M-weak and L-weak compactness of b-weakly compact operators

J. H'MICHANE, A. EL KADDOURI, K. BOURAS, M. MOUSSA

Abstract. We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact).

Keywords: b-weakly compact operator; b-AM-compact operator; strong type (B)

operator; order continuous norm; positive Schur property

Classification: 46A40, 46B40, 46B42

1. Introduction

The class of b-weakly compact operators was introduced by Alpay, Altin and Tonyali in [4] on vector lattices. After that, a series of papers, which gave different characterizations of this class of operators, were published [2], [3], [5], [6], [7].

Many relations between this class and other classes of operators was studied in [13], [14], [16]. In fact, in [14] the authors studied the b-weak compactness of semi-compact operators, and in [13] the authors studied the b-weak compactness of order weakly compact (resp. AM-compact) operators. Also, the compactness of b-weakly compact operator was studied in [16]. On the other hand, the M-weak compactness and the L-weak compactness of weakly compact operator was investigated in [17]. Also, Aqzzouz, Elbour and H'Michane [9] characterize Banach lattices on which each Dunford-Pettis operator is M-weakly compact (resp. L-weakly compact). After that, in [12] the authors characterize Banach lattices on which each semi compact operator is M-weakly compact (resp. L-weakly compact).

Our aim in this paper is to study the M-weak compactness and the L-weak compactness of b-weakly compact (resp. strong type (B), resp. b-AM-compact) operators. The article is organized as follows: we give in preliminaries all common notations and definitions of Banach lattice theory. In main results section, we study in the first subsection the L-weak compactness of b-weakly compact (resp. b-AM-compact, strong type (B)) operators and in the second subsection the M-weak compactness of b-weakly compact (resp. b-AM-compact, strong type (B)) operators.

2. Preliminaries

Let us recall from [4] that an operator T from a Banach lattice E into a Banach space X is said to be b-weakly compact if it carries each b-order bounded subset

of E (i.e., order bounded in E'') into a relatively weakly compact subset of X. Recall from [10] that an operator defined from a Banach lattice E into a Banach space X is said to be b-AM-compact if it carries b-order bounded set of E into norm relatively compact set of X.

Note that each b-AM-compact operator from a Banach lattice E into a Banach space X is b-weakly compact but the converse is not true in general. In fact, the identity operator of the Banach lattice $L^1[0,1]$ is b-weakly compact (because $L^1[0,1]$ is a KB-space, see [2, Proposition 2.1]) but it is not b-AM-compact (because $L^1[0,1]$ is not a discrete KB-space, see [10, Proposition 2.3]). Moreover, if E' is discrete then the class of b-weakly compact operators coincides with that of b-AM-compact operators (see [18, Theorem 3]).

An operator T defined from a Banach lattice E into a Banach space X is said to be strong type (B) if $T''(B) \subset X$ where B is the band generated by E in E''.

Since E'' is Dedekind complete, every band in E'' is a projection band and in particular there is a projection of E'' onto B. Thus, strong type (B) operators extend to E''. It is easy to see that each strong type (B) operator is a b-weakly compact operator but the converse is not true in general. Indeed, for p > 1 the operator $T_p : X_p \longrightarrow c_0$ mentioned in [19] does not preserve any copy of c_0 and it follows from Proposition 2.10 of [15] that the operator T_p is b-weakly compact. On the other hand, T_p is not a strong type (B) operator. Otherwise, since the Banach lattice X_p does not contain a complemented copy of ℓ^1 then, the norm of $(X_p)'$ is order continuous and hence it follows from [8, Proposition 3.2] that the operator T_p is weakly compact, which is impossible. For more details on strong type (B) operators, we refer the reader to [8], [19], [20].

