On McCoy condition and semicommutative rings

Mohamed Louzari

Abstract. Let R be a ring and σ an endomorphism of R. We give a generalization of McCoy's Theorem [Annihilators in polynomial rings, Amer. Math. Monthly **64** (1957), 28–29] to the setting of skew polynomial rings of the form $R[x;\sigma]$. As a consequence, we will show some results on semicommutative and σ -skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.

Keywords: Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; σ -skew McCoy

Classification: 16S36, 16U80

1. Introduction

Throughout the paper, R will always denote an associative ring with identity and M_R will stand for a right *R*-module. Given a ring *R*, the polynomial ring with an indeterminate x over R is denoted by R[x]. According to Nielsen [20] and Rege and Chhawchharia [22], a ring R is called right McCoy (resp., left McCoy) if, for any polynomials $f(x), g(x) \in R[x] \setminus \{0\}, f(x)g(x) = 0$ implies f(x)r = 0(resp., sg(x) = 0) for some $0 \neq r \in R$ (resp., $0 \neq s \in R$). A ring is called *McCoy* if it is both left and right McCoy. By McCoy [18], commutative rings are McCoy rings. Recall that a ring R is reversible if ab = 0 implies ba = 0 for $a, b \in R$, and R is semicommutative if ab = 0 implies aRb = 0 for $a, b \in R$. It is obvious that commutative rings are reversible and reversible rings are semicommutative, but the converse does not hold, respectively. With the help of [8, Theorem 2.2], Ris a McCov ring when R[x] is semicommutative. Nielsen [20, Theorem 2] showed that reversible rings are McCoy and he gave an example of a semicommutative ring which is not right McCoy. Recall that a ring is *reduced* if it has no nonzero nilpotent elements. Rege and Chhawchharia called R an Armendariz ring [22, Definition 1.1], if whenever any polynomials $f(x), g(x) \in R[x]$ satisfy f(x)g(x) =0, then ab = 0 for each coefficient a of f(x) and b of g(x). Any reduced ring is Armendariz by [2, Lemma 1] and Armendariz rings are clearly McCoy. We have the following diagram:

$$\left. \begin{array}{c} R \text{ is reversible} \\ R[x] \text{ is semicommutative} \\ R \text{ is Armendariz} \end{array} \right\} \Rightarrow R \text{ is McCoy}$$

The Ore extension of a ring R is denoted by $R[x; \sigma, \delta]$, where σ is an endomorphism of R and δ is a σ -derivation, i.e., $\delta \colon R \to R$ is an additive map such that $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$ for all $a, b \in R$. Recall that elements of $R[x; \sigma, \delta]$ are polynomials in x with coefficients written on the left. Multiplication in $R[x; \sigma, \delta]$ is given by the multiplication in R and the condition $xa = \sigma(a)x + \delta(a)$, for all $a \in R$. For $\delta = 0$, we put $R[x; \sigma, 0] = R[x; \sigma]$. Baser et al. [6], introduced a concept of σ -skew McCoy for an endomorphism σ of R. A ring R is called σ -skew McCoy, if for any nonzero polynomials $p(x) = \sum_{i=0}^{n} a_i x^i$ and $q(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \sigma]$, p(x)q(x) = 0 implies p(x)c = 0 for some nonzero $c \in R$, and they have proved the following:

$$\left. \begin{array}{c} R[x;\sigma] \text{ is right McCoy} \\ R[x;\sigma] \text{ is reversible} \end{array} \right\} \Rightarrow R \text{ is } \sigma\text{-skew McCoy}$$

Hong et al. [13, Theorem 1] proved that if σ is an automorphism of R and I a right ideal of $S = R[x; \sigma, \delta]$ then $r_S(I) \neq 0$ implies $r_R(I) \neq 0$, which extends McCoy's Theorem [17].

