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Congruence lattices of intransitive G-Sets and flat M-Sets

Steve Seif

Abstract. An M-Set is a unary algebra 〈X,M〉 whose set M of operations is a
monoid of transformations of X; 〈X,M〉 is a G-Set if M is a group. A lattice L is
said to be represented by an M-Set 〈X,M〉 if the congruence lattice of 〈X,M〉 is
isomorphic to L. Given an algebraic lattice L, an invariant Π(L) is introduced
here. Π(L) provides substantial information about properties common to all
representations of L by intransitive G-Sets. Π(L) is a sublattice of L (possi-
bly isomorphic to the trivial lattice), a Π-product lattice. A Π-product lattice
Π({Li : i ∈ I}) is determined by a so-called multiset of factors {Li : i ∈ I}.
It is proven that if Π(L) ∼= Π({Li : i ∈ I}), then whenever L is represented
by an intransitive G-Set Y, the orbits of Y are in a one-to-one correspondence
β with the factors of Π(L) in such a way that if |I| > 2, then for all i ∈ I,
Lβ(i)

∼= Con(Xi); if |I| = 2, the direct product of the two factors of Π(L) is
isomorphic to the direct product of the congruence lattices of the two orbits
of Y. Also, if Π(L) is the trivial lattice, then L has no representation by an
intransitive G-Set.

A second result states that algebraic lattices that have no cover-preserving
embedded copy of the six-element lattice A(1) are representable by an intransitive
G-Set if and only if they are isomorphic to a Π-product lattice.

All results here pertain to a class of M-Sets that properly contain the G-Sets
— the so-called flat M-Sets, those M-Sets whose underlying sets are disjoint
unions of transitive subalgebras.
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1. Introduction

An M-Set 〈X,M〉 is a unary algebra whose operations M are a monoid of
transformations of X ; if M acts transitively on X , then 〈X,M〉 is itself said to
be transitive; if M is a group, 〈X,M〉 is said to be a G-Set. A lattice L is said to
be represented by an M-Set X = 〈X,F 〉 if L ∼= Con(X).

In [10], J. Tůma proved that every algebraic lattice can be represented by
a transitive G-Set. But it is not the case that every algebraic lattice can be
represented by an intransitive G-Set: Even the four-element lattice 2 × 2 is not
representable by an intransitive G-Set1 .This raises the question that motivates

1This is not difficult to show directly. See Example 1.4.
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this paper: What can be said about lattices that are representable by intransitive
G-Sets?

Each algebraic lattice L will be assigned an invariant Π(L), a certain 0,1 cover-
preserving sublattice of L isomorphic to a so-called Π-product lattice (see Defi-
nition 1.3). A non-trivial2 Π-product lattice Π({Li : i ∈ I}) is subdirectly em-
bedded in (

∏
i∈I Li) × Π(I), where Π(I) is the lattice of partitions of the index

set I; the multiset {Li : i ∈ I} is called the set of factors of Π({Li : i ∈ I}).
Π(L) provides substantial information about properties common to all represen-
tations of L by intransitive flat M-Sets. Given that L is an algebraic lattice with
Π(L) = Π({Li : i ∈ I}), it is proven that every intransitive G-Set representation
of L 〈⊔j∈JXj,M〉 with orbits indexed by J satisfies the following:

• if Π(L) is the trivial lattice, L has no representation by an intransitive
flat M-Set;

• if Π(L) = Π({Li : i ∈ I}) is non-trivial, then |I| = |J |; thus the number
of orbits of any intransitive flat M-Set representation of L is invariant;

• if |I| = 2, then the direct product of the congruence lattice of the orbits
of Y is isomorphic to L1 × L2, the direct product of the two factors of
Π(L); and

• if |I| > 2, then there is a bijection β from I to J such that for all i ∈ I,
Li

∼= Con(Xβ(i)).

Definition 1.1. For n ∈ N, A(n) is the lattice with n atoms that are also co-
atoms, as well as two other atoms that join to a co-atom. (So |A(n)| = n+ 5.)

Figure 1.1. The lattice A(4)

A second main result, given in Corollary 2.5, is of a different flavor and
states that if an algebraic lattice L does not contain a cover-preserving embedded
sublattice isomorphic to A(1), then L has a representation by an intransitive
G-Set if and only if L is isomorphic to a Π-product lattice; thus lattices in cer-
tain well-studied classes (for example, graded lattices and join-semidistributive
lattices) having representations by intransitive G-Sets are given a fairly nontech-
nical characterization.

