : A does not belong to the manifold interior

of a 2-cell M that is contained in F2(X)}.

By [14, Theorem 11.15], it follows that each indecomposable arc continuum
belongs to W.

Given a continuum X and subsets J, L of X , let

〈J, L〉 = {A ∈ F2(X) : A ⊂ J ∪ L, A ∩ J 6= ∅ and A ∩ L 6= ∅}.

Lemma 4. Let X be a continuum. Then AC(F2(X)) = {〈J, L〉 : J, L ∈ AC(X)}.

Proof: (Compare with [5, Lemma 22]). Let J, L ∈ AC(X). We take {x, y}, {u, v}
∈ 〈J, L〉, where x, u ∈ J and y, v ∈ L (here, it is possible that J = L, x = y or
u = v). Since J and L are arc components of X , there exist arcs α and β
(possibly degenerate) such that x, u ∈ α ⊂ J and y, v ∈ β ⊂ L. Notice that
{{x, r} : r ∈ β} ⊂ 〈J, L〉 and {{s, v} : s ∈ α} ⊂ 〈J, L〉 are homeomorphic
to β and α, respectively and the element {x, v} belongs to both sets. Thus,
{{x, r} : r ∈ β} ∪ {{s, v} : s ∈ α} is an arcwise connected subset of 〈J, L〉 that
contains {x, y} and {u, v}. We have shown that 〈J, L〉 is arcwise connected.

LetD be the arc component of F2(X) containing 〈J, L〉. Fix an element {x, y} ∈
〈J, L〉, where x ∈ J and y ∈ L; and let {u, v} ∈ D. Let ∆ be an (possibly
degenerate) arc in F2(X) such that {x, y}, {u, v} ∈ ∆. Let B =

⋃
{A : A ∈ ∆}.

By [5, Lemma 1], B has at most two components. Moreover, if B = B1 ∪ B2,
where B1 and B2 are the components of B (possibly B1 = B2), we may assume
that x, u ∈ B1 and y, v ∈ B2. By [4, Lemma 2.2], B1 and B2 are locally connected
continua and then they are arcwise connected. Thus, B1 ⊂ J and B2 ⊂ L. This
proves that {u, v} ∈ 〈J, L〉. We have shown that D = 〈J, L〉. Therefore, 〈J, L〉 is
an arc component of F2(X).

Clearly, F2(X) =
⋃
{〈J, L〉 : J, L ∈ AC(X)}. Therefore, AC(F2(X)) = {〈J, L〉 :

J, L ∈ AC(X)}. �

Corollary 5. Let X be a continuum. Then X is arcwise connected if and only

if F2(X) is arcwise connected.

Lemma 6. Let X ∈ W and A ∈ F2(X). Then A ∈ N∂F2(X) if and only if

A ∈ F1(X) or A ∩E(X) 6= ∅.
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Proof: (Necessity). Suppose that A = {x, y}, where x 6= y and A ∩ E(X) = ∅.
Then there exist arcs E and F in X such that x ∈ E, y ∈ F , x is not an end
point of E and y is not an end point of F . Shortening E and F , if necessary, we
may assume that E ∩F = ∅. It is easy to show that the map ϕ : E×F → 〈E,F 〉
given by ϕ(u, v) = {u, v} is a homeomorphism. Thus 〈E,F 〉 is a 2-cell containing
{x, y} in its interior as manifold. This proves that A /∈ N∂F2(X) and completes
the proof of the necessity.