In this paper, we give another generalization of McCoy's Theorem, by showing that for any right ideal I of $S = R[x; \sigma]$, we have $r_S(I) \neq 0$ implies $r_R(I) \neq 0$ when R is σ -compatible or $r_S(I)$ is σ -ideal. As a consequence, if $R[x; \sigma]$ is semicommutative then R is σ -skew McCoy. Furthermore, we show some results on Nagata extensions. For a commutative ring R, we have

1) If R is a domain, then

- (a) M_R is Armendariz if and only if $R \oplus_{\sigma} M_R$ is Armendariz;
- (b) the ring $R \oplus_{\sigma} M_R$ is semicommutative and right McCoy.

A module M_R is called Armendariz if whenever polynomials $m = \sum_{i=0}^n m_i x^i \in M[x]$ and $f = \sum_{j=0}^m a_j x^j \in R[x]$ satisfy mf = 0, then $m_i a_j = 0$ for each i, j.

2) If R and M_R are Armendariz such that M_R satisfies the condition (\mathcal{C}^2_{σ}) (see Definition 2.7), then $R \oplus_{\sigma} M_R$ is Armendariz.

2. A generalization of McCoy's Theorem

McCoy [17] proved that for any right ideal I of $S = R[x_1, x_2, \ldots, x_n]$ over a ring R, if $r_S(I) \neq 0$ then $r_R(I) \neq 0$. This result was extended by Hong et al. [13] to the Ore extensions of several types, the skew monoid rings and the skew power series rings over noncommutative rings, where σ is an automorphism of R. Herein, we will extend McCoy's Theorem to skew polynomial rings of the form $R[x;\sigma]$ with σ an endomorphism of R. According to Annin [3], a ring R is σ -compatible, if for any $a, b \in R$, ab = 0 if and only if $a\sigma(b) = 0$. Let σ be an endomorphism of R and I an ideal of R, we say that the ideal I is σ -ideal, if $\sigma(I) \subseteq I$. Let σ be an endomorphism of a ring R, then for any $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x;\sigma]$, we denote by $\sigma(f(x))$ the polynomial $\sum_{i=0}^{n} \sigma(a_i) x^i \in R[x;\sigma]$. **Theorem 2.1.** Let R be a ring, σ an endomorphism of R and I a right ideal in $S = R[x;\sigma]$. Suppose that R is σ -compatible or $r_S(I)$ is σ -ideal. If $r_S(I) \neq 0$ then $r_R(I) \neq 0$.

PROOF: Suppose that $r_S(I) \neq 0$. If I = 0, then it's trivial. Assume that $I \neq 0$. Let $g(x) = \sum_{j=0}^{m} b_j x^j \in r_S(I)$ with $b_m \neq 0$. If m = 0, then we are done, so we can suppose that $m \geq 1$. In this situation, if $Ib_m = 0$, then we are done. Otherwise, there exists $0 \neq f(x) = \sum_{i=0}^{n} a_i x^i \in I$ such that $f(x)b_m \neq 0$ (*).

If R is σ -compatible, then (*) implies $a_i \sigma^i(b_m) \neq 0$ for some $i \in \{0, 1, \ldots, n\}$, so $a_i b_m \neq 0$ because R is σ -compatible, therefore $a_i g(x) \neq 0$ for some $i \in \{0, 1, \ldots, n\}$. Take $p = \max\{i | a_i g(x) \neq 0\}$, so $a_p g(x) \neq 0$ and $a_{p+1} g(x) = \cdots = a_n g(x) = 0$. On the other hand, we get $a_p b_m = 0$ from f(x)g(x) = 0. So that the degree of $a_p g(x)$ is less than m such that $a_p g(x) \neq 0$. But $I(a_p g(x)) = (Ia_p)g(x) = 0$ since I is a right ideal of S, so $0 \neq a_p g(x) \in r_S(I)$. We can write $a_p g(x) = \sum_{k=0}^{\ell} a_p b_k x^k$ with $a_p b_{\ell} \neq 0$ and $\ell < m$. We have the two possibilities: If $\ell = 0$ then $a_p g(x)$ in place of g(x). We have two cases $I(a_p b_{\ell}) = 0$ or $I(a_p b_{\ell}) \neq 0$. The first implies $0 \neq a_p b_{\ell} \in r_R(I)$, for the second, there exists $0 \neq h(x) = \sum_{k=0}^{s} c_k x^k \in I$ such that $h(x) a_p b_{\ell} \neq 0$. Here, we can find q as the largest integer such that $c_q a_p g(x) \neq 0$ and then $0 \neq c_q a_p g(x) \in r_S(I)$ such that the degree of $c_q a_p g(x)$ is smaller than one of $a_p g(x)$.

