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On McCoy condition and semicommutative rings

Mohamed Louzari

Abstract. Let R be a ring and σ an endomorphism of R. We give a generalization
of McCoy’s Theorem [Annihilators in polynomial rings, Amer. Math. Monthly
64 (1957), 28–29] to the setting of skew polynomial rings of the form R[x;σ].
As a consequence, we will show some results on semicommutative and σ-skew
McCoy rings. Also, several relations among McCoyness, Nagata extensions and
Armendariz rings and modules are studied.
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1. Introduction

Throughout the paper, R will always denote an associative ring with identity
and MR will stand for a right R-module. Given a ring R, the polynomial ring
with an indeterminate x over R is denoted by R[x]. According to Nielsen [20] and
Rege and Chhawchharia [22], a ring R is called right McCoy (resp., left McCoy)
if, for any polynomials f(x), g(x) ∈ R[x] \ {0}, f(x)g(x) = 0 implies f(x)r = 0
(resp., sg(x) = 0) for some 0 6= r ∈ R (resp., 0 6= s ∈ R). A ring is called McCoy

if it is both left and right McCoy. By McCoy [18], commutative rings are McCoy
rings. Recall that a ring R is reversible if ab = 0 implies ba = 0 for a, b ∈ R, and
R is semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R. It is obvious that
commutative rings are reversible and reversible rings are semicommutative, but
the converse does not hold, respectively. With the help of [8, Theorem 2.2], R
is a McCoy ring when R[x] is semicommutative. Nielsen [20, Theorem 2] showed
that reversible rings are McCoy and he gave an example of a semicommutative
ring which is not right McCoy. Recall that a ring is reduced if it has no nonzero
nilpotent elements. Rege and Chhawchharia called R an Armendariz ring [22,
Definition 1.1], if whenever any polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) =
0, then ab = 0 for each coefficient a of f(x) and b of g(x). Any reduced ring is
Armendariz by [2, Lemma 1] and Armendariz rings are clearly McCoy. We have
the following diagram:

R is reversible
R[x] is semicommutative

R is Armendariz







⇒ R is McCoy
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The Ore extension of a ring R is denoted by R[x;σ, δ], where σ is an endomor-
phism of R and δ is a σ-derivation, i.e., δ : R → R is an additive map such that
δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ R. Recall that elements of R[x;σ, δ] are
polynomials in x with coefficients written on the left. Multiplication in R[x;σ, δ]
is given by the multiplication in R and the condition xa = σ(a)x + δ(a), for all
a ∈ R. For δ = 0, we put R[x;σ, 0] = R[x;σ]. Başer et al. [6], introduced a concept
of σ-skew McCoy for an endomorphism σ of R. A ring R is called σ-skew McCoy,
if for any nonzero polynomials p(x) =

∑n

i=0 aix
i and q(x) =

∑m

j=0 bjx
j ∈ R[x;σ],

p(x)q(x) = 0 implies p(x)c = 0 for some nonzero c ∈ R, and they have proved the
following:

R[x;σ] is right McCoy
R[x;σ] is reversible







⇒ R is σ-skew McCoy

Hong et al. [13, Theorem 1] proved that if σ is an automorphism of R and I

a right ideal of S = R[x;σ, δ] then rS(I) 6= 0 implies rR(I) 6= 0, which extends
McCoy’s Theorem [17].

In this paper, we give another generalization of McCoy’s Theorem, by showing
that for any right ideal I of S = R[x;σ], we have rS(I) 6= 0 implies rR(I) 6=
0 when R is σ-compatible or rS(I) is σ-ideal. As a consequence, if R[x;σ] is
semicommutative then R is σ-skew McCoy. Furthermore, we show some results
on Nagata extensions. For a commutative ring R, we have

1) If R is a domain, then

(a) MR is Armendariz if and only if R⊕σ MR is Armendariz;
(b) the ring R⊕σ MR is semicommutative and right McCoy.

A module MR is called Armendariz if whenever polynomials m =
∑n

i=0 mix
i ∈

M [x] and f =
∑m

j=0 ajx
j ∈ R[x] satisfy mf = 0, then miaj = 0 for each i, j.

