Comment.Math.Univ.Carolin. 54,3 (2013) 345-365

Images of some functions and functional

spaces under the Dunkl-Hermite semigroup

NEJIB BEN SALEM, WALID NEFZI

Abstract. We propose the study of some questions related to the Dunkl-Hermite
semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev
space, S(R) and L& (R), 1 < p < oo, under the Dunkl-Hermite semigroup. Also,
we consider the image of the space of tempered distributions and we give Paley-
Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup.
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1. Introduction and statement of the results
Let Dy, a > f%, be the Dunkl operator on the real line defined by

LSRN VGRS (G

To this operator is associated the Dunkl-Hermite operator

D, f(x) = f'(z) , feC'R).

He = —Di + 22

Its spectral decomposition is given by the Dunkl-Hermite functions h$ defined by

2

ho(x) = ef%Ha(ac), n €N,

n

namely we have (see [11])
Hohi(z) = (2n + 2a + 2)hi (x).
Here H;; is the Dunkl-Hermite polynomial given by

(71)1c (Qz)nfﬂc’

HY(z) =22
n (@) ’ Klbn—ap ()

Nla+1) —

where b, («) is the generalized factorial defined by Rosenblum in [10],

bn(a) =

NS

T(a+ 1) 5 }+a+1),
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[n/2] denotes the integral part of n/2. More precisely, these polynomials are
expressed in terms of the Laguerre polynomials,

(—1)Lz] 23 (
VI(a+1) /b(a
where 6,, is defined to be 0 if n is even and 1 if n is odd.

Hereafter, LP(R) = LP(R,|z|**T1dz), 1 < p < +o0o, denotes the space of
measurable functions on R satisfying

Hy(z) =

= ([ )P+ ds)” < 4o,

It is known that {h%,n € N} forms an orthonormal basis of LZ(R). So for
feLaR)

Hof =Y _(2n+2a +2)as ()RS
n=0
with af(f) = [ f( x)|z|?* Tt da.
Then, for a non—negatwe integer m, the Dunkl-Hermite-Sobolev space ng (R)

is defined to be the image of L2 (R) under (H,)~ ™. We remark that W;{HQQ(R) is
a Hilbert space under the inner product

(F. 9wz = D20+ 20+ 2" (f)ag (9).
n=0

The Dunkl-Hermite semigroup denoted by e~ e ¢ > 0, is defined by

e—tHa f — Z e—(2n+2a+2)ta% (f)hf:

n=0

for f € L3 (R) and f =375 ap(f)hy.
Using the Mehler formula for the Dunkl-Hermite polynomials HY (see [10]),

we can write e« on a dense subspace of L?(R), as an integral operator with
kernel M¢(z,y)

(1) e fl(@) = [ MGl
The kernel M (x,y) can be explicitly written as
1 4 coth(26)(2” +v?) ( z )
[e3 — co x Ea , ,
M@ Y) = pa T D) @smnEe sinh(2t) Y
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where E, (&, z) is the Dunkl kernel given by

x

Eu(f,l') = Ju(gx) + Mja+l(

§x),

jp being the spherical Bessel function of order 3 given by

o0

Js) =T(B+1) m%
n=0

)Qn
We define the holomorphic Dunkl-Sobolev space W', “%(C) as the image of
ng (R) under e~ "« It can be viewed as a Hilbert space simply by transfering
the Hilbert space structure of ng (R). In what follows, we give a characteriza-
tion of the space WZLOLQ (C).

Using the reproducing kernel property, we show that if F' is a holomorphic
function on C, then there exists a function f € S(R) (the Schwartz space) such
that F' = e~*Me f if and only if F satisfies

— tanh(2t)x%+coth(2t)y?

(1+x2+y2)2m

F(2)]? < Cram-

, 2=x+ 1y,

for some constant Cy om m =1,2,3,...
The formula (1) permits to extend e '*= on the spaces L?(R). We establish
that if f € LE(R) for 1 < p < oo then et (f) is holomorphic and e~**=(f) €
ste
L3 (C,V, ;) for every € > 0 and any 1 < s < 0o, where
)3

thg(eriy) = exp(f 27"((

D 5 coth2t 2)
p—l)sinh4t$ + 2 y) '

Next, we consider the space of tempered distributions. For S € §'(R), we show
that e~ "« is given by a function defined by

1cosh2t—1 cosh 2t—1

e tHa S(g)) — e 2 smn2t )a? (6_%( sinh 2¢ )y25’ *q qSingm,)(.Z'),

where g, t > 0, denotes the heat kernel associated with the Dunkl operator D,
given by
1
Ia+1)
and *,, is the generalized convolution product associated with the Dunkl operator
D,, (see [13]). Moreover, e~ " S is a C> function on R.
These results permit us to characterize the image of tempered distributions on