If $r_S(I)$ is σ -ideal, then (*) implies $a_i x^i b_m \neq 0$ for some $i \in \{0, 1, \ldots, n\}$, therefore $a_i x^i g(x) \neq 0$. Take $p = \max\{i | a_i x^i g(x) \neq 0\}$, then $a_p \sigma^p(g(x)) \neq 0$ and $a_i x^i g(x) = 0$ for $i \geq p + 1$. We obtain $a_p \sigma^p(b_m) = 0$ from f(x)g(x) = 0. Also, we have $I(a_p \sigma^p(g(x))) = (Ia_p)\sigma^p(g(x)) = 0$ because I is a right ideal of Sand $\sigma^p(g(x)) \in r_S(I)$. So $0 \neq a_p \sigma^p(g(x)) \in r_S(I)$. We can write $a_p \sigma^p(g(x)) =$ $a_p \sigma^p(b_0) + a_p \sigma^p(b_1)x + \cdots + a_p \sigma^p(b_\ell)x^\ell$, where $a_p \sigma^p(b_\ell) \neq 0$ and $\ell < m$. If $\ell = 0$ then $Ia_p \sigma^p(b_\ell) = 0$, so $0 \neq a_p \sigma^p(b_\ell) \in r_R(I)$. Otherwise, $\ell \geq 1$, then we will consider $a_p \sigma^p(g(x))$ in place of g(x) and $0 \neq h(x) = \sum_{k=0}^s c_k x^k \in I$ such that $h(x)a_p \sigma^p(b_\ell) \neq 0$. We can find q as the largest integer such that $c_q \sigma^q(a_p \sigma^p(g(x))) \neq 0$ and then $0 \neq c_q \sigma^q(a_p \sigma^p(g(x))) \in r_S(I)$ such that the degree of $c_q \sigma^q(a_p \sigma^p(g(x)))$ is smaller than one of $a_p \sigma^p(g(x))$.

Continuing with the same manner (in the two cases), we can produce elements of the forms $0 \neq a_{t_1}a_{t_2}\ldots a_{t_s}\sigma^{t_1+t_2+\cdots+t_s}g(x)$ (resp., $0 \neq a_{t_1}a_{t_2}\ldots a_{t_s}g(x)$) in $r_S(I)$, with $s \leq m$ and the degree of these polynomials is zero. Thus $a_{t_1}a_{t_2}\cdots a_{t_s}\sigma^{t_1+t_2+\cdots+t_s}g(x) \in r_R(I)$ (resp., $0 \neq a_{t_1}a_{t_2}\ldots a_{t_s}g(x) \in r_R(I)$).

 $a_{t_1}a_{t_2}\cdots a_{t_s}o \to f(I) \in r_R(I) \text{ (resp., } 0 \neq a_{t_1}a_{t_2}\cdots a_{t_s}g(x) \in r_R(I)).$ Therefore $r_R(I) \neq 0.$

Corollary 2.2 ([8, Theorem 2.2]). Let $f(x) \in R[x]$. If $r_{R[x]}(f(x)R[x]) \neq 0$ then $r_{R[x]}(f(x)R[x]) \cap R \neq 0$.

PROOF: Consider the right ideal I = f(x)R[x].

Corollary 2.3. Let R be a ring, σ an endomorphism of R and I a right ideal of $S = R[x; \sigma]$. If S is semicommutative, then $r_S(I) \neq 0$ implies $r_R(I) \neq 0$.