2) If R and MR are Armendariz such that MR satisfies the condition (C2
σ) (see

Definition 2.7), then R⊕σ MR is Armendariz.

2. A generalization of McCoy’s Theorem

McCoy [17] proved that for any right ideal I of S = R[x1, x2, . . . , xn] over a
ring R, if rS(I) 6= 0 then rR(I) 6= 0. This result was extended by Hong et al. [13]
to the Ore extensions of several types, the skew monoid rings and the skew power
series rings over noncommutative rings, where σ is an automorphism of R. Herein,
we will extend McCoy’s Theorem to skew polynomial rings of the form R[x;σ]
with σ an endomorphism of R. According to Annin [3], a ring R is σ-compatible,
if for any a, b ∈ R, ab = 0 if and only if aσ(b) = 0. Let σ be an endomorphism of
R and I an ideal of R, we say that the ideal I is σ-ideal , if σ(I) ⊆ I. Let σ be an
endomorphism of a ring R, then for any f(x) =

∑n

i=0 aix
i ∈ R[x;σ], we denote

by σ(f(x)) the polynomial
∑n

i=0 σ(ai)x
i ∈ R[x;σ].
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Theorem 2.1. Let R be a ring, σ an endomorphism of R and I a right ideal in

S = R[x;σ]. Suppose that R is σ-compatible or rS(I) is σ-ideal. If rS(I) 6= 0
then rR(I) 6= 0.

Proof: Suppose that rS(I) 6= 0. If I = 0, then it’s trivial. Assume that I 6= 0.
Let g(x) =

∑m

j=0 bjx
j ∈ rS(I) with bm 6= 0. If m = 0, then we are done, so we can

suppose that m ≥ 1. In this situation, if Ibm = 0, then we are done. Otherwise,
there exists 0 6= f(x) =

∑n

i=0 aix
i ∈ I such that f(x)bm 6= 0 (∗).

If R is σ-compatible, then (∗) implies aiσ
i(bm) 6= 0 for some i ∈ {0, 1, . . . , n},

so aibm 6= 0 because R is σ-compatible, therefore aig(x) 6= 0 for some i ∈
{0, 1, . . . , n}. Take p = max{i|aig(x) 6= 0}, so apg(x) 6= 0 and ap+1g(x) =
· · · = ang(x) = 0. On the other hand, we get apbm = 0 from f(x)g(x) = 0. So
that the degree of apg(x) is less than m such that apg(x) 6= 0. But I(apg(x)) =
(Iap)g(x) = 0 since I is a right ideal of S, so 0 6= apg(x) ∈ rS(I). We can write

apg(x) =
∑ℓ

k=0 apbkx
k with apbℓ 6= 0 and ℓ < m. We have the two possibil-

ities: If ℓ = 0 then apg(x) is a nonzero element in rR(I). Otherwise, ℓ ≥ 1.
Then we will consider apg(x) in place of g(x). We have two cases I(apbℓ) = 0
or I(apbℓ) 6= 0. The first implies 0 6= apbℓ ∈ rR(I), for the second, there exists
0 6= h(x) =

∑s

k=0 ckx
k ∈ I such that h(x)apbℓ 6= 0. Here, we can find q as the

largest integer such that cqapg(x) 6= 0 and then 0 6= cqapg(x) ∈ rS(I) such that
the degree of cqapg(x) is smaller than one of apg(x).

If rS(I) is σ-ideal, then (∗) implies aix
ibm 6= 0 for some i ∈ {0, 1, . . . , n},