To state our results, we need to fix some notations and recall some definitions. A Banach lattice is a Banach space $(E, \|\cdot\|)$ such that E is a vector lattice and its norm satisfies the following property: for each $x,y\in E$ such that $|x|\leq |y|$, we have $\|x\|\leq \|y\|$. A norm $\|\cdot\|$ of a Banach lattice E is order continuous if for each generalized sequence (x_{α}) such that $x_{\alpha}\downarrow 0$ in E, (x_{α}) converges to 0 for the norm $\|\cdot\|$ where the notation $x_{\alpha}\downarrow 0$ means that (x_{α}) is decreasing, its infimum exists and $\inf(x_{\alpha})=0$. Note that if E is a Banach lattice, its topological dual E', endowed with the dual norm and the dual order, is also a Banach lattice.

A Banach lattice E is said to have the positive Schur property if every weakly convergent sequence to 0 in E^+ is norm convergent to zero. For example, the Banach space ℓ^1 has the positive Schur property. A Banach lattice E is called a KB-space whenever every increasing norm bounded sequence of E^+ is norm convergent. As an example, each reflexive Banach lattice is a KB-space. A nonzero element x of a vector lattice E is discrete if the order ideal generated by x equals the lattice subspace generated by x. The vector lattice E is discrete, if it admits a complete disjoint system of discrete elements. A subset E of a vector lattice E is called order bounded, if it is included in an order interval in E. A linear mapping E from a vector lattice E into another E is order bounded if it carries an order bounded set of E into an order bounded set of E. We will use the term operator E between two Banach lattices to mean a bounded linear

mapping. It is positive if $T(x) \geq 0$ in F whenever $x \geq 0$ in E. The operator T is regular if $T = T_1 - T_2$ where T_1 and T_2 are positive operators from E into F. Note that each positive linear mapping on a Banach lattice is continuous. If an operator $T: E \longrightarrow F$ between two Banach lattices is positive, then its adjoint $T': F' \longrightarrow E'$ is likewise positive, where T' is defined by T'(f)(x) = f(T(x)) for each $f \in F'$ and for each $x \in E$. For terminology concerning Banach lattice theory and positive operators we refer the reader to the excellent book of Aliprantis-Burkinshaw [1].

3. Main results

3.1 L-weak compactness of b-weakly compact operator. Recall that a non-empty bounded subset A of a Banach lattice E is said to be L-weakly compact if for every disjoint sequence (x_n) in the solid hull of A, we have $\lim_{n\to\infty} ||x_n|| = 0$. An operator T from a Banach space X into E is L-weakly compact if $T(B_X)$ is L-weakly compact in E, where B_X denotes the closed unit ball of X.

Note that any L-weakly compact operator from a Banach space into a Banach lattice is weakly compact ([1, Theorem 5.61]) and any weakly compact operator is clearly b-weakly compact, but there exists a b-weakly compact (resp. b-AM-compact, resp. strong type (B)) operator which is not L-weakly compact. In fact, the identity operator of the Banach lattice ℓ^2 is b-weakly compact (resp. b-AM-compact, resp. of strong type(B)), but it is not L-weakly compact. Also, the operator $T: C([0,1]) \longrightarrow c_0$ defined by:

$$T(f) = (\int_0^1 f r_n dt)_1^{\infty}$$
 for each $f \in C([0, 1])$,

is weakly compact ([17, Example 4.4]) and hence is b-weakly compact, where r_n is the n-th Rademacher function on [0, 1], but T is not L-weakly compact ([17, Example 4.4]).

In the following result, we give the necessary conditions under which each bweakly compact operator is L-weakly compact:

Theorem 3.1. Let E and F be two Banach lattices. If each b-weakly compact operator $T: E \longrightarrow F$ is L-weakly compact, then one of the following assertions is valid:

- (1) $E = \{0\},\$
- (2) F is finite dimensional,
- (3) the norms of E' and F are order continuous.

PROOF: The proof follows along the lines of the proof of Theorem 3.3 of [9]. We prove separately the two following assertions.

- (a) If the norm of E' is not order continuous then F is finite-dimensional.
- (b) If the norm of F is not order continuous, then $E = \{0\}$.