PROOF: Let *I* be a right ideal of $S = R[x; \sigma]$, $f(x) \in r_S(I)$ and $g(x) \in I$. Then g(x)f(x) = 0. Since *S* is semicommutative we have g(x)Sf(x) = 0, in particular, $g(x)xf(x) = g(x)\sigma(f)(x) = 0$, so $\sigma(f)(x) \in r_S(I)$. Thus $r_S(I)$ is σ -ideal and we have the result by Theorem 2.1.

Corollary 2.4. Let σ be an endomorphism of a ring R. If $R[x;\sigma]$ is a semicommutative ring then R is σ -skew McCoy.

PROOF: It follows directly from Corollary 2.3, by letting $I = f(x)R[x;\sigma]$.

From Corollary 2.4, we obtain immediately [6, Corollary 6] and [8, Corollary 2.3]. According to Clark [7], a ring R is said to be *quasi-Baer* if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. Following Başer et al. [4] and Zhang and Chen [24], a ring R is said to be σ -semicommutative if, for any $a, b \in R$, ab = 0 implies $aR\sigma(b) = 0$. A ring R is called right (left) σ -reversible [5, Definition 2.1] if whenever ab = 0 for $a, b \in R$, $b\sigma(a) = 0$ ($\sigma(b)a = 0$). A ring R is called σ -reversible if it is both right and left σ -reversible. Hong et al. [9], proved that, if R is σ -rigid then R is quasi-Baer if and only if $R[x;\sigma]$ is quasi-Baer. Hong et al. [12] have proved the same result when R is semi-prime and all ideals of R are σ -ideals.

Proposition 2.5. Let R be a σ -semicommutative ring. If $R[x;\sigma]$ is quasi-Baer then R is so.

PROOF: Let I be a right ideal of R. We have $r_{R[x;\sigma]}(IR[x;\sigma]) = eR[x;\sigma]$ for some idempotent $e = e_0 + e_1x + \dots + e_mx^m \in R[x;\sigma]$. By [4, Proposition 3.9], $r_R(IR[x;\sigma]) = e_0R$. Clearly, $r_R(IR[x;\sigma]) \subseteq r_R(I)$. Conversely, let $b \in r_R(I)$ then Ib = 0. Since R is σ -semicommutative, we have $IR[x;\sigma]b = 0$, so $b \in r_R(IR[x;\sigma])$. Therefore $r_R(I) = e_0R$.

Example 2.6. Let \mathbb{Z} be the ring of integers and consider the ring

$$R = \{(a, b) \in \mathbb{Z} \oplus \mathbb{Z} \mid a \equiv b \pmod{2}\}$$

and $\sigma \colon R \to R$ defined by $\sigma(a, b) = (b, a)$.

1) $R[x;\sigma]$ is quasi-Baer and R is not quasi-Baer, by [9, Example 9].

2) R is not σ -semicommutative. Let a = (2,0), b = (0,2). We have ab = 0, but $a\sigma(b) = (2,0)(2,0) = (4,0) \neq 0$. Thus R is not σ -semicommutative. Therefore the condition "R is σ -semicommutative" is not a superfluous condition in Proposition 2.5.

Definition 2.7. Let R be a ring, M_R an R-module and σ an endomorphism of R. For $m \in M_R$ and $a \in R$, we say that M_R satisfies the condition (\mathcal{C}^1_{σ}) (resp., (\mathcal{C}^2_{σ})) if ma = 0 (resp., $m\sigma(a)a = 0$) implies $m\sigma(a) = 0$.

332

Proposition 2.8. Let σ be an endomorphism of a ring R.

- If R is semicommutative and satisfies the condition (C²_σ) then it is σ-skew McCoy.
- (2) If R is reduced and right σ -reversible then it is σ -skew McCoy.