therefore aix
ig(x) 6= 0. Take p = max{i|aix

ig(x) 6= 0}, then apσ
p(g(x)) 6= 0

and aix
ig(x) = 0 for i ≥ p + 1. We obtain apσ

p(bm) = 0 from f(x)g(x) = 0.
Also, we have I(apσ

p(g(x))) = (Iap)σ
p(g(x)) = 0 because I is a right ideal of S

and σp(g(x)) ∈ rS(I). So 0 6= apσ
p(g(x)) ∈ rS(I). We can write apσ

p(g(x)) =
apσ

p(b0) + apσ
p(b1)x + · · · + apσ

p(bℓ)x
ℓ, where apσ

p(bℓ) 6= 0 and ℓ < m. If
ℓ = 0 then Iapσ

p(bℓ) = 0, so 0 6= apσ
p(bℓ) ∈ rR(I). Otherwise, ℓ ≥ 1, then

we will consider apσ
p(g(x)) in place of g(x) and 0 6= h(x) =

∑s

k=0 ckx
k ∈ I

such that h(x)apσ
p(bℓ) 6= 0. We can find q as the largest integer such that

cqσ
q(apσ

p(g(x))) 6= 0 and then 0 6= cqσ
q(apσ

p(g(x))) ∈ rS(I) such that the
degree of cqσ

q(apσ
p(g(x))) is smaller than one of apσ

p(g(x)).
Continuing with the same manner (in the two cases), we can produce elements

of the forms 0 6= at1at2 . . . atsσ
t1+t2+···+tsg(x) (resp., 0 6= at1at2 . . . atsg(x)) in

rS(I), with s ≤ m and the degree of these polynomials is zero. Thus
at1at2 · · · atsσ

t1+t2+···+tsg(x) ∈ rR(I) (resp., 0 6= at1at2 . . . atsg(x) ∈ rR(I)).
Therefore rR(I) 6= 0. �

Corollary 2.2 ([8, Theorem 2.2]). Let f(x) ∈ R[x]. If rR[x](f(x)R[x]) 6= 0 then

rR[x](f(x)R[x]) ∩R 6= 0.

Proof: Consider the right ideal I = f(x)R[x]. �

Corollary 2.3. Let R be a ring, σ an endomorphism of R and I a right ideal of

S = R[x;σ]. If S is semicommutative, then rS(I) 6= 0 implies rR(I) 6= 0.



332 M. Louzari

Proof: Let I be a right ideal of S = R[x;σ], f(x) ∈ rS(I) and g(x) ∈ I. Then
g(x)f(x) = 0. Since S is semicommutative we have g(x)Sf(x) = 0, in particular,
g(x)xf(x) = g(x)σ(f)(x) = 0, so σ(f)(x) ∈ rS(I). Thus rS(I) is σ-ideal and we
have the result by Theorem 2.1. �

Corollary 2.4. Let σ be an endomorphism of a ring R. If R[x;σ] is a semicom-

mutative ring then R is σ-skew McCoy.

Proof: It follows directly from Corollary 2.3, by letting I = f(x)R[x;σ]. �

From Corollary 2.4, we obtain immediately [6, Corollary 6] and [8, Corol-
lary 2.3]. According to Clark [7], a ring R is said to be quasi-Baer if the right
annihilator of each right ideal of R is generated (as a right ideal) by an idempo-
tent. Following Başer et al. [4] and Zhang and Chen [24], a ring R is said to be
σ-semicommutative if, for any a, b ∈ R, ab = 0 implies aRσ(b) = 0. A ring R is
called right (left) σ-reversible [5, Definition 2.1] if whenever ab = 0 for a, b ∈ R,
bσ(a) = 0 (σ(b)a = 0). A ring R is called σ-reversible if it is both right and left
σ-reversible. Hong et al. [9], proved that, if R is σ-rigid then R is quasi-Baer if
and only if R[x;σ] is quasi-Baer. Hong et al. [12] have proved the same result
when R is semi-prime and all ideals of R are σ-ideals.

Proposition 2.5. Let R be a σ-semicommutative ring. If R[x;σ] is quasi-Baer

then R is so.

Proof: Let I be a right ideal of R. We have rR[x;σ](IR[x;σ]) = eR[x;σ] for
some idempotent e = e0 + e1x + · · · + emxm ∈ R[x;σ]. By [4, Proposition 3.9],
rR(IR[x;σ]) = e0R. Clearly, rR(IR[x;σ]) ⊆ rR(I). Conversely, let b ∈ rR(I) then
Ib = 0. Since R is σ-semicommutative, we have IR[x;σ]b = 0, so b ∈ rR(IR[x;σ]).
Therefore rR(I) = e0R. �

Example 2.6. Let Z be the ring of integers and consider the ring

R = {(a, b) ∈ Z⊕ Z | a ≡ b (mod 2)}

and σ : R → R defined by σ(a, b) = (b, a).

