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On (4, 1)∗-choosability of toroidal graphs

without chordal 7-cycles and adjacent 4-cycles

Haihui Zhang

Abstract. A graph G is called (k, d)∗-choosable if for every list assignment L

satisfying |L(v)| = k for all v ∈ V (G), there is an L-coloring of G such that each

vertex of G has at most d neighbors colored with the same color as itself. In
this paper, it is proved that every toroidal graph without chordal 7-cycles and
adjacent 4-cycles is (4, 1)∗-choosable.
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1. Introduction

Graphs considered in this paper are finite, simple and undirected. Let G =
(V,E, F ) be a graph, where V , E and F denote the set of vertices, edges and
faces of G, respectively. We use NG(v) and dG(v) to denote the set and number of
vertices adjacent to a vertex v, respectively, and use δ(G) to denote the minimum
degree of G. A face of an embedded graph is said to be incident with all edges
and vertices on its boundary. Two faces are adjacent if they share a common
edge. The degree of a face f of G, denoted also by dG(f), is the number of edges
incident with it, where each cut-edge is counted twice. When no confusion may
occur, we write N(v), d(v), d(f) instead of NG(v), dG(v), dG(f). A k-vertex (or
k-face) is a vertex (or face) of degree k, a k−-vertex (or k−-face) is a vertex (or
face) of degree at most k, and a k+-vertex (or k+-face) is a vertex (or face) of
degree at least k. For f ∈ F (G), we write f = [u1u2 · · ·un] if u1, u2, · · · , un are
the vertices clockwisely lying on the boundary of f . An n-face [u1u2u3 · · ·un] is
called an (m1,m2,m3, · · · ,mn)-face if d(ui)=mi for i = 1, 2, 3, · · · , n. A k-cycle
is a cycle with k edges. Two cycles are adjacent if they share at least one common
edge. A chord of a k-cycle (k ≥ 4) is an edge joining two nonconsecutive vertices
on C and a chordal cycle is a cycle with a chord.

A list assignment of G is a function L that assigns a list L(v) of colors to each
vertex v ∈ V (G). An L-coloring with impropriety d for integer d ≥ 0, or simply
(L, d)∗-coloring, is a mapping φ that assigns a color φ(v) ∈ L(v) to each vertex
v ∈ V (G) such that v has at most d neighbors colored with φ(v). For integers
m ≥ d ≥ 0, a graph G is called (m, d)∗-choosable, if G admits an (L, d)∗-coloring
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for every list assignment L with |L(v)| = m for all v ∈ V (G). An (m, 0)∗-choosable
graph is simply called m-choosable.

The notion of list improper coloring was introduced independently by Škreko-
vski [5] and Eaton and Hull [3]. They proved that every planar graph is (3, 2)∗-
choosable and every outerplanar graph is (2, 2)∗-choosable. Škrekovski proved in
[6] that every planar graph without 3-cycles is (3, 1)∗-choosable, and in [7] that
every planar graph G is (2, 1)∗-choosable if its girth g(G) ≥ 9, (2, 2)∗-choosable
if g(G) ≥ 7, (2, 3)∗-choosable if g(G) ≥ 6, and (2, d)∗-choosable if g(G) ≥ 5 and
d ≥ 4. Lih et al. [4] proved that every planar graph without 4-cycles and l-cycles
for some l ∈ {5, 6, 7} is (3, 1)∗-choosable, Dong and Xu [8] showed that it is also
true for some l ∈ {8, 9}. Cushing and Kierstead [2] constructively proved that
every planar graph is (4, 1)∗-choosable which perfectly solved the last remaining
question left open in [3], [5].

A graph G is toroidal if G can be drawn on the torus so that the edges meet
only at the vertices of the graph. A face f is called 2-cell if any simple closed
curve inside f can be continuously contracted to a single point. An embedding of
G is called a 2-cell embedding if all the faces are 2-cell. We now assume that all
embeddings considered in this paper are 2-cell embeddings.

For toroidal graphs, Zhang [10] proved that every graph G without 5- and 6-
cycles is (3, 1)∗-choosable. Xu and Zhang [9] proved that every toroidal graph
without adjacent triangles is (4, 1)∗-choosable. Chen et al. [1] proved that every
graph embeddable in a surface of nonnegative characteristic without a 5-cycle
with a chord or a 6-cycle with a chord is (4, 1)∗-choosable. Equivalently, every
toroidal graph without chordal k-cycles for each k ∈ {4, 5, 6} is (4, 1)∗-choosable.

Let G denote the family of toroidal graphs containing no chordal 7-cycles and
adjacent 4-cycles. The main result is to show that every graph in G is (4, 1)∗-
choosable. In order to prove the main theorem, we use the technique of discharging
to obtain several forbidden configurations for the graphs in G and state as a
theorem below.

Theorem 1. For every graph G ∈ G, one of the following must hold:

(1) δ(G) < 4;
(2) G contains two adjacent 4-vertices;
(3) G contains a (4, 5, 5)-face.