R under the Dunkl-Hermite semigroup. We establish that if F' is a holomorphic
function on C, then there exists a distribution f € S'(R) with F' = e~t7= f if and

m2

@(z) = (4t)~ (et D=5 |
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only if F' satisfies
|F(2)]* < Cpa(l + |2|*)*™ exp ( — tanh(2t)z* + coth(2t)y?),

for some non-negative integer m.
Next, we define the transform 7%, for a > 0, by

T2(8)(x) = (S,e” 29O B, (—iz, ), S € S'(R).

We prove that this transform is related to the Dunkl-Hermite semigroup and we
establish a Paley-Wiener theorem for 7% f. For any a > 0 the transform 7, of a
tempered distribution f on R extends to C as an entire function which satisfies
the estimate

T2 (2)] < Call +a% +y?)mer
for some non-negative integer m. Conversely, if an entire function F' satisfies such
an estimate, then F' = 7 f for some tempered distribution f.

Again relating the Dunkl-Hermite semigroup and the Dunkl transform, we
obtain a characterization of the image of compactly supported distributions under
the Dunkl-Hermite semigroup. If f is a distribution supported in a ball of radius R
centered at the origin then for any ¢ > 0 the function e **« f extends to C as an
entire function which satisfies

oMo f(2)] < Clem ¥ oo 24"~ gt

Conversely, any entire function F' satisfying the above condition is of the form
e Mo f where f is supported inside a ball of radius R centered at the origin.

We point out that the results of this paper extend naturally those established
in [8] by R. Radha and S. Thangavelu.

We conclude this introduction by giving the organization of this paper. In the
next section, we define the Dunkl-Hermite-Sobolev space and we characterize its
images under the Dunkl-Hermite semigroup. The third section deals with a char-
acterization of the image of S(R) and L? (R) under the Dunkl-Hermite semigroup.
In the last section we establish Paley-Wiener type theorems for the tempered dis-
tributions and the compactly supported distributions under the Dunkl-Hermite
semigroup.

2. Holomorphic Dunkl-Sobolev spaces

We have established in [1] that every element in the range of the operator e~ **

defined on L? can be analytically extended to the complex plane C, hence we shall
consider the operator e~*« as a linear operator from L2 into an entire function
space and the entire extension will be simply denoted by e~ "« f(2), z = z + iy.
In this section, we introduce the Dunkl-Hermite-Sobolev space and we give a
characterization of its images under the Dunkl-Hermite semigroup.
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Notation 1. Let Ut(’r@(z):wsini(élt)K (sulh‘(élt) eXp{COth(4t)(.I‘ ) )}|Z|2a+2 and

U2o(2) = msimiany Kot1 (s ) exp{eoth(4t) (22 — y?)} 2|22, We have

N Ut (2)
Uio(2) = tlzip

Here K, is the Macdonald function defined in [4] by:

Tl ,(2) = L(2)

Ky(2) = 2 sin(vm)

, v€C\Z, |arg(z)| <7

where

I,(z) = ﬁ (g)yju(z)

and for an integer n,

Let H.(C) denote the Hilbert space of all even entire functions on C which
are square integrable with respect to the weight function U, equipped with the

inner product defined by
we= [ FRGEVLE) =

Let H*,(C) denote the Hilbert space of all odd entire functions on C which
are square integrable with respect to the weight function U,, equipped with the

inner product defined by
/f Ut o )d

Let H{* denote the direct sum of Hy', and Hy', admitting the inner product

<fa g>a,t = <fea ge>a,e + <foa go>a,o )
where f.(z) = 7f(z)+2f(_z) and fo(z) = 7f(z)_2f(_z) )
We recall the following results proved in [1].

Theorem 1. The image of L% (R) under the Dunkl-Hermite semigroup is the Fock
type space H®. The Dunkl-Hermite semigroup e~*= is an isometric isomorphism
from L?(R) into H¥(C).

Also we have the orthogonality property

(BB Yo = /C B ()R (UL (2) dz + /C B () ha o (UL, (=) dz

2(2 2 2)t
e(n-i— a+)5n,m;
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where h%(z) is the extension of the Dunkl-Hermite function h%(x) to C as an
entire function.

Let ho(z) = e~(2n+2042)tpa () then {h%,n € N} forms an orthonormal basis
for H{(C). Thus any F € H¥(C) can be written as

F =3 (Fh)ah
n=0
Definition 1. Let m be a non-negative integer. The Dunkl-Hermite-Sobolev
space Wm’ (R) is defined to be the image of L2(R) under (Hq)~ ™.