Assume that (a) is false. i.e., the norm of E' is not order continuous and F is infinite dimensional. It follows from Theorem 3.1 of [9] that there exists a disjoint

norm bounded sequence (y_n) of F^+ which does not converge in norm to zero. And since the norm of E' is not order continuous, then it follows from Theorem 2.4.14 and Proposition 2.3.11 of [22] that E contains a sub-lattice isomorphic to ℓ^1 and there exists a positive projection $P: E \longrightarrow \ell^1$.

To finish the proof, we have to construct a b-weakly compact operator which is not L-weakly compact.

Consider the operator $S: \ell^1 \longrightarrow F$ defined by

$$S((\lambda_n)) = \sum_{n=1}^{\infty} \lambda_n y_n$$
 for each $(\lambda_n) \in \ell^1$.

The operator S is well defined and it is b-weakly compact because ℓ^1 is a KB-space (resp. ℓ^1 is a discrete KB-space, resp. S is b-weakly compact and ℓ^1 has an order continuous norm (see Proposition 2.11 of [4])). But S is not L-weakly compact. Otherwise, since $S(e_n) = y_n$ for all $n \ge 1$ where (e_n) is the canonical basis of ℓ^1 and (y_n) is a disjoint sequence, then (y_n) is norm convergent to zero and this is false.

On the other hand, since the identity operator of the Banach lattice ℓ^1 is b-weakly compact then the composed operator $T=S\circ P:E\longrightarrow \ell^1\longrightarrow F$ is b-weakly compact because $S\circ P=S\circ Id_{\ell^1}\circ P.$ But T is not L-weakly compact. Otherwise, $T\circ i=S$ is L-weakly compact where $i:\ell^1\longrightarrow E$ is the canonical injection of ℓ^1 into E, and this is a contradiction.

Now, assume that (b) is false, i.e., the norm of F is not order continuous and $E \neq \{0\}$. Choose $z \in E^+$ such that ||z|| = 1. Hence, it follows from Theorem 39.3 of [21] that there exists $\phi \in (E')^+$ such that $||\phi|| = 1$ and $\phi(z) = ||\phi|| = 1$.

On the other hand, since the norm of F is not order continuous, there exists some $y \in F^+$ and there exists a disjoint sequence $(y_n) \subset [0,y]$ which does not converge to zero in norm.

We consider the operator $T: E \to F$ defined by

$$T(x) = \phi(x) \cdot y$$
 for each $x \in E$.

It is clear that T is positive and compact (because its rank is one) and hence T is b-weakly compact. But T is not L-weakly compact. In fact, since ||z|| = 1 and $T(z) = \phi(z) \cdot y = y$ then $y \in T(B_E)$. As $(y_n) \subset [0, y]$, we conclude that (y_n) is a disjoint sequence in the solid hull of $T(B_E)$. Hence, if T is L-weakly compact then $\lim_{n\to\infty} ||y_n|| \to 0$, which is a contradiction.

Remark 1. The two necessary conditions (1) and (2) in Theorem 3.1 are sufficient, but the condition (3) is not. In fact, the identity operator of the Banach lattice ℓ^2 is b-weakly compact, but it is not L-weakly compact. However the norm of $(\ell^2)' = \ell^2$ is order continuous.

Remark 2. Since any strong type (B) operator is b-weakly compact and any b-AM-compact operator is b-weakly compact then the tree necessary conditions in Theorem 3.1 are also necessary if each strong type (B) operator $T: E \longrightarrow F$

is L-weakly compact or each b-AM-compact operator $T:E\longrightarrow F$ is L-weakly compact.

Now, we give sufficient conditions under which each strong type (B) operator is L-weakly compact:

Theorem 3.2. Let E and F be two Banach lattices. Each strong type (B) operator T from E into F is L-weakly compact, if one of the following statements is valid:

- $(1) E = \{0\},\$
- (2) F is finite dimensional,
- (3) E' has an order continuous norm and F has the positive Schur property.

Proof: (1) Obvious.

- (2) Since F is finite dimensional, then it follows from Corollary 3.2 of [9] that T is L-weakly compact.
- (3) Let $T: E \longrightarrow F$ be a strong type (B) operator then $T''(B) \subset F$ where B is the band generated by E in E''. As the norm of E' is order continuous, then it follows from Theorem 2.4.14 of [22] that B = E'' and hence T is weakly compact.