(Sufficiency). Let d be a metric forX . SinceX ∈ A, there exists ε > 0 such that
for each subcontinuumB ofX with 0 < diameter(B) < ε, we have thatB is an arc.
Suppose that A /∈ N∂F2(X). Then there exists a 2-cellM in F2(X) such that A is
in the manifold interior ofM. Taking a smaller 2-cell contained inM, if necessary,
we may assume that diameter(M) < ε

2 . Let B =
⋃
{D ∈ F2(X) : D ∈ M}. We

need to show that A /∈ F1(X) and A ∩ E(X) = ∅.
Suppose, first, that A ∈ F1(X). Then A = {x} for some x ∈ X . By [5,

Lemma 1], B is a subcontinuum of X . Since diameter(M) < ε
2 , HX(D, {x}) < ε

2
for each D ∈ M. Thus, B ⊂ N({x}, ε

2 ) and diameter(B) < ε. Hence, B is an arc.
Thus, (see [11, Section 13]) there exists a homeomorphism h : F2(B) → [0, 1] ×
[0, 1] such that h({x}) = (0, 0). Notice that M ⊂ F2(B), so h(M) ⊂ [0, 1]× [0, 1]
and h(M) is a 2-cell containing (0, 0) in its manifold interior. This contradicts
the Invariance of Domain Theorem [8, Theorem VI 9] and completes the proof
that A /∈ F1(X).

Now, suppose that A ∩ E(X) 6= ∅. Then A = {v, x} for some v ∈ E(X)

and v 6= x. Let δ = min{ d(v,x)
2 , ε

2} > 0. In this case, we may assume that
diameter(M) < δ. Since B ⊂ N(A, δ) = B(v, δ) ∪ B(x, δ) and v, x ∈ B, by
[5, Lemma 1], we have that B has exactly two components E and F , where
E ⊂ B(v, δ) and F ⊂ B(x, δ) and, for eachD ∈ M, D∩E 6= ∅ andD∩F 6= ∅. This
implies that M ⊂ 〈E,F 〉. By the choice of ε, E and F are (possibly degenerate)
arcs. Since A ∈ M, A ∈ 〈E,F 〉, so v ∈ E and x ∈ F . Thus, v is an end
point of E. Let g : E × F → 〈E,F 〉 be given by g(s, t) = {s, t}. Clearly, g is
a homeomorphism. Hence, 〈E,F 〉 is a 2-cell (or an arc) having A = {v, x} in
its manifold boundary and M is a 2-cell such that A belongs to the manifold
interior of M and M ⊂ 〈E,F 〉. This contradicts again the Invariance of Domain
Theorem [8, Theorem VI 9] and completes the proof of the sufficiency. �

Lemma 7. Let X ∈ W and K ∈ AC(N∂F2(X)). Then K is one of the forms

described in (1)–(4).

(1) K = F1(L) for some L ∈ AC(X) such that L ∩ E(X) = ∅.
(2) K = F1(L) ∪ {{v, x} ∈ F2(X) : x ∈ L} for some L ∈ AC(X) and v ∈

E(X) ∩ L.
(3) K = {{v, x} ∈ F2(X) : x ∈ L} for some L ∈ AC(X) and v ∈ E(X)− L.
(4) K = {{v, x} ∈ F2(X) : x ∈ J} ∪ {{w, x} ∈ F2(X) : x ∈ L} for some

L, J ∈ AC(X), v ∈ E(X) ∩ L, w ∈ E(X) ∩ J and L 6= J .

Proof: First, we will see that for each J ∈ AC(X), |J ∩ E(X)| ≤ 1. Suppose
to the contrary that there exist two different elements v, w ∈ J ∩ E(X). Since
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J is arcwise connected, there exists an arc α ⊂ J with end points v and w. We
claim that J = α. Suppose that there exists a point x ∈ J −α. Since J is arcwise
connected, there exists an arc β such that β ∩ α = {y} for some y ∈ J . If y = v,
then α ∪ β is an arc in X , v ∈ α ∪ β and v is not an end point of α ∪ β. This
contradicts the fact that v ∈ E(X). Thus, y 6= v. Similarly, y 6= w. Hence,
y ∈ α− {v, w} and y is the vertex of the simple triod α ∪ β in X . Since X ∈ W,
there exists ε > 0 such that if B ∈ C(X) and 0 < diameter(B) < ε, then B is
an arc. Since α ∪ β contains simple triods of diameter less than ε, we obtain a
contradiction. This completes the proof that J = α. Since X ∈ W, J is dense
in X , so X = α. This contradicts the fact that X has uncountably many arc
components (X ∈ W). We have shown that |J ∩ E(X)| ≤ 1.