Remark 1. We remark that f € Wi *(R) if and only if 300 ((2n + 2a +

2)2ma2(f)|?> < oo. The Sobolev space WZ‘j(R) is an Hilbert space under the
inner product

o0

(F.9hwpz = D20+ 20+ 2" a(f)ag ().

n=0

As (Ho)"f =307 o(2n 4 2a + 2)™al (f)hS then

<f7 g>w;_’z(f = <(Ha)mfa (/Ha)mg>L§'

Definition 2. We define the holomorphic Dunkl-Sobolev space W', “2(C) to be

the image of Wﬁf (R) under e~ #a.

Remark 2. It is clear that by transferring the Hilbert space structure of ng (R)
to WZnOLQ(C) the space WZnOLQ(C) becomes a Hilbert space. The Dunkl-Hermite

2 2
semigroup e~ *** is an isometric isomorphism from Wj;**(R) onto W;'5,*(C). Then
we can write

(F,G)yymz =Y _(2n+ 20 +2)*"ag(f)ag(g)

n=0
whenever F' = e e f and G = e~ tHag,
Notation 2. We denote by O(C) the set of all holomorphic functions on C.
Let F/[v*(C) be the space of all even functions in O(C) which are square inte-

grable with respect to the measure |%Uff€ (2)|dz. We equip F;"y*(C) with the
sesquilinear form

27n
FGnLe /F dt2mUte( )d

Let F/5*(C) be the space of all odd functions in O(C) which are square inte-
grable with respect to the measure |%U£‘O(2)|d2. We equip F;';”(C) with the
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sesquilinear form

2m

(F,G)m.o :/CF(Z)G(Z) d Uﬁ‘o(z)dz.

dtQm

Let 7;"%(C) be the direct sum of F;';%(C) and F/,;*(C) admitting the ses-
quilinear form

<F7 G>m,a == <Fea Ge>m,e + <F07 Go>m o
We shall show below that this defines a pre-Hilbert space structure on
Fi(C) NHF(C).
Let B;"*(C) denote the completion of F,""*(C) N H¥(C) with respect to the

norm induced by the above inner product. In the following proposition, we also
show that || F||m,o and ||F||th,2 coincide up to a constant multiple.

Proposition 1. The sesquilinear form (F, G),,q, for a non-negative integer m,
is an inner product on F{"*(C) N H¢(C) and hence induces a norm ||F||?, , =
(F, F)m,o- We also have

110 = 22" I F ymee

for all functions F = e~ M« f with f € S(R).

PROOF: Let F be in F;""*(C) NH(C). We expand the restriction of F' to R into
an orthogonal expansion in terms of h% (see [1]), and we can write

F(a+iy) = Y (Fh)aahi(z + iy),

n

so we have that

2= [ Fe i) PUR s+ [ [Fala+ i) PUE, () 2
C C

= < Z<F7 h%>2,ah2a Z<F’ h3>270‘h3>a7t ’

n q

Using the orthogonality relation (2), we can show that

Ita _ Z | F, hf: |262(2n+2a+2)t.
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By definition, for a nonnegative integer m, we have

9 d2m 2 d2m
(. Py = [ PP GmUsec) o+ [ IR GVl ds
d27n o
= d2m 1y

= 22" (20 + 20 4 2)P"[(F, b )g o220

Thus it follows that the sesquilinear form defined above is positive definite and
induces the norm || F||m,q-

On the other hand, we have the expansion

oo

2) =Y (Fhg)ah (2)
and

F=e¢™Mof with fe LA(R).
Thus we have

(F.h)20 = | D (F hg,)aihg, (2)hs (@) |z+! da
Rm:O
:/ > (82 e BRI ()b () |z [2oH! da
R =0

NE

(Foame” CmH2 20 [ 1 @ @)l da
m=0 R
() e B

Interchanging the order of summation and integration is justified by Lebesgue’s

dominated convergence theorem and limiting behavior of ||A%||a,p given in [2].
Again using the orthogonality relation (2), we get

||F||72n,a _ 22m Z(Qn + 20+ 2)2m|<F, hz>2’a|2e2(2n+2a+2)t
=22 "(2n + 20 + 2)*" (£, )20l

= 22" " (20 + 20 + 2)2™[(F, hg o |?

n

= 2P| e



Images of some functions and functional spaces under the Dunkl-Hermite semigroup 353

Using this proposition we can easily prove the following result on the range of
the Dunkl-Hermite-Sobolev spaces under the Dunkl-Hermite semigroup.