Now, since F has the positive Schur property, then by Theorem 3.4 of [17] T is L-weakly compact. \Box

Let us remark that if the norm of the Banach lattice E is order continuous then it follows from [4, Proposition 2.11] that the strong type (B) operators defined from E into an arbitrary Banach space coincide with b-weakly compact operators. On the other hand, all b-AM-compact operators are b-weakly compact.

As a consequence of Theorem 3.2, we give the following result:

Proposition 3.3. Let E and F be two Banach lattices. Then each b-weakly compact (resp, b-AM-compact) operator $T: E \longrightarrow F$ is L-weakly compact, if one of the following statements is valid:

- (1) $E = \{0\},\$
- (2) F is finite dimensional,
- (3) the norms of E' and E are order continuous and F has the positive Schur property.

As a consequence of Theorem 3.1 and Proposition 3.3, we obtain the following characterization:

Corollary 3.4. Let E be a Banach lattice with order continuous norm and F a Banach lattice with the positive Schur property. Then the following statements are equivalent.

- (1) Each b-weakly compact operator $T: E \longrightarrow F$ is L-weakly compact.
- (2) Each positive b-weakly compact operator $T: E \longrightarrow F$ is L-weakly compact.
- (3) One of the following conditions is valid:
 - (a) $E = \{0\},\$

- (b) E' has an order continuous norm,
- (c) F is finite dimensional.

As another consequence of Theorem 3.1 and Theorem 3.2, we obtain the following characterization:

Corollary 3.5. Let E and F be two Banach lattices such that F has the positive Schur property. Then the following statements are equivalent.

- (1) Each strong type (B) operator T from E into F is L-weakly compact.
- (2) One of the following conditions is valid:
 - (a) $E = \{0\},\$
 - (b) E' has an order continuous norm,
 - (c) F is finite dimensional.

Remark 3. As a particular case of Corollary 3.4 and Corollary 3.5, we have the following characterizations.

- (1) Let E be a non-void Banach lattice with order continuous norm and F an infinite-dimensional Banach lattice with the positive Schur property. Each b-weakly compact operator $T: E \longrightarrow F$ is L-weakly compact, if and only if each positive b-weakly compact operator $T: E \longrightarrow F$ is L-weakly compact, if and only if E' has an order continuous norm.
- (2) Let E be a non-void Banach lattice and F an infinite-dimensional Banach lattice with the positive Schur property. Then, each strong type (B) operator T from E into F is L-weakly compact, if and only if E' has an order continuous norm.
- **3.2** M-weak compactness of b-weakly compact operator. An operator $T: E \longrightarrow X$ from a Banach lattice E into a Banach space X is said to be M-weakly compact if for every disjoint sequence (x_n) in B_E we have $\lim_{n\to\infty} ||T(x_n)|| = 0$, where B_E denotes the closed unit ball of E.

Note that every M-weakly compact operator from a Banach lattice into a Banach space is weakly compact ([1, Theorem 5.61]) and any weakly compact operator is clearly b-weakly compact. But there exists a b-weakly compact (resp. b-AM-compact, resp. strong type (B)) operator which is not M-weakly compact. In fact, Id_{ℓ^1} is b-weakly compact (resp. b-AM-compact, resp. strong type (B)) but it is not M-weakly compact.

Our following result gives necessary conditions under which each b-weakly compact (resp. b-AM-compact, resp. strong type (B)) operator is M-weakly compact:

Theorem 3.6. Let E and F be two Banach lattices. If each b-weakly compact (resp. b-AM-compact, resp. strong type (B)) operator $T: E \longrightarrow F$ is M-weakly compact, then one of the following assertions is valid:

- (1) $F = \{0\},\$
- (2) E' has an order continuous norm.