By Lemma 4, AC(F2(X)) = {〈J, L〉 ⊂ F2(X) : J, L ∈ AC(X)}. Thus, there
exist J, L ∈ AC(X) such that K ⊂ 〈J, L〉. We consider five cases.

Case 1. J = L and J ∩ E(X) = ∅.

In this case, K ⊂ 〈J, L〉 = F2(J). By Lemma 6, F2(J) ∩ N∂F2(X) = F1(J).
Since F1(J) is homeomorphic to J , F1(J) is arcwise connected. Since K ⊂ F2(J)∩
N∂F2(X), we conclude that K = F1(J) and K is as in (1).

Case 2. J = L and J ∩ E(X) 6= ∅.

In this case, K ⊂ 〈J, L〉 = F2(J). Let v ∈ J ∩ E(X). Then J ∩ E(X) = {v}.
By Lemma 6, F2(J) ∩ N∂F2(X) = F1(J) ∪ {{v, x} : x ∈ J}. Since the function
x → {v, x}, from J onto {{v, x} : x ∈ J} is continuous, {{v, x} : x ∈ J} is arcwise
connected and intersects F1(J) in the element {v}. Thus, F1(J)∪{{v, x} : x ∈ J}
is arcwise connected and K = F1(J) ∪ {{v, x} : x ∈ J}. Hence, K is as in (2).

Case 3. J 6= L and (J ∪ L) ∩ E(X) = ∅.

By Lemma 6, 〈J, L〉∩N∂F2(X) = ∅. Since K ⊂ 〈J, L〉∩N∂F2(X), we conclude
that this case is impossible.

Case 4. J 6= L, J ∩ E(X) 6= ∅ and L ∩ E(X) = ∅.

Let v ∈ J be such that J ∩ E(X) = {v}. By Lemma 6, 〈J, L〉 ∩ N∂F2(X) =
{{v, x} : x ∈ L}. Since this set is arcwise connected, we obtain that K ={{v, x} :
x ∈ L} and K is as in (3).

Case 5. J 6= L, J ∩ E(X) 6= ∅ and L ∩ E(X) 6= ∅.

Let v ∈ L and w ∈ J be such that L ∩ E(X) = {v} and J ∩ E(X) = {w}. By
Lemma 6, 〈J, L〉 ∩ N∂F2(X) = {{v, x} ∈ F2(X) : x ∈ J} ∪ {{w, x} ∈ F2(X) :
x ∈ L}. Since both sets in this union are arcwise connected and they meet in the
element {v, w}, we obtain that K = {{v, x} ∈ F2(X) : x ∈ J}∪{{w, x} ∈ F2(X) :
x ∈ L} is as in (4).

This completes the proof of the lemma. �

Lemma 8. Let X be an indecomposable arc continuum and let Y be a continuum

such that F2(X) is homeomorphic to F2(Y ). Then Y ∈ A.
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Proof: Let dY be a metric for Y . Let h : F2(Y ) → F2(X) be a homeomorphism.
Let δ = diameter(X). Then there exists ε > 0 such that if A,B ∈ F2(Y ) and
HY (A,B) < ε, then HX(h(A), h(B)) < δ

5 .
Let Z ∈ C(Y ) be such that 0 < diameter(Z) < ε.
Fix an element A0 ∈ F2(Z). Suppose that h(A0) = {r, s}, where r = s in the

case that h(A0) is a one-point set. Given B ∈ F2(Z). For each a ∈ A0 and each
b ∈ B, we have that a, b ∈ Z and dY (a, b) < ε. This implies that HY (A0, B) < ε.
Thus, HX(h(A0), h(B)) < δ

5 and h(B) ⊂ N(h(A0),
δ
5 ) = B(r, δ

5 ) ∪B(s, δ
5 ).