PROOF: (1) Immediately from [23, Proposition 3.4]. (2) Clearly from (1). \Box

3. Nagata extensions and McCoyness

Let R be a commutative ring, M_R be an R-module and σ an endomorphism of R. The R-module $R \oplus_{\sigma} M_R$ acquires a ring structure (possibly noncommutative), where the product is defined by $(a, m)(b, n) = (ab, n\sigma(a) + mb)$, for $a, b \in R$ and $m, n \in M_R$. We shall call this extension the Nagata extension of R by M_R and σ . If $\sigma = id_R$, then $R \oplus_{id_R} M_R$ (denoted by $R \oplus M_R$) is a commutative ring. Anderson and Camillo [1] have proved that if R is a commutative domain then M_R is Armendariz if and only if $R \oplus M_R$ is Armendariz. We will see that this result holds for $R \oplus_{\sigma} M_R$ as well. Kim et al. [21] have proved that, if R is a commutative domain and σ is a monomorphism of R then $R \oplus_{\sigma} R$ is reversible, and so it is McCoy. Recall that if σ is an endomorphism of a ring R, then the map $R[x] \to R[x]$ defined by $\sum_{i=0}^n a_i x^i \mapsto \sum_{i=0}^n \sigma(a_i) x^i$ is an endomorphism of the polynomial ring R[x] and clearly this map extends σ . We shall also denote the extended map $R[x] \to R[x]$ by σ and the image of $f \in R[x]$ by $\sigma(f)$. In this section, we will discuss when the Nagata extension $R \oplus_{\sigma} M_R$ is McCoy.

Let R be a commutative domain. The set $T(M) = \{m \in M | r_R(m) \neq 0\}$ is called the *torsion submodule* of M_R . If T(M) = M (resp., T(M) = 0) then M_R is *torsion* (resp., *torsion-free*).

Lemma 3.1. If M_R is a torsion-free module then it is Armendariz.

PROOF: Let $m(x) = m_0 + m_1 x + \dots + m_p x^p \in M[x]$ and $f(x) = a_0 + a_1 x + \dots + a_q x^q \in R[x]$ such that m(x)f(x) = 0. We may assume that $a_0 \neq 0$ (if not, set $f(x) = f'(x)x^k$ with a minimal k such that $a_k \neq 0$). This implies the following system of equations:

(0)
$$m_0 a_0 = 0,$$

(1)
$$m_0 a_1 + m_1 a_0 = 0,$$

(2) $m_0 a_2 + m_1 a_1 + m_2 a_0 = 0,$

. . .

$$(p+q) m_p a_q = 0.$$

Since M_R is a torsion-free module, then from these equations, we obtain $m_i = 0$ for all $i \in \{0, 1, \ldots, p\}$. Thus M_R is an Armendariz module.

Proposition 3.2. Let R be a commutative domain and M_R an R-module. Then $R \oplus_{\sigma} M_R$ is Armendariz if and only if M_R is Armendariz. In particular, if M_R is torsion-free then $R \oplus_{\sigma} M_R$ is Armendariz.

M. Louzari

PROOF: Let $R' = R \oplus_{\sigma} M_R$, then we have $R'[x] = R[x] \oplus_{\sigma} M[x]$. Suppose that R' is Armendariz. Let $m = \sum_{i=0}^{p} m_i x^i \in M[x]$ and $f = \sum_{j=0}^{q} a_j x^j \in R[x]$ with mf = 0. We have $(0, m) = \sum_{i=0}^{p} (0, m_i) x^i \in R'[x]$ and $(f, 0) = \sum_{j=0}^{q} (a_j, 0) x^j \in R'[x]$, since R' is Armendariz then $(0, m_i)(a_j, 0) = (0, m_i a_j) = (0, 0)$ for all i, j. Thus $m_i a_j = 0$ for all i, j. Conversely, suppose that M_R is Armendariz. Let $f, g \in R[x]$ and $m, n \in M[x]$ such that (f, m)(g, n) = (0, 0). Write $(f, m) = \sum (a_i, m_i) x^i \in R'[x]$ and $(g, n) = \sum (b_j, n_j) x^j \in R'[x]$. From (f, m)(g, n) = (0, 0), we have $(fg, n\sigma(f) + mg) = (0, 0)$. Since R[x] is a commutative domain, then f = 0 or g = 0. If f = 0, we get mg = 0. Then $m_i b_j = 0$ and $a_i = 0$ for all i, j. Thus $(a_i, m_i)(b_j, n_j) = (a_i b_j, n_j \sigma(a_i) + m_i b_j) = (0, 0)$. Otherwise, we get $n\sigma(f) = 0$. Then $b_j = 0$ and $n_j \sigma(a_i) = 0$ for all i, j. Thus $(a_i, m_i)(b_j, n_j) = (0, 0)$. Therefore $R \oplus_{\sigma} M_R$ is Armendariz. In particular, if M_R is torsion-free then M_R is Armendariz by Lemma 3.1. Therefore $R \oplus_{\sigma} M_R$ is Armendariz.