PROOF: Assume by way of contradiction that the norm of E' is not order continuous norm and $F \neq \{0\}$. To finish the proof, we have to construct a positive

b-weakly compact operator $T: E \longrightarrow F$ (resp. b-AM-compact, resp. strong type (B)) operator which is not M-weakly compact. Since the norm of E' is not order continuous norm, it follows from Theorem 2.4.14 and Proposition 2.3.11 of Meyer-Nieberg [22] that E contains a closed sub-lattice which is isomorphic to ℓ^1 and there exists a positive projection $P: E \longrightarrow \ell^1$. On the other hand, as $F \neq \{0\}$, there exists a non-null element $y \in F^+$.

Now, we consider the operator $S: \ell^1 \longrightarrow F$ defined by

$$S((\lambda_n)) = \Big(\sum_{n=1}^{\infty} \lambda_n\Big) y$$
 for each $(\lambda_n) \in \ell^1$.

It is clear that S is well defined and positive. Also, S is compact (because its rank is one). Hence the positive operator

$$T = S \circ P : E \longrightarrow \ell^1 \longrightarrow F$$

is compact and T is b-weakly compact (resp. b-AM-compact; resp. strong type (B)) but it is not M-weakly compact. In fact, if we denote by (e_n) the canonical basis of $\ell^1 \subset E$, the sequence (e_n) is disjoint and bounded in E, moreover we have $T((e_n)) = y$ for each $n \ge 1$. Then $||T((e_n))|| \to 0$ (because $y \ne 0$). So, T is not M-weakly compact and this proves the result.

Remark 4. The necessary condition (1) in Theorem 3.6 is sufficient, but the condition (2) is not. In fact, the identity operator of the Banach lattice ℓ^2 is b-weakly compact (resp. b-AM-compact, resp. strong type (B)) but is not M-weakly compact. However the norm of $(\ell^2)' = \ell^2$ is order continuous.

In the following result, we give sufficient conditions under which each b-weakly compact operator is M-weakly compact:

Theorem 3.7. Let E and F be two Banach lattices.

- (1) If $F = \{0\}$ or the norm of E is order continuous and E' has the positive Schur property then each b-weakly compact operator $T: E \longrightarrow F$ is M-weakly compact.
- (2) If the norms of E and E' are order continuous and F has the positive Schur property then each regular b-weakly compact operator $T: E \longrightarrow F$ is M-weakly compact.

PROOF: (1) If $F = \{0\}$, clearly each operator is M-weakly compact. In the latter case, let $T: E \longrightarrow F$ be a b-weakly compact operator. Since the norm of E is order continuous and the norm of E' is order continuous (because E' has the positive Schur property), then it follows from the proof of Proposition 3.3 that T is weakly compact.

Now, since E' has the positive Schur property, it follows from [17, Theorem 3.3] that T is M-weakly compact.

(2) Let $T: E \longrightarrow F$ be an order bounded b-weakly compact operator. Since the norms of E and E' are order continuous and F has the positive Schur property,

then by Proposition 3.3 T is L-weakly compact. Therefore, by [1, Theorem 5.67] T is M-weakly compact.

Now, we give sufficient conditions under which each operator of strong type (B) is M-weakly compact:

Theorem 3.8. Let E and F be two Banach lattices.

- (1) If $F = \{0\}$ or E' has the positive Schur property then each strong type (B) operator $T: E \longrightarrow F$ is M-weakly compact.
- (2) If the norm of E' is order continuous and F has the positive Schur property then each regular strong type (B) operator $T: E \longrightarrow F$ is M-weakly compact.

PROOF: (1) If $F = \{0\}$, clearly each operator is M-weakly compact. In the latter case, let $T: E \longrightarrow F$ be a strong type (B) operator. Since the norm of E' is order continuous, then it follows from [8, Proposition 3.2] that T is weakly compact. Now, since E' has the positive Schur property, then by [17, Theorem 3.3] T is M-weakly compact.

(2) It follows from Theorem 3.6 of [17].

As a consequence of Theorem 3.6 and Theorem 3.8, we have the following characterization:

П

Corollary 3.9. Let E and F be two Banach lattices such that F has the positive Schur property. Then the following statements are equivalent.