Theorem 2. For every nonnegative integer m, Wt"ﬁf (C) coincides with By (C)
and the Dunkl-Hermite semigroup e~ "« is an isometric isomorphism from

ng (R) onto B;"*(C) up to a constant multiple.

PROOF: Let F' € F/"*(C) N HY(C), hence F is of the form e~ Mo f with f €
L2 (R). Further, it follows from the above proposition, as the norms ||F|/m o

and ||F||,ym2 coincide, that f € Wy, *(R). Consequently, F;*(C) N Hg(C) is

t,a

contained in W{EQ((C). We have i?;% = e tMaph? and

1R 150 = 22" B8 e 2

= 22 1

=22"(2n + 2a + 2)*™ < .

So for all n € N, hg € B™*(C). We have

oo

(F.h8)yyme = 3 (2p + 20+ 2" (F, 08 ) 0,1 (hS, g ot

t,a p
p=0

= (2n 4 2a + 2)*™(F, @)at

’ n

Then it can be easily seen that if (F' },7/\;>W;m,2 = 0 then (F, E&‘Jﬁa,t = 0. This gives

that F = 0 because {h%, n € N} form an orthonormal basis for & (C), so we
have

{hg, n € N} C B/"*(C) ¢ W/%*(C)

and
~7WT&2(C) m.2
{hq, ne N} =Wia (©).
Hence F;*(C) N H{(C) is dense in W[%*(C). O

3. The image of S(R) and L2(R) under the Dunkl-Hermite semigroup

3.1 The image of S(R) under the Dunkl-Hermite semigroup. We begin
by establishing that S(R) is stable under the Dunkl-Hermite semigroup.

First we recall that the heat kernel g, ¢ > 0, associated with the Dunkl opera-
tors, see [12], is given by

m2

(4t)~ (T Ve~
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This function belongs to S(R) and satisfies the following property

(1)~ e B (2 y),

o - 1
S e )

where 7" is the generalized translation associated with the Dunkl operator D,
(see [13)]).

Using the Mehler formula for the Dunkl-Hermite polynomials H2 (see [10]),
we can write e~'*e on S(R) as an integral operator with kernel M (z,vy)

[ Mo f](a / Fl) M () |y dy.

The kernel M (x,y) can be explicitly written as

1

M (z,y) = T(a + 1)(2sinh(2¢))2 L

7lcoth(2t)(zz+y2)E ( € )
¢ “\sinn(2)"?

where F, (€, z) is the Dunkl kernel. We can see that the kernel M (x,y) satisfies
the following relation

1 cosh2t—1y, 2 2
M?(ZL‘, )7 e~ 3 (S ) (@ +y7) Ti‘yqsingm (ZL‘)

So for ¢ € S(R), we have

h2t—1 2 cosh 2t—1 2
—tH Lo x
e o Y (e 2

gO(y) =e 2 sinh 2¢ sinh 2¢ "2} *q q%) (y)7

where *,, is the generalized convolution product associated with the Dunkl oper-
ator D, (see [13]).
As a consequence we have the following result.

tH

Proposition 2. The Dunkl-Hermite semigroup e~ "« is a continuous transform

from S(R) into S(R).

In the following, we shall give a characterization of the image of the Schwartz
space under the Dunkl-Hermite semigroup.

Let F € H{(C) and for z € C, F(z) be its entire extension. Since F — F(z)
is a continuous linear functional on H(C) for each z € C, Riesz representation
theorem ensures that there exists a unique N*(z,-) € H¥(C) such that

F(z) = <F,,/\/ta(z, ')>a,t = (Fe, to,le(zv ')>a,e + (Fo, ta,‘o(za '))a,o-
The function N¥(z,w) is called the reproducing kernel for H¢(C). By expanding

F in terms of h&, we can write

o0

F(Z) Z(thn>ath Zhu

n=0
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So, we deduce that

Nf(zw) =) e Cra2am2208 (w)hiy (2).

n

Cauchy-Schwartz inequality gives us

[F(2)]* = KE, N (2, Dal? S NEIZ AN (2,0 la e = IF 112N (2, 2).
Using Mehler’s formula, we can explicitly calculate N*(z, z), in fact, we get
N (z,2) = 3 em@mi2at 22 o o (z) — = (20k2)2 5™ (=tynpo (2 e (3)

1

= m(sinh(ﬁlt))’(aﬂ) exp ( - %coth(élt)(zQ +22))Ea (# zz)

sinh(4¢)

If z = x + iy we have that

F(2)] <

< m(sinh(u))_(aﬂ) exp ( — coth(4t)(z* — y?))