Let D =
⋃
{h(B) ∈ F2(X) : B ∈ F2(Z)}. By the previous paragraph, D ⊂

B(r, δ
5 ) ∪B(s, δ

5 ). By [5, Lemma 1], D has at most two components. Let D1, D2

be the components of D, where D1 = D2 in the case that D is connected. In the
case that D1 6= D2, each element of h(F2(Z)) intersects both sets D1 and D2 ([5,
Lemma 1]). So, in this case, h(F2(Z)) ⊂ 〈D1, D2〉. In the case that D1 = D2,
h(F2(Z)) ⊂ F2(D).

We claim that D 6= X . Suppose to the contrary that D = X . Then X =
B(r, δ

5 )∪B(s, δ
5 ). By the connectedness of X , B(r, δ

5 )∩B(s, δ
5 ) 6= ∅. This implies

that diameter(X) ≤ 4δ
5 < δ, which is a contradiction. We have shown that

D 6= X . Since X is an arc continuum, each set D1 and D2 is either an arc or a
one-point set.

In the case that D1 = D2, F2(D) is a 2-cell ([11, Section 13]) and F2(Z) can
be embedded in F2(D). In the case that D1 6= D2, 〈D1, D2〉 is homeomorphic to
D1 ×D2, and then 〈D1, D2〉 is either an arc or a 2-cell. In both cases, F2(Z) can
be embedded in a 2-cell. By [2, Theorem 5], Z is an arc.

We have shown that Y ∈ A. �

Theorem 9. Let X be an indecomposable arc continuum. Then X has unique

hyperspace F2(X).

Proof: Let Y be a continuum and let h : F2(Y ) → F2(X) be a homeomorphism.
By Lemma 4, AC(F2(X)) = {〈J, L〉 ⊂ F2(X) : J, L ∈ AC(X)}. By [14, The-

orem 11.15] it follows that AC(X) is uncountable. This implies that AC(F2(X))
is uncountable. Since h is a homeomorphism, AC(F2(Y ) = {h−1(K) : K ∈
AC(F2(X))}. Thus, AC(F2(Y )) = {〈J, L〉 ⊂ F2(Y ) : J, L ∈ AC(Y )} is uncount-
able. Hence, AC(Y ) is uncountable.

Given K ∈ AC(Y ), we will see that K is dense in Y . Let U be a nonempty
open subset of Y . By Lemma 4, 〈K〉 is an arc component of F2(Y ). Thus, h(〈K〉)
is an arc component of F2(X). Applying Lemma 4 again, we have that there
exist J, L ∈ AC(X) such that h(〈K〉) = 〈J, L〉. Since 〈U〉 is nonempty and open
in F2(Y ), h(〈U〉) is nonempty and open in F2(X). Since F2(X)− F1(X) is dense
in F2(X), there exist u, x ∈ X such that {u, x} ∈ h(〈U〉) and u 6= x. Then there
exists ε > 0 such that if A ∈ F2(X) and HX(A, {u, x}) < ε, then A ∈ h(〈U〉) and

ε < d(u,x)
2 . Since J and L are dense in X , there exist points r ∈ B(u, ε) ∩ J and

s ∈ B(x, ε) ∩ L. Then HX({r, s}, {u, x}) < ε and {r, s} ∈ h(〈U〉) ∩ 〈J, L〉. Thus,
h−1({r, s}) ∈ 〈U〉 ∩ 〈K〉 and h−1({r, s}) ⊂ U ∩K. Hence, U ∩K 6= ∅. Therefore,
K is dense in Y .
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By Lemma 8, we conclude that Y ∈ W.

Since N∂F2(X) is defined in terms of topological properties of F2(X), we
obtain that h(N∂F2(Y )) = N∂F2(X). Hence, for each K ∈ AC(N∂F2(Y )),
h(K) ∈ AC(N∂F2(X)) and h(clF2(Y )(K)) = clF2(X)(h(K)).

Given L ∈ AC(Y ) and v ∈ E(X), since L is dense in Y , clF2(Y )(F1(L)) =
F1(Y ) and clF2(Y )({{v, x} ∈ F2(Y ) : x ∈ L}) = {{v, x} ∈ F2(Y ) : x ∈ Y } is
homeomorphic to Y .