- (1) Each regular operator T from E into F of strong type (B) is M-weakly compact.
- (2) One of the following conditions is valid:
 - (a) $F = \{0\},\$
 - (b) E' has an order continuous norm.

Remark 5. As a particular case of Corollary 3.9, we have the following characterization: Let E be a Banach lattice and F a non-void Banach lattice with the positive Schur property. Then, each regular strong type (B) operator $T: E \longrightarrow F$ is M-weakly compact if and only if E' has an order continuous norm.

Acknowledgment. The authors would like to thank the referee for stimulating discussions about the subject matter of this paper.

References

- Aliprantis C.D., Burkinshaw O., Positive Operators, reprint of the 1985 original, Springer, Dordrecht, 2006.
- [2] Altin B., Some properties of b-weakly compact operators, Gazi University Journal of Science 18 (3) (2005), 391–395.
- [3] Altin B., On b-weakly compact operators on Banach lattices, Taiwanese J. Math. 11 (2007), 143-150.
- [4] Alpay S., Altin B., Tonyali C., On property (b) of vector lattices, Positivity 7 (2003), no. 1–2, 135–139.

- [5] Alpay S., Altin B., Tonyali C., A note on Riesz spaces with property-b, Czechoslovak Math. J. 56 (131) (2006), no. 2, 765–772.
- [6] Alpay S., Altin B., A note on b-weakly compact operators, Positivity 11 (2007), no. 4, 575–582.
- [7] Alpay S., Ercan Z., Characterizations of Riesz spaces with b-property, Positivity 13 (2009), no. 1, 21–30.
- [8] Alpay S., Altin B., On operators of strong type B, preprint.
- [9] Aqzzouz B., Elbour A., Hmichane J., Some properties of the class of positive Dunford-Pettis operators, J. Math. Anal. Appl. 354 (2009), 295–300.
- [10] Aqzzouz B., Hmichane J., The class of b-AM-compact operators, Quaestions Mathematicae, to appear.
- [11] Aqzzouz B., Elbour A., On the weak compactness of b-weakly compact operators, Positivity 14 (2010), no. 1, 75–81.
- [12] Aqzzouz B., Elbour A., Hmichane J., On some properties of the class of semi-compact operators, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 4, 761–767.
- [13] Aqzzouz B., Hmichane J., The b-weak compactness of order weakly compact operators, Complex Anal. Oper. Theory 7 (2013), no. 1, 3–8, DOI 10.1007/s 11785-011-0138-1.
- [14] Aqzzouz B., Elbour A., The b-weakly compactness of semi-compact operators, Acta Sci. Math. (Szeged) 76 (2010), 501–510.
- [15] Aqzzouz B., Elbour A., Moussa M., Hmichane J., Some characterizations of b-weakly compact operators, Math. Rep. (Bucur.) 12 (62) (2010), no. 4, 315–324.
- [16] Aqzzouz B., Hmichane J., Aboutafail O., Compactness of b-weakly compact operators, Acta Sci. Math. (Szeged) 78 (2012), 163–171.
- [17] Chen Z.L., Wickstead A.W., L-weakly and M-weakly compact operators, Indag. Math. (N.S.) 10 (1999), no. 3, 321–336.
- [18] Cheng Na, Chen Zi-li, b-AM-compact operators on Banach lattices, Chin. J. Eng. Math. 27 (2010), no. 4, ID: 1005–3085.
- [19] Ghoussoub N., Johnson W.B., Counterexamples to several problems on the factorization of bounded linear operators, Proc. Amer. Math. Soc. 92 (1984), no. 2, 233–238.
- [20] Niculescu C., Order σ-continuous Operators on Banach Lattices, Lecture Notes in Mathematics, 991, Springer, Berlin, 1983.
- [21] Zaanen A.C., Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, 1997.
- [22] Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991.

Université Ibn Tofail, Faculté des Sciences, Département de Mathématiques, B.P. 133, Kénitra, Morocco

(Received April 4, 2012, revised November 17, 2012)