1
Ea(i, 2 2) Fl2 ..
Slnh(4t) x +y || ||O¢,t

It is known that the kernel E, satisfies the inequality below for all z,y € R
(see [3])

(3) Ea( ! 2+ y2) < exp (

sinh(4t)’ («* + yQ))'

1
sinh(4t)
As

— coth(4t)(2* — y*) + (2% + y?) = — tanh(2t)x? + coth(2t)y?,

sinh(4t)

we deduce

[F(2)* <

1 . e
< m(&nh(élt)) (@) exp (— tanh(2t)z* + coth(2t)y?)|| F |2

a,t?

which gives a pointwise estimate for functions F' € H(C).

Notation 3. We denote by N;*"(z,w) the kernel defined by

NP2z w) = (20 + 20+ 2) 72 hg (2)hg (w).

n

In order to obtain pointwise estimates for F' € Wy, c;2((C), we have to show the
following result.

355
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Proposition 3. N?"(z,w) is a reproducing kernel for WZLDLQ (©).

PROOF: For z € C, the function w — N?™(z,w) belongs to W;EQ(C) because

i,{;;;(w) € W/ “2(C) for all w € C. We show now the reproducing property. For
ze€Cand F € W;EQ(C), we have

o0

n=0
e

= Z(Qn + 2a + 2)*™(F, lfl\g‘:>a7t(2n + 20+ 2)727"]?,:{(2)

= D (Fohg)ashi(z) = F(z). .

The last kernel can be written as

2 2m

+ o0
M“’Qm(z,w) = )'/ 52"L_1Nf+t(z,w) ds.
*Jo

(2m —1
Using the explicit formula for N(z, z), we have

22m +o0 ) L
m=1(sinh 4(t —(atD)
(2m — D)2+ 10 (a + 1) /0 s (sinhA(t + 5))

x4 y2) ds.

A/'ta,2m(z’ Z) =

1
— coth4(t P =) X Bal s
x exp (= cothd(t + s)(z” — 7)) x (sinh4(t+s)

Theorem 3 (Dunkl-Sobolev-embedding theorem). Let m be a nonnegative inte-
ger. Then every F € Wy, “2(C) satisfies the estimate

|F(2)]> < Cra(l+ 2%+ y*) > exp ( — tanh(2t)z® + coth(2t)y?),
where C , is a constant depending on t and «.

PROOF: We begin by estimating the integral appearing in the representation of
the reproducing kernel N"*™(z, z), using the inequality (3) we obtain

22m +oo
a,2m < 2m—1/_: h4(t —(a+1)
Nz 2) < (2m — 1)120H10 (o + 1) /0 s (sinh4(t +5))

X e~ tanh 2(t+s);c2+coth 2(15-1—5)3;2 ds.

We rewrite this in the following form
22m

a,2m
-/V;g (Z, z) < (2m _ 1)!2u+11‘(a + 1)

— tanh(2t)2z?4-coth(2t)y? Jo
t
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where
—+oo
Je = / $2" 1 (sinh 4(t + s)) @+
0
e—zz(tanh 2(t+s)—tanh(2t)) % ey2(coth 2(t+s)—coth(2t)) ds
)

X

which after some simplification yields
+o0
J¥ = / s>~ L(sinh 4(t + s)) (@t
0

" ex (7332( sinh 2s )~ sinh 2s )) s
P cosh 2(t + s) cosh 2t Y \sinh 2(t + s) sinh 2¢ '

Thus we only need to show that the above integral is bounded by Ci o (1 + 2% +
2\—2m
yo)
To prove this estimate we break up the above integral into two parts. Using
the elementary properties of the functions sinh and cosh, we see that

t
/ $2" 1 (sinh 4(¢ + s)) (@t
0

 ox (—302( sinh 2s ) _ 2( sinh 2s )> ds
P cosh 2(t + s) cosh 2¢ Y \sinh 2(t + s) sinh 2¢

is bounded by

2 2

+oo
/ g2m—lg—d(atl)s exp ( —2( :]92 + y2 )S) ds
0 cosh® 4t  sinh” 4t

= (2 — 1)'[2(2( —+ 1) + z? + y2 )]_27”
= (2m ! o
cosh?4t  sinh? 4t

S Ct,a,m(l + 1‘2 + y2)—2m.