Notice that an element Z of W does not have cut points since a cut point
belongs to each dense arc component and elements in W have uncountably many
dense arc components.

Given K ∈ AC(N∂F2(Y )), we have that K is of one of the forms described in
Lemma 7. In the case that K is of the form (1), then clF2(Y )(K) is homeomorphic
to Y ; if K is of the form (2), then clF2(Y )(K) is homeomorphic to two copies of
Y joined by a point (the element {v}); if K is of the form (3), then clF2(Y )(K) is
homeomorphic to Y ; and if K is of the form (4), then clF2(Y )(K) is homeomorphic
to two copies of Y joined by a point (the element {v, w}).

Fix K ∈ AC(N∂F2(Y )). Then clF2(Y )(K) is homeomorphic to clF2(X)(h(K)).
By the previous paragraph, clF2(Y )(K) (resp., clF2(X)(h(K))) is either homeo-
morphic to Y (resp., X) or homeomorphic to two copies of Y (resp., X) joined
by a point. Since elements in W does not have cut points, it is not possible
that clF2(Y )(K) is homeomorphic to Y and clF2(X)(h(K)) is homeomorphic to two
copies of X joined by a point; and it is not possible that clF2(X)(h(K)) is home-
omorphic to X and clF2(Y )(K) is homeomorphic to two copies of Y joined by a
point.

Therefore, we only have two possibilities:

(a) clF2(Y )(K) is homeomorphic to Y and clF2(X)(h(K)) is homeomorphic to
X ; or

(b) clF2(Y )(K) is homeomorphic to two copies of Y joined by a point and
clF2(X)(h(K)) is homeomorphic to two copies of X joined by a point.

Clearly, each of the statements (a) and (b) implies that X is homeomorphic
to Y . �

Corollary 10. The Buckethandle continuum X has unique hyperspace F2(X).

Corollary 11. Each solenoid X has unique hyperspace F2(X).

3. Arcwise connected continua

Theorem 12. Let X be an arcwise connected continuum for which there exists

a unique point v0 ∈ X such that v0 is the vertex of a simple triod. Then X has

unique hyperspace F2(X).

Proof: Let Y be a continuum and let h : F2(X) → F2(Y ) be a homeomorphism.
Define
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A(X) = {A ∈ F2(X) : for each neighborhood U of A in F2(X) there exists a
locally connected subcontinuum M of F2(X) such that M ⊂ U and M is not

embeddable in a 2-manifold}.

Since A(X) is defined only using topological properties, we conclude that
h(A(X)) = A(Y ).

Given an arcwise connected continuum Z, let V (Z) = {z ∈ Z : z is the vertex
of a simple triod contained in Z}.

Claim 1. Let Z be an arcwise connected continuum. Then

(a) {A ∈ F2(Z) : A ∩ V (Z) 6= ∅} ⊂ A(Z),
(b) if A ∈ F2(Z) and A ∩ clZ(V (Z)) = ∅, then A /∈ A(Z).

In order to prove (a), take A ∈ F2(Z) and v ∈ V (Z) such that v ∈ A. Let U be
a neighborhood of A in F2(Z). If A = {v}, we can take an element z ∈ Z − {v}
such that B = {v, z} ∈ intF2(Z)(U). In the case that A 6= {v}, A = {v, z} for some
z ∈ Z −{v} and put B = A. In both cases, there exists B = {v, z} ∈ intF2(Z)(U),
where v 6= z. Let T be a simple triod in Z such that v is the vertex of T and
z /∈ T . Since Z is arcwise connected, there exists an arc J in Z such that z ∈ J
and T ∩ J = ∅. Shortening T and J , if necessary, we may assume that the
set M = {{a, b} ∈ F2(Z) : a ∈ T and b ∈ J} is contained in U . Notice that
M is homeomorphic to T × J and thus M is not embeddable in a 2-manifold
(this follows from the Invariance of Domain Theorem [8, Theorem VI 9]). Hence,
A ∈ A(Z).