1) R[x;σ] is quasi-Baer and R is not quasi-Baer, by [9, Example 9].

2) R is not σ-semicommutative. Let a = (2, 0), b = (0, 2). We have ab =
0, but aσ(b) = (2, 0)(2, 0) = (4, 0) 6= 0. Thus R is not σ-semicommutative.
Therefore the condition “R is σ-semicommutative” is not a superfluous condition
in Proposition 2.5.

Definition 2.7. Let R be a ring, MR an R-module and σ an endomorphism of
R. For m ∈ MR and a ∈ R, we say that MR satisfies the condition (C1

σ) (resp.,
(C2

σ)) if ma = 0 (resp., mσ(a)a = 0) implies mσ(a) = 0.
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Proposition 2.8. Let σ be an endomorphism of a ring R.

(1) If R is semicommutative and satisfies the condition (C2
σ) then it is σ-skew

McCoy.

(2) If R is reduced and right σ-reversible then it is σ-skew McCoy.

Proof: (1) Immediately from [23, Proposition 3.4]. (2) Clearly from (1). �

3. Nagata extensions and McCoyness

Let R be a commutative ring, MR be an R-module and σ an endomorphism
of R. The R-module R ⊕σ MR acquires a ring structure (possibly noncommuta-
tive), where the product is defined by (a,m)(b, n) = (ab, nσ(a)+mb), for a, b ∈ R

and m,n ∈ MR. We shall call this extension the Nagata extension of R by MR

and σ. If σ = idR, then R ⊕idR
MR (denoted by R ⊕ MR) is a commutative

ring. Anderson and Camillo [1] have proved that if R is a commutative domain
then MR is Armendariz if and only if R ⊕MR is Armendariz. We will see that
this result holds for R⊕σ MR as well. Kim et al. [21] have proved that, if R is a
commutative domain and σ is a monomorphism of R then R ⊕σ R is reversible,
and so it is McCoy. Recall that if σ is an endomorphism of a ring R, then the
map R[x] → R[x] defined by

∑n

i=0 aix
i 7→

∑n

i=0 σ(ai)x
i is an endomorphism of

the polynomial ring R[x] and clearly this map extends σ. We shall also denote
the extended map R[x] → R[x] by σ and the image of f ∈ R[x] by σ(f). In this
section, we will discuss when the Nagata extension R⊕σ MR is McCoy.

Let R be a commutative domain. The set T (M) = {m ∈ M |rR(m) 6= 0} is
called the torsion submodule of MR. If T (M) = M (resp., T (M) = 0) then MR

is torsion (resp., torsion-free).

Lemma 3.1. If MR is a torsion-free module then it is Armendariz.

Proof: Let m(x) = m0 +m1x+ · · ·+mpx
p ∈ M [x] and f(x) = a0 + a1x+ · · ·+

aqx
q ∈ R[x] such that m(x)f(x) = 0. We may assume that a0 6= 0 (if not, set

f(x) = f ′(x)xk with a minimal k such that ak 6= 0). This implies the following
system of equations:

m0a0 = 0,(0)

m0a1 +m1a0 = 0,(1)

m0a2 +m1a1 +m2a0 = 0,(2)

· · ·

mpaq = 0.(p+ q)

Since MR is a torsion-free module, then from these equations, we obtain mi = 0
for all i ∈ {0, 1, . . . , p}. Thus MR is an Armendariz module. �

Proposition 3.2. Let R be a commutative domain and MR an R-module. Then

R ⊕σ MR is Armendariz if and only if MR is Armendariz. In particular, if MR

is torsion-free then R⊕σ MR is Armendariz.
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Proof: Let R′ = R ⊕σ MR, then we have R′[x] = R[x] ⊕σ M [x]. Suppose that
R′ is Armendariz. Let m =