On the other hand the integral
/ s*™~(sinh 4(t + s))*(o‘ﬂ)
t

 ox (—302( sinh 2s )_ 2( sinh 2s )) ds
P cosh 2(t + s) cosh 2t Y \sinh 2(t + s) sinh 2t ’

is bounded by

(2m —1)! tanh 2t o 1
(4(a+1))2m P ( (cosh4t$ * sinh4t? )>

The above clearly gives the required estimate. ([

Now we are in a position to prove the following result which characterizes the
image of S(R) under e~ "o,

357



358

N. Ben Salem, W. Nefzi

Theorem 4. Let t > 0 be fixed, and F' be a holomorphic function on C. Then
there exists a function f € S(R) such that F = e~*"a f if and only if F satisfies

— tanh(2t)z?+coth(2t)y?

(1+x2+y2)2nb

e

|F(Z)|2 S Ct,a,m

for some constants Cy o,m, m =1,2,3,...

PROOF: If f € S(R), then (H,)™f € L2(R) for all integer m, so f € W;_’[f(R)
for all m, which implies that

F=c¢Mafc W:LO’LQ(C) for all m.

o~ tanh(2)a? +coth(2t)y?

(1+w2+y2)27‘n for

From Theorem 3, we have |F(z)|? is bounded by Ct q.m
all m.
Conversely, suppose F satisfies the necessity condition. Using [6, p. 140],

T\l e * oo 1 S\ a-1
K,2)=(—)?—— e s 72 (1+ — 2 ds
4 (2) (22) I‘(a—l—%)/o ( 22:)
(4)
for |argz| <, a>-c,

then by choosing m large enough, we see that

/ |F(2)PUS(2) d= + / IFy(2)PUR (2) dz < +oo,
C C

from which it follows that F' € H{(C), thus there exists a function f € L2(R)
such that F' = e e f,

We have
Ka( |z|2 ) X |o|2o+? = (7T sinh4t)% |2|? :
sinh 4¢ 2 D(a+ 3
2 +oo : a—1
X e si‘nzl‘let / e_ss“_% (|Z|2 + 78(51112}147”) : dS7
0

so it is an easy matter to see that %Uge(z) and %Uﬁ)(z) are a sum of (2m+1)

tanh(2t)z? —coth(2t)y?

terms times e , where each term is of the form

(p(t, 0)2® + q(t, 0)y® + c(t, a))k < Cra(l+2% 4+ 9% with k < 2m,

where p(t, @), ¢(t,a) and c(t,«) are real constants. In view of Theorem 2, it
follows that F' € B;"*(C) = WZZQ((C). This leads to the fact that F € WZZQ((C)
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for all m. Consequently f € W;{nf (R) for all m. Since
Wi R) = S(R),

the result follows. O

3.2 The image of LZ(R) under the Dunkl-Hermite semigroup. We begin
this subsection by recalling that in [2] the authors have proved that the Dunkl-
Hermite semigroup initially defined on L2 N LP(R) extends to the whole of L?
and we have

le= Fllap < (cosh(26)) T £,

In the following, we give a characterization of the image of L? under the Dunkl-
Hermite semigroup.

Theorem 5. Fix ¢ > 0 and let 1 < p < co. Then for all f € LE(R), we have

|€_t%af($ 4+ Zy)' < Ct,p,a”f'

(( D coth 2t) 5 coth2t 2)
o €X - - .
PP\ " ) sinhat ~ 2 2 7

PROOF: As we have shown previously, we have

eft,Hﬂf(z) = 67%((40:1?1}?1&2;1)’22 (e*%(bﬁﬁﬁtﬁl)f‘f *o qSingzt ) (z)’
SO

_ cotg 2t (

le™ e f (@ + iy)| < T (2sinh2¢)~(*FDe HE

1
(a+1)

where

coth 2t 2 S
Lo = e B (22 ) [ls s
o= [ 176G)[e I s

So by Holder’s inequality, we have

coth 2t .2 S
()
€ @ sinh2t’z

where p’ is such that ]l) + z% =1.
We know that

I < | fllp.a

Y
’
pHo

’
p p'sx

< esinh 2t ,

s
Eo(Gnaie?)
’ sinh 2¢ *

’
h2t 2 S p h2t /.2 ’s
He_ “hptts Eu(,—, z) < [ e e 5|2t ds.
sinh 2t pa R
We can easily verify that

’ .2 ’
__coth2t /.2 p sz px _p ./ _ 2 2
2. P S eSinh2t — esinhdt @ 2 (Veoth2ts—/ sriz )

SO

e

which completes the proof. ([l
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Notation 4. We denote by V; » (z) the function defined by