Corollary 3.3. Let R be a commutative domain and M_R an R-module satisfying the condition $(\mathcal{C}^2_{id_R})$. Then $R \oplus_{\sigma} M_R$ is Armendariz.

PROOF: Since M_R is semicommutative then it is Armendariz by [23, Lemma 3.3].

Proposition 3.4. Let R be a commutative ring and M_R an R-module such that R satisfies (\mathcal{C}^1_{σ}) and M_R satisfies (\mathcal{C}^2_{σ}) . Then $R \oplus_{\sigma} M_R$ is a semicommutative ring.

PROOF: We will use freely the conditions (\mathcal{C}^1_{σ}) and (\mathcal{C}^2_{σ}) . Let $(r,m), (s,n) \in R \oplus_{\sigma} M_R$ such that

(1)
$$(r,m)(s,n) = (rs, n\sigma(r) + ms) = (0,0).$$

We will show that for any $(t, u) \in R \oplus_{\sigma} M_R$

(2)
$$(r,m)(t,u)(s,n) = (rts, n\sigma(rt) + u\sigma(r)s + mts) = (0,0).$$

It suffices to show $n\sigma(rt) + u\sigma(r)s + mts = 0$. Multiplying $n\sigma(r) + ms = 0$ of equation (1) on the right hand by r, gives $n\sigma(r)r = 0$, so we get $n\sigma(r) = 0$ and hence ms = 0. Thus $n\sigma(rt) = mts = 0$. Clearly rs = 0 implies $\sigma(r)s = 0$ and so $u\sigma(r)s = 0$. Therefore $n\sigma(rt) + u\sigma(r)s + mts = 0$.

Proposition 3.5. Let R be a commutative domain and M_R an R-module. Then $R \oplus_{\sigma} M_R$ is a semicommutative right McCoy ring.

PROOF: Consider equations (1) and (2) of Proposition 3.4. From equation (1), we get r = 0 or s = 0 since R is a domain. Say r = 0, then $rts = n\sigma(rt) = u\sigma(r)s = 0$, and mts = 0 from (1), hence we have (2). Next say s = 0, it follows $rts = u\sigma(r)s = mts = 0$ and $n\sigma(rt) = 0$ from (1), and so we have (2). Therefore $(r,m)(R \oplus_{\sigma} M)(s,n) = 0$. For McCoyness, let $(r,m), (s,n) \in R' = R \oplus_{\sigma} M_R$. Suppose that $(r,m)(s,n)^2 = (rs^2, n\sigma(r^2) + ns\sigma(r) + ms^2) = 0$, then r = 0 or s = 0 which implies $(r,m)(s,n) = (rs, n\sigma(r) + ms) = 0$. Thus by Proposition 2.8(1), $R \oplus_{\sigma} M_R$ is right McCoy. The next example shows that under the conditions of Proposition 3.5, $R \oplus_{\sigma} M_R$ cannot be reversible.