∑p

i=0 mix
i ∈ M [x] and f =

∑q

j=0 ajx
j ∈ R[x] with

mf = 0. We have (0,m) =
∑p

i=0(0,mi)x
i ∈ R′[x] and (f, 0) =

∑q

j=0(aj , 0)x
j ∈

R′[x], since R′ is Armendariz then (0,mi)(aj , 0) = (0,miaj) = (0, 0) for all i, j.
Thus miaj = 0 for all i, j. Conversely, suppose that MR is Armendariz. Let
f, g ∈ R[x] and m,n ∈ M [x] such that (f,m)(g, n) = (0, 0). Write (f,m) =
∑

(ai,mi)x
i ∈ R′[x] and (g, n) =

∑

(bj , nj)x
j ∈ R′[x]. From (f,m)(g, n) = (0, 0),

we have (fg, nσ(f) + mg) = (0, 0). Since R[x] is a commutative domain, then
f = 0 or g = 0. If f = 0, we get mg = 0. Then mibj = 0 and ai = 0 for all
i, j. Thus (ai,mi)(bj , nj) = (aibj, njσ(ai) + mibj) = (0, 0). Otherwise, we get
nσ(f) = 0. Then bj = 0 and njσ(ai) = 0 for all i, j. Thus (ai,mi)(bj , nj) =
(aibj , njσ(ai) +mibj) = (0, 0). Therefore R⊕σ MR is Armendariz. In particular,
if MR is torsion-free then MR is Armendariz by Lemma 3.1. Therefore R⊕σ MR

is Armendariz. �

Corollary 3.3. Let R be a commutative domain and MR an R-module satisfying

the condition (C2
idR

). Then R⊕σ MR is Armendariz.

Proof: Since MR is semicommutative then it is Armendariz by [23, Lemma 3.3].
�

Proposition 3.4. Let R be a commutative ring and MR an R-module such that

R satisfies (C1
σ) and MR satisfies (C2

σ). Then R⊕σMR is a semicommutative ring.

Proof: We will use freely the conditions (C1
σ) and (C2

σ). Let (r,m), (s, n) ∈
R⊕σ MR such that

(1) (r,m)(s, n) = (rs, nσ(r) +ms) = (0, 0).

We will show that for any (t, u) ∈ R⊕σ MR

(2) (r,m)(t, u)(s, n) = (rts, nσ(rt) + uσ(r)s +mts) = (0, 0).

It suffices to show nσ(rt) + uσ(r)s + mts = 0. Multiplying nσ(r) + ms = 0 of
equation (1) on the right hand by r, gives nσ(r)r = 0, so we get nσ(r) = 0 and
hence ms = 0. Thus nσ(rt) = mts = 0. Clearly rs = 0 implies σ(r)s = 0 and so
uσ(r)s = 0. Therefore nσ(rt) + uσ(r)s +mts = 0. �

Proposition 3.5. Let R be a commutative domain and MR an R-module. Then

R⊕σ MR is a semicommutative right McCoy ring.

Proof: Consider equations (1) and (2) of Proposition 3.4. From equation (1),
we get r = 0 or s = 0 since R is a domain. Say r = 0, then rts = nσ(rt) =
uσ(r)s = 0, and mts = 0 from (1), hence we have (2). Next say s = 0, it follows
rts = uσ(r)s = mts = 0 and nσ(rt) = 0 from (1), and so we have (2). Therefore
(r,m)(R ⊕σ M)(s, n) = 0. For McCoyness, let (r,m), (s, n) ∈ R′ = R ⊕σ MR.
Suppose that (r,m)(s, n)2 = (rs2, nσ(r2)+nsσ(r)+ms2) = 0, then r = 0 or s = 0
which implies (r,m)(s, n) = (rs, nσ(r) + ms) = 0. Thus by Proposition 2.8(1),
R⊕σ MR is right McCoy. �
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The next example shows that under the conditions of Proposition 3.5, R⊕σMR

cannot be reversible.