To prove (b), take A ∈ F2(Z) such that A ∩ clZ(V (Z)) = ∅. Let U be a
closed neighborhood of A in F2(Z) such that for each B ∈ U , B ∩ clZ(V (Z)) = ∅.
Let M be a locally connected subcontinuum of F2(Z) such that M ⊂ U . Let
M =

⋃
{B : B ∈ M}. By [5, Lemma 1] and [4, Lemma 2.2], M has at most

two components and each one of them is a locally connected continuum. Then
M = M1 ∪ M2, where M1 and M2 are the components of M and it is possible
that M1 = M2. Notice that no point of M is the vertex of a simple triod in Z.
Thus, M does not contain simple triods. Hence, M1 and M2 are locally connected
continua without simple triods. Therefore, each Mi is either an arc or a simple
closed curve. In the case that M1 = M2, M is an arc or a simple closed curve, so
([11, Section 13]) F2(M) is a 2-cell or a Moebius strip. Since M ⊂ F2(M), M is
embeddable in the Klein Bottle. In the case that M1 6= M2, by [5, Lemma 1], each
element B ∈ M intersects both sets M1 and M2. Thus, M is contained in the
set N = 〈M1,M2〉 and N is homeomorphic to M1 ×M2 which is homeomorphic
to some of the following continua: (a) [0, 1]2, (b) S1× [0, 1] or (c) S1×S1. In any
case, N is embeddable in S1 × S1. Since M ⊂ N , we conclude that A /∈ A(Z).

As a consequence of Claim 1, we obtain the following.

Claim 2. A(X) = {A ∈ F2(X) : v0 ∈ A}.

Since the map f : X → F2(X) given by f(x) = {v0, x} is an embedding and
f(X) =A(X), we obtain that X , A(X) and A(Y ) are homeomorphic.
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Claim 3. V (Y ) is a one-point set.

We prove Claim 3. If V (Y ) = ∅, by Claim 1(b), A(Y ) = ∅. This is a contradic-
tion since A(Y ) is homeomorphic to X . If V (Y ) contains two different elements
v1 and v2, by Claim 1(a), R = {A ∈ F2(Y ) : v1 ∈ A} is contained in A(Y ). Since
the map g : Y → R given by g(y) = {v1, y} is a homeomorphism and V (Y ) has
two elements, we obtain that V (R) has two elements. Thus, R is a subcontinuum
of A(Y ) such that |V (R)| ≥ 2. Since A(Y ) is homeomorphic to X , we obtain that
X contains a subcontinuum R such that |V (R)| ≥ 2. Since |V (X)| ≥ |V (R)| ≥ 2,
we obtain a contradiction. This completes the proof of Claim 3.

By Claim 3, V (Y ) = {w}, for some w ∈ Y . By Claim 1, A(Y ) = {{w, y} : y ∈
Y } which is homeomorphic to Y . Therefore, X is homeomorphic to Y . �

Corollary 13. If X belongs to one of the following families of continua, then X
has unique hyperspace F2(X).

(a) fans,
(b) cones over compact metric spaces containing no arcs,

(c) cones over hereditarily indecomposable continua.

By Corollary 13 and [5, Theorem 5], each fan has unique hyperspace for all
n 6= 3.

Question 14 ([10, Question 41]). Let X be a fan, doesX have unique hyperspace

F3(X)?

Question 15. Let X be an arcwise connected continuum for which there exists

a unique point v0 ∈ X such that v0 is the vertex of a simple triod. Does X have

unique hyperspace F3(X)?

The most important question on the topic of this paper is the following.

Question 16 ([10, Question 43]). Does there exist a finite-dimensional continuum

X such that X does not have unique hyperspace Fn(X) for some n > 1?
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[3] Castañeda E., Illanes A., Finite graphs have unique symmetric products, Topology Appl.
153 (2006), 1434–1450.

[4] Curtis D., Nhu N.T., Hyperspaces of finite subsets which are homeomorphic to ℵ0-

dimensional linear metric spaces, Topology Appl. 19 (1985), 251–260.
[5] Hernández-Gutiérrez R., Mart́ınez-de-la-Vega V., Rigidity of symmetric products, preprint.
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