P coth 2t
2 y2)>

%7%($+1y):eXp(_Q((pfl)sinhlltx + 2

and by V‘Sp, the s-th power of V, B

We write HLP (C, Vi 2 (2)) for the class of holomorphic functions in
LE(C, Vi, (2))-

The next corollary follows from Theorem 5, by a straightforward computation.
Corollary 1. Let f € LE(R), 1 < p < oo and fix t > 0, then

(i) e~™Me(f) € HLL(C.V, ] ), for e > 0.
So

pte
e~ ™Ma(f) e (VHLE(C,V, ).
>0 :
(il) e~*Me(f) € HLE (C, Vv, 22 ) for € > 0, where 2 < p < oo and ]l) —i—% =
’2
So

e Me(f) € (VHLE(C.V, ).

e>0

ste
(iii) e~t"a(f) € "HLZ((C,Vté ), for € > 0, where 1 < s < o0.

4. Paley Wiener type Theorems

In this section we establish Paley-Wiener type theorems for the tempered dis-
tributions and the compactly supported distributions under the Dunkl-Hermite
semigroup.

Theorem 6. Let m be a positive integer. Then every F € W, o ’Q(C) satisfies
the estimate

|F(2)]* < Cra(l + [2[*)*" exp ( — tanh(2t)z” + coth(2t)y?).
Conversely, if an entire function F' satisfies the above estimate, then F' belongs

to W'~ H%(C).

PROOF: It is easy to see that the reproducing kernel for W;;”’2((C) is given by

N2 w) = 37 (20 + 20+ 2)2™ B ()7 (w).

n

So we only need to estimate the (2m)-th derivate of N}¥(z, z) with respect to .
Thanks to inequality (3), we have

d27n . ]
5N (2,2) < Cra(l+ |z|?)2m e tanh(2t)a"+coth(2t)y
dt?m 1S = .
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Then if F € W;;”Q((C)
F(2)2 < Cpa(l+ [#[2)2me tanh(20a Heoth(2u0?.

To prove the converse, we need to make use of duality between WZ‘j(R) and
Wi ™2 (R).
The duality bracket is given by

(F,G) :/CFe(z)Ge(z)UE‘e(z) dz+[cFo(z)Go(z)Uffo(z) dz.

If I satisfies the given estimates then F. and F, satisfy them too, and for any
G € WHH2(C) the integral defining (F,G) converges and hence F defines a

t,a

. . . 1,2
continuous linear functional on W} %(C).

Tm_1’2((C) which proves the converse. 0

Consequently, F' belongs to W, ,
We recall the following definition given in [14].
Definition 3. Let S be in §'(R) and ¢ in S(R), the Dunkl convolution product
of S and ¢ is the function S %, ¢ defined by
Vo € R, S*q ¢(x) = (Sy, 72,0(2)),
where 7,/ is the generalized translation associated with the Dunkl operator D,
(see [13]).

It was shown in [14] that S %, ¢ is a C* function on R and for all n € N, we
have

D3 (S *a @) = S xa (Do) = (DR S) *a ¢.
It can be obviously seen that for fixed x € R and ¢ > 0, the function
y — Mi(z,y) € S(R).
Definition 4. The Dunkl-Hermite semigroup of a distribution S in S'(R) is
defined by
e e (8)(x) = (Sy, M{ (2, y))-
Remark 3. For S € §'(R), we have

1cosh2t—1 cosh 2t—1

e tHa S(g;) — e 2 simn 2t )a? (6_%( sinh 2¢ )y25’ *g qSingm,)(.Z'),

so e tHa G ig a C*® function on R.

Theorem 7. Suppose F' is a holomorphic function on C. Then there exists a
distribution f € §'(R) with F = e~'"« f if and only if F satisfies

|F(2)]” < Cra(l + [2*)*™ exp ( — tanh(2t)z”® + coth(2t)y?),

for some nonnegative integer m.
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PrOOF: Let f € S’(R). Since the union of all W;[TQ(R) is §'(R), then there
exists m such that f € W;;TQ(R) Thus

e~ f e W IV3(C),

and from Theorem 6 we have the result.
Conversely, suppose that F satisfies the hypothesis, then F belongs to
W, 712(C) and F = e~ f with f € W™ "*(R). Then f € S'(R). 0

In [7], the authors introduced the generalized windowed transform associated
with D, as follows. Given a function ¢ in the Schwartz space, the windowed
Dunkl transform of a regular function f, with window g, is defined by

V;“(f)(x,y) = /]Rf(“)Tgyg(U)Ea(—ix,u)|u|2a+1 du.

Here we extend this definition to the tempered distribution.