Example 3.6. Let D be a commutative domain and R = D[x] be the polynomial
ring over D with an indeterminate x. Consider the endomorphism σ : R → R

defined by σ(f(x)) = f(0). Since (x, 1)(0, 1) = (0, 0) and (0, 1)(x, 1) = (0, x) 6=
(0, 0), then R ⊕σ R is not reversible. Thus R ⊕σ MR cannot be reversible under
the conditions of Proposition 3.5.

Lemma 3.7. Let MR be an Armendariz module, m(x) ∈ M [x] and f(x), g(x) ∈
R[x] such that m(x) =

∑n

i=0 mix
i, f(x) =

∑p

j=0 ajx
j and g(x) =

∑q

k=0 bkx
k.

Then

m(x)f(x)g(x) = 0 ⇔ miajbk = 0 for all i, j, k.

Proof: (⇐) Clear. (⇒) If m(x)f(x) = 0 then m(x)aj = 0 for all j. Now, if
m(x)f(x)g(x) = 0 then m(x)[f(x)bk ] = 0 for all k. Since MR is Armendariz we
have mi(ajbk) = 0 for all i, j. Thus miajbk = 0 for all i, j, k. �

Lemma 3.8. If MR is an Armendariz module satisfying the condition (C2
σ). Then

M [x]R[x] satisfies the condition (C2
σ).

Proof: Let m(x) =
∑n

i=0 mix
i ∈ M [x] and f(x) =

∑p

j=0 ajx
j ∈ R[x]. Suppose

that m(x)σ(f(x))f(x) = 0. By Lemma 3.7, miσ(aj)ak = 0 for all i, j, k. In
particular, miσ(aj)aj = 0 for all i, j. Then miσ(aj) = 0 for all i, j. Therefore
m(x)σ(f(x)) = 0. �

Theorem 3.9. Let R be a commutative Armendariz ring, σ an endomorphism

of R and MR a module satisfying the condition (C2
σ). Then MR is Armendariz if

and only if R⊕σ MR is Armendariz.

Proof: Let f, g ∈ R[x] and m,n ∈ M [x] such that (f,m)(g, n) = (0, 0). Write
(f,m) =

∑

(ai,mi)x
i ∈ R′[x] and (g, n) =

∑

(bj , nj)x
j ∈ R′[x]. From (f,m)(g, n)

= (0, 0), we have (fg, nσ(f)+mg) = (0, 0). Since R is Armendariz, then aibj = 0
for all i, j. Multiplying nσ(f) + mg = 0 on the right by f . By Lemma 3.8, we
have nσ(f)f = 0, then nσ(f) = 0 and so mg = 0. Since MR is Armendariz we
have mibj = 0 and niσ(aj) = 0 for all i, j. Thus (ai,mi)(bj , nj) = (aibj , njσ(ai)+
mibj) = (0, 0). Therefore R′ is Armendariz. The converse is clear. �

Corollary 3.10. If R is a commutative reduced ring which satisfies the condition

(C1
σ) then R⊕σ R is semicommutative and Armendariz.

Proof: Immediately by Proposition 3.4 and Theorem 3.9. �

Example 3.11. Consider the ring R = Z2⊕Z2 with the usual addition and mul-
tiplication. Let σ : R → R be defined by σ(a, b) = (b, a). Clearly R is a commu-
tative reduced ring but not a domain. Let A = ((0, 1), (0, 1)), B = ((1, 0), (0, 1))
and C = ((1, 0), (1, 0)). We have

AB = ((0, 1), (0, 1))((1, 0), (0, 1)) = ((0, 0), ((0, 1)σ(0, 1) + (0, 1)(1, 0))) = 0.
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But

ACB = ((0, 1), (0, 1))((1, 0), (1, 0))((1, 0), (0, 1)) = ((0, 0), (1, 0))((1, 0), (0, 1))

= ((0, 0), (1, 0)) 6= 0.

Hence R ⊕σ R is not semicommutative. On other hand, we have (1, 0)(0, 1) = 0,
but (1, 0)σ((0, 1)) = (1, 0)(1, 0) = (1, 0) 6= 0, so R does not satisfy the condition
(C1

σ). Thus the condition (C1
σ) in Corollary 3.10 is not superfluous.
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