As a consequence of Theorem 1, we can prove the following Theorem 2.

Theorem 2. Every toroidal graph without chordal 7-cycles and adjacent 4-cycles
is (4, 1)∗-choosable.

2. Proof of the theorems

In the proof of Theorem 1, we use the technique of discharging. In the begin-
ning, each vertex v is assigned a charge 8dG(v)− 24 and each face f is assigned a
charge 4dG(f)−24. Using the Euler-Poincare formula |V (G)|−|E(G)|+|F (G)| = 0
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and the well-known relation
∑

v∈V (G) d(v) =
∑

f∈F (G) d(f) = 2|E(G)|, we have

(1)
∑

v∈V (G)

{8dG(v)− 24}+
∑

f∈F (G)

{4dG(f)− 24} = 0.

By the discharging rules stated in the proof of Theorem 1, we will redistribute
the charges for the vertices and faces so that the total sum of the weights is kept
constant while the transferring is in progress. However, once the transferring is
finished, we get the new charges are nonnegative. Moreover, there exists some
x ∈ V (G) ∪ F (G) such that w′(x) > 0, and then

(2) 0 <
∑

x∈V (G)
⋃

F (G)

w′(x) =
∑

x∈V (G)
⋃

F (G)

w(x) = 0.

This contradiction completes the proof of Theorem 1.

Proof of Theorem 1: Assume to the contrary that the theorem does not hold.
Let G be such a connected graph in G. Let ω be a weight on V (G) ∪ F (G) by
defining ω(v) = 8dG(v) − 24 if v ∈ V (G), and ω(f) = 4dG(f) − 24 if f ∈ F (G).
For two elements x and y of V (G) ∪F (G), we use τ(x → y) to denote the charge
transferred from x to y.

By the choice of G, we have:

(O1) δ(G) ≥ 4;

(O2) every 4-vertex is adjacent to only 5+-vertices;

(O3) G contains no (4, 5, 5)-faces;

(O4) G contains no chordal 7-cycle;

(O5) G contains no adjacent 4-cycles.

Since G has neither 7-cycle with a chord nor adjacent 4-cycles, we further derive
the following facts.

(O6) For any 4+-vertex v, there are no three consecutive triangles incident
with v.

(O7) Each 4-face is adjacent to at most two 3-face, each 5-face is adjacent to at
most one 3-face, each 3-face f is adjacent to at most one 4-face on b(f).

The proof of (O6) is got by (O5) and the proof of (O7) is got by (O4) and
(O5).

Note that (O6) implies that every 4+-vertex v is incident with at most ⌊ 2
3d(v)⌋

3-faces.
Let v be a k-vertex and f be an l-face incident with v. Let mi(v) be the

number of i-faces incident with v. The new charge function w′(x) is obtained by
the discharging rules given below.

(R1) For k ≥ 4, τ(v → f) = 2 if l = 4 or 5.

(R2) For k ≥ 6, l = 3, τ(v → f) = 6.
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(R3) For k = 5, l = 3, τ(v → f) = 5.

(R4) For k = 4, l = 3, τ(v → f) = 2.

We now verify that w′(x) ≥ 0 for any x ∈ V (G) ∪ F (G).

Let v be a k-vertex of G.
If k = 4, then by (R1) and (R4), ω′(v) ≥ ω(v)− 2 · 4 = 0.
If k = 5, then v is incident with at most three 3-faces by (O6).
If m3(v) ≤ 1, then ω′(v) ≥ ω(v)−5 ·m3(v)−2 · (m4(v)+m5(v)) ≥ 16−5−8 =

3 > 0 by (R1) and (R3).
If m3(v) = 2, ω′(v) ≥ ω(v)−5 ·m3(v)−2 ·(m4(v)+m5(v)) ≥ 16−5 ·2−2 ·3 = 0

by (R1) and (R3).
If m3(v) = 3, then m4(v) = m5(v) = 0 by (O5-O7), so ω′(v) = ω(v) − 5 · 3 =

16− 15 = 1 > 0 by (R1) and (R3).
If k = 6, then m3(v) ≤ 4 by (O5). If m3(v) = 4, then m4(v) = m5(v) = 0

by (O5)–(O7), and hence ω′(v) = ω(v) − 6 · 4 = 0 by (R2). If m3(v) = 3, then
m4(v) +m5(v) ≤ d(v) −m3(v) = 3, and hence by (R1) and (R2)

(3) ω′(v) ≥ ω(v)− 6 · 3− 2 · 3 = 0.

If m3(v) ≤ 2, then by (R1) and (R2)

(4) ω′(v) ≥ ω(v)− 6 · 2− 2 · 4 = 4 > 0.

If k = 7, then w(v) = 32 and m3(v) ≤ 4 by (O6). We have w′(v) ≥ 32− 6 · 4−
2 · 3 = 2 > 0 by (R1) and (R2).