Definition 5. The windowed Dunkl transform of a tempered distribution .S with
window g € S(R) is defined by

V;(S)(l‘,y) = (Sv TgygEa(_i‘rv )>

When S is given by the function flu|***!, S = Sy, 2041, then

V;(Sflupaﬂ)(x,y) :/Rf(U)Tgyg(U)Ea(—ix,u)|u|2a+1 du,

which we write simply V§(f)(z,y).

In the case where g(x) = @q(z) = e=39%° for q > 0, Vo, f is called gaussian
Dunkl windowed transform. In our context, we are interested in the case y = 0
and we denote

T2 f (@) = Vg, (f)(=,0).
Hence, for a > 0, the transform 7, is defined by

T2(S)(x) = (S, e~ 2O B, (—iz, ), S € S'(R).

If f € S(R) we have
Ea(f)(z) = / f(u)e_%auQEa(*il', u)|u|20<+1 du.
R

We see that 7,%f extends to C as an entire function even when f is in S'(R).
This property of 7% allows us to prove the following analogue of Paley-Wiener
theorem given by Trimeche in [13].
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Theorem 8. For any a > 0 the transform T of a tempered distribution f on R
extends to C as an entire function which satisfies the estimate
2

T2 F(2)] < Call 4% +y*)mede

for some non-negative integer m.
Conversely, if an entire function F' satisfies such an estimate, then F' = T f
for some tempered distribution f.

PrOOF: We relate the transform T,%f to e~ e f. Indeed, considering the case
a > 1 first and writing a = coth 2t for some ¢t > 0, we can easily verify that

1
I(a + 1)(2sinh 2¢)+!

¥4
sinh 2¢

e—tHaf(z) — e—%cotthzzz];af( ) Yz c C.
We obtain the required estimate on 7.% f(z) by applying Theorem 7.
Conversely, if F' satisfies the given estimates then again by Theorem 7 the

function

1 1 2 ¥
G _ — 5 coth 2tz F( )
@) = e D@smnzeic sinh 2t

should be of the form e~**« f(z) with a tempered distribution f.

When a < 1 we take ¢ > 0 so that a = tanh 2t and the proof requires an
analogue of Theorem 7 for functions of the form e~(Fi%)%a f (see [1]).

The image of tempered distributions under e~(***%)*« can be characterized in
a similar way. The final estimates do not depend on the factor e~*T*e which is
just the Dunkl transform Fp.

Here the Dunkl transform of a distribution f in &’'(R) is defined by

(Fp(f),¥) = (f,Fp(¥)), ¥ € S(R)
and for f € S(R)

Fo(f)() = /R F(0) Bz, )|y dy.

We have
e~ (tHTHa p_ p~tHa (e71FHaf)
and
1
26+ (o + 1)
We know that Fp is an isomorphism from S’(R) onto &’'(R) (see [13]), so we have
the analogue of Theorem 7. (|

671-%7{“‘](‘ — e(a+1)i%]:Df-

Finally, we remark that we also have the following result which characterizes the
image of compactly supported distributions under the Dunkl-Hermite semigroup.



364

N. Ben Salem, W. Nefzi

Theorem 9. Let f be a distribution supported in a ball of radius R centered at
the origin. Then for any t > 0 the function e *"=f extends to C as an entire
function which satisfies

o=t f(2)] < Ce~F coth2t(e® —v?) i

with C' being a positive constant.
Conversely, any entire function I satisfying the above estimate is of the form
e "o f where f is supported inside a ball of radius R centered at the origin.

PRrROOF: We have to relate the Dunkl-Hermite semigroup and the Dunkl transform
in &'(R)

1
I(a + 1)(2sinh(2t))o+!

67”{“5(2) = e~ 3 coth2t22]:D [Syeié cotthyQ] ( 1z )

sinh 2¢
Here the Dunkl transform of a distribution S in £'(R) is defined by
Vy € R, Fp(5)(y) = (Sz, Ea(—iy, 7).

We obtain the necessity condition by appealing Theorem 5.3 given in [13], i.e.,
Paley-Wiener theorem for compactly supported distributions and the Dunkl trans-
form.

Conversely, if F' satisfies the given estimates then again by the same Theo-
rem 5.3, the function

G(z)=T(a+1)(2 sinh(2t))“+1e_% sinh 4tz2F(—iz sinh 2t)

should be of the form Fp(f) for a distribution f supported inside a ball of radius
R centered at the origin and

F(z) = ™o (f(y)ez o) (2),

where f (y)e% coth2ty” g also a distribution supported inside a ball of radius R
centered at the origin. This completes the proof of the theorem. ([l
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