Example 3.6. Let D be a commutative domain and R = D[x] be the polynomial ring over D with an indeterminate x. Consider the endomorphism $\sigma: R \to R$ defined by $\sigma(f(x)) = f(0)$. Since (x, 1)(0, 1) = (0, 0) and $(0, 1)(x, 1) = (0, x) \neq (0, 0)$, then $R \oplus_{\sigma} R$ is not reversible. Thus $R \oplus_{\sigma} M_R$ cannot be reversible under the conditions of Proposition 3.5.

Lemma 3.7. Let M_R be an Armendariz module, $m(x) \in M[x]$ and $f(x), g(x) \in R[x]$ such that $m(x) = \sum_{i=0}^{n} m_i x^i$, $f(x) = \sum_{j=0}^{p} a_j x^j$ and $g(x) = \sum_{k=0}^{q} b_k x^k$. Then

 $m(x)f(x)g(x) = 0 \Leftrightarrow m_i a_j b_k = 0$ for all i, j, k.

PROOF: (\Leftarrow) Clear. (\Rightarrow) If m(x)f(x) = 0 then $m(x)a_j = 0$ for all j. Now, if m(x)f(x)g(x) = 0 then $m(x)[f(x)b_k] = 0$ for all k. Since M_R is Armendariz we have $m_i(a_jb_k) = 0$ for all i, j. Thus $m_ia_jb_k = 0$ for all i, j, k.

Lemma 3.8. If M_R is an Armendariz module satisfying the condition (\mathcal{C}^2_{σ}) . Then $M[x]_{R[x]}$ satisfies the condition (\mathcal{C}^2_{σ}) .

PROOF: Let $m(x) = \sum_{i=0}^{n} m_i x^i \in M[x]$ and $f(x) = \sum_{j=0}^{p} a_j x^j \in R[x]$. Suppose that $m(x)\sigma(f(x))f(x) = 0$. By Lemma 3.7, $m_i\sigma(a_j)a_k = 0$ for all i, j, k. In particular, $m_i\sigma(a_j)a_j = 0$ for all i, j. Then $m_i\sigma(a_j) = 0$ for all i, j. Therefore $m(x)\sigma(f(x)) = 0$.

Theorem 3.9. Let R be a commutative Armendariz ring, σ an endomorphism of R and M_R a module satisfying the condition (\mathcal{C}^2_{σ}) . Then M_R is Armendariz if and only if $R \oplus_{\sigma} M_R$ is Armendariz.

PROOF: Let $f, g \in R[x]$ and $m, n \in M[x]$ such that (f, m)(g, n) = (0, 0). Write $(f, m) = \sum (a_i, m_i)x^i \in R'[x]$ and $(g, n) = \sum (b_j, n_j)x^j \in R'[x]$. From (f, m)(g, n) = (0, 0), we have $(fg, n\sigma(f) + mg) = (0, 0)$. Since R is Armendariz, then $a_ib_j = 0$ for all i, j. Multiplying $n\sigma(f) + mg = 0$ on the right by f. By Lemma 3.8, we have $n\sigma(f)f = 0$, then $n\sigma(f) = 0$ and so mg = 0. Since M_R is Armendariz we have $m_ib_j = 0$ and $n_i\sigma(a_j) = 0$ for all i, j. Thus $(a_i, m_i)(b_j, n_j) = (a_ib_j, n_j\sigma(a_i) + m_ib_j) = (0, 0)$. Therefore R' is Armendariz. The converse is clear.

Corollary 3.10. If R is a commutative reduced ring which satisfies the condition (\mathcal{C}^1_{σ}) then $R \oplus_{\sigma} R$ is semicommutative and Armendariz.

PROOF: Immediately by Proposition 3.4 and Theorem 3.9.