If k ≥ 8, m3(v) ≤ ⌊ 2d(v)
3 ⌋ by (O5) and m4(v)+m5(v) ≤ d(v)−m3(v), therefore

by (R1) and (R2), we have w′(v) = w(v)−6 ·m3(v)−2 ·(m4(v)+m5(v)) ≥ w(v)−

6·m3(v)−2·d(v)+2·m3(v) = w(v)−4·m3(v)−2·d(v) ≥ w(v)−4·⌊ 2d(v)
3 ⌋−2·d(v) =

8dG(v)− 24− 8
3 · d(v)− 2 · d(v) = 10

3 · d(v) − 24 > 0.

Let f be an h-face of G. The proof is divided into five cases according to the
value of h.

Case 1. h ≥ 7. Then ω′(f) = ω(f) = 4h− 24 > 0.

Case 2. h = 6. Then ω′(f) = ω(f) = 4 · 6− 24 = 0.

Case 3. h = 5. Then w(f) = −4 and w′(f) = −4 + 2 · 5 = 6 > 0 by (O1)
and (R1).

Case 4. h = 4. Then w(f) = −8 and ω′(f) = −8+ 2 · 4 = 0 by (O1) and (R1).

Let ni(f) denote the number of i-vertices incident with f for i ≥ 4 and n6+(f)
denote the number of 6+-vertices incident with f .

Case 5. h = 3. Then w(f) = −12. We write f = [v1v2v3].

If n6+(f) ≥ 2, then w′(f) ≥ −12 + 6 · 2 + 2 = 2 > 0 by (O1), (R1) and (R2).
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If n6+(f) = 0, then n4(f)+n5(f) = 3 by (O1). By (O2), n4(f) ≤ 1. Moreover,
we have n4(f) = 0, or a contradiction to (O3). So d(v1) = d(v2) = d(v3) = 5 and

(5) w′(f) ≥ −12 + 3 · 5 = 3 > 0.

So we suppose that n6+(f) = 1, then n5(f) ≥ 1 by (O2), hence w′(f) ≥
−12 + 6 · 1 + 5 · 1 + 2 · 1 = 1 > 0.

Now, we get that ω′(x) ≥ 0 for each x ∈ V (G) ∪ F (G). It follows that 0 ≤∑
x∈V (G)∪F (G) ω

′(x) =
∑

x∈V (G)∪F (G) ω(x) ≤ 0.

If
∑

x∈V (G)∪F (G) ω
′(x) > 0, we are done. Assume that

∑
x∈V (G)∪F (G) ω

′(x) =

0, so we have no 3-face by the proof. Then for every vertex v, we have w′(v) ≥
8d− 24− 2d = 6d− 24. It is obvious that every vertex should be a 4-vertex, that
is to say, G is a 4-regular toroidal graph, and this contradiction completes the
proof of Theorem 1. �

Proof of Theorem 2: Assume to the contrary. Let G be a ‘counterexample’
with the fewest vertices, i.e., G is a toroidal graph without chordal 7-cycles and
adjacent 4-cycles that is not (4, 1)∗-choosable, but any proper subgraph of G is
(4, 1)∗-choosable. It is certain that we may assume that G is connected.

Let L be a list assignment of G satisfying |L(v)| = 4 for all v ∈ V (G) such that
G is not (L, 1)∗-choosable.

We will show that δ(G) ≥ 4, and G contains neither two adjacent 4-vertices
nor a (4,5,5)-face. This contradiction to Theorem 1 will complete our proof.

If δ(G) < 4, let v be a 3−-vertex of G. Then, G− v is (4, 1)∗-choosable by the
choice of G. Since in any (L, 1)∗-coloring of G − v, there must exist a color in
L(v) that is not used by any neighbors of v, any (L, 1)∗-coloring of G− v can be
extended to a (L, 1)∗-coloring of G, which is a contradiction.

If G contains two adjacent 4-vertices, say u and v, then by the choice of G,
G − {u, v} is (4, 1)∗-choosable. By the same argument as above, we get G is
(4, 1)∗-choosable, a contradiction also.

If G contains a (4, 5, 5)-face f = [xyz], we may assume that d(x) = 4 and
d(y) = d(z) = 5. Let H = G−{x, y, z}. By the choice of G, H admits an (L, 1)∗-
coloring φ. For w ∈ {x, y, z}, let L′(w) = L(w) \ {φ(u)|u ∈ NH(w)}. Then,
|L′(x)| ≥ 2, |L′(y)| ≥ 1 and |L′(z)| ≥ 1. If L′(y) = L′(z), then color y and z with
a same color γ in L′(y) and color x with a color in L′(x) \ {γ}. If L′(y) 6= L′(z),
then color y with a color α ∈ L′(y)\L′(z), color z with a color in L′(z), and color
x with an arbitrary color in L′(x). In either case, we get an (L, 1)∗-coloring of G.
This contradiction completes the proof of Theorem 2. �
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