Example 3.11. Consider the ring $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ with the usual addition and multiplication. Let $\sigma: R \to R$ be defined by $\sigma(a, b) = (b, a)$. Clearly R is a commutative reduced ring but not a domain. Let A = ((0, 1), (0, 1)), B = ((1, 0), (0, 1)) and C = ((1, 0), (1, 0)). We have

$$AB = ((0,1), (0,1))((1,0), (0,1)) = ((0,0), ((0,1)\sigma(0,1) + (0,1)(1,0))) = 0.$$

But

$$ACB = ((0,1), (0,1))((1,0), (1,0))((1,0), (0,1)) = ((0,0), (1,0))((1,0), (0,1))$$
$$= ((0,0), (1,0)) \neq 0.$$

Hence $R \oplus_{\sigma} R$ is not semicommutative. On other hand, we have (1,0)(0,1) = 0, but $(1,0)\sigma((0,1)) = (1,0)(1,0) = (1,0) \neq 0$, so R does not satisfy the condition (\mathcal{C}^1_{σ}) . Thus the condition (\mathcal{C}^1_{σ}) in Corollary 3.10 is not superfluous.

Acknowledgments. The author would like to thank the referee for his/her helpful suggestions that improved the paper. The author also wishes to thank Professor Chan Yong Hong from Kyung Hee University, Korea for valuable remarks and helpful comments.

References

- Anderson D.D., Camillo V., Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265–2272.
- [2] Armendariz E.P., A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470–473.
- [3] Annin S., Associated primes over skew polynomials rings, Comm. Algebra 30 (2002), 2511– 2528.
- [4] Başer M., Harmanci A., Kwak T.K., Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45 (2008), no. 2, 285–297.
- [5] Başer M., Hong C.Y., Kwak T.K., On extended reversible rings, Algebra Colloq. 16 (2009), 37–48.
- [6] Başer M., Kwak T.K., Lee Y., The McCoy condition on skew polynomial rings, Comm. Algebra 37 (2009), no. 11, 4026–4037.
- [7] Clark W.E., Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424.
- [8] Hirano Y., On annihilator ideals of polynomial ring over a noncommutative ring, J. Pure. Appl. Algebra 168 (2002), no. 1, 45–52.
- [9] Hong C.Y., Kim N.K., Kwak T.K., Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226.
- [10] Hong C.Y., Kim N.K., Kwak T.K., On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103–122.
- [11] Hong C.Y., Kwak T.K., Rezvi S.T., Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253–266.
- [12] Hong C.Y., Kim N.K., Lee Y., Ore extensions of quasi-Baer rings, Comm. Algebra 37 (2009), no. 6, 2030–2039.
- [13] Hong C.Y., Kim N.K., Lee Y., Extensions of McCoy's Theorem, Glasg. Math. J. 52 (2010), 155–159.
- [14] Hong C.Y., Jeon Y.C., Kim N.K., Lee Y., The McCoy condition on noncommutative rings, Comm. Algebra 39 (2011), no. 5, 1809–1825.
- [15] Huh C., Lee Y., Smoktunowics A., Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751–761.
- [16] Huh C., Kim H.K., Kim N.K., Lee Y., Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), 154–167.
- [17] McCoy N.H., Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29.
- [18] McCoy N.H., Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286–295.
- [19] Nagata M., Local Rings, Interscience, New York, 1962.
- [20] Nielsen P.P., Semicommutative and McCoy condition, J. Pure Appl. Algebra 298 (2006), 134–141.

- [21] Kim N.K., Lee Y., Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207– 223.
- [22] Rege M.B., Chhawchharia S., Armendariz rings, Proc. Japan Acad. Ser. A Math.Sci. 73 (1997), 14–17.
- [23] Louzari M., On skew polynomials over p.q.-Baer and p.p.-modules, Inter. Math. Forum 6 (2011), no. 35, 1739–1747.
- [24] Zhang C.P., Chen J.L., σ-skew Armendariz modules and σ-semicommutative modules, Taiwanese J. Math. 12 (2008), no. 2, 473–486.

Lycée Technique Al Khawarizmi, Chefchaouen, 91 000, Maroc *E-mail:* mlouzari@yahoo.com

(Received August 27, 2012, revised January 23, 2013)