〈X,M〉 is said to be a flat M-Set if X is the disjoint union of transitive subal-
gebras; note that every G-Set is a flat M-Set. The results stated above hold with

2The trivial lattice is defined to be a Π-product lattice.
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“flat intransitive M-Sets” in place of “intransitive G-Sets”, and were stated for

G-Sets to provide a less cluttered introduction.
Before leaving finite lattices (all results in this paper pertain to arbitrary al-

gebraic lattices), it should also be mentioned that in stark contrast with the
transitive G-Set representation result of Tůma [10] described above, using some
of the ideas presented here, in [9] it is shown there exists c > 0 such that for
high enough n, an isomorphism type of lattice randomly chosen from among n-
lattices having more than one co-atom has likelihood less than 1

2cn
3/2 of being

representable by an intransitive flat M-Set (whether finite or infinite).

1.1 Background and motivation. A congruence θ of an M-Set X = 〈X,M〉
is an equivalence relation on X such that for all (a, b) ∈ θ and all m ∈ M ,
the pair (m(a),m(b)) ∈ θ; the congruence θ determines a quotient algebra X/θ.
The congruences of an M-Set X form a lattice, denoted Con(X). The diagonal
relation on X , the least congruence of X, is denoted ∆; the universal congruence,
the greatest congruence of X, is denoted ∇. A non-trivial M-Set 〈X,M〉 is said
to be simple (or, primitive) if its only congruences are ∆ and ∇. If β ≥ α in
Con(X), then the congruence on X/α induced by β will be denoted β/α; also
for u ∈ X , u/α or u will be used to denote the image of u under the canonical
homomorphism associated with α. For u, v ∈ X , the congruence generated by
(u, v) is denoted Cg(u, v). For subsets U, V ⊆ X , let Cg(U × V ) denote the
congruence on X generated by U × V .

As mentioned, a lattice L is said to be represented by an M-Set X = 〈X,F 〉
if L ∼= Con(X). G. Grätzer and T. Schmidt [2] characterized those lattices that
are representable by an M-Set, the so-called algebraic lattices , as those complete
lattices whose set of compact elements3 generates L via joins; since a finite lat-
tice L is algebraic, by [2], L is represented by an M-Set. A longstanding open
problem, the Finite Lattice Representation Problem (FLRP), asks whether every
finite lattice can be represented by a finite M-Set.

The central role of transitive finite G-Sets in the FLRP was established by the
theorem of P.P. Pálfy and P. Pudlák [4]. For a group G, let Sub(G) be its lattice
of subgroups. They proved that the following statements are equivalent.

• Every finite lattice is the congruence lattice of some finite M-Set.
• Every finite lattice is isomorphic to an upper interval in Sub(G), where
G is some finite group.

• Every finite lattice is the congruence lattice of a finite transitive G-Set.

It is thought that the FLRP has a negative answer, and if that is the case, the
first two of the following three questions are of interest, and the third question,
while motivated in part by the role of transitivity in the FLRP , is a viable question
regardless of the answer to the FLRP .

3An element a in a complete lattice L is compact if whenever a is bounded above by a join
of a set S ⊂ L, then there exists a finite subset S0 ⊆ S such that a ≤ ∨S0.
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Problem 1. (1) Do there exist finite lattices that have finite representations

but are not representable by a finite transitive G-Set?

(2) Do there exist finite lattices that have finite representations but are not

representable by a finite G-Set?

(3) What can be said about finite lattices having intransitive finite represen-

tations?

Though not motivated by the FLRP , deep results on congruence lattices of
intransitive G-Sets (not necessarily finite) are contained in B. Vernikov’s paper
[11]. Certain results from [11] are generalized here, from G-Sets to flat M-Sets,
but a main purpose of this paper is to show that the Π invariant, and Π-product
lattices in general, are essential in developing an understanding of the lattices
that represent intransitive flat M-Sets.

1.2 Flat M-Sets and Π-product lattices. Flat M-Sets are exactly those M-
Sets 〈X,M〉 for which the underlying set X is a disjoint union of transitive subal-
gebras (i.e. “orbits”). It will be helpful to have another definition of flat M-Sets,
one that involves the algebraic quasiorder on X determined by M .

Definition 1.2. The monoid M of an M-Set 〈X,M〉 determines a quasiorder ≥M

on X : For a, b ∈ X , a ≥M b if there exists g ∈ M such that g(a) = b. If 〈X,M〉
satisfies a ≥M b if and only if b ≥M a, then 〈X,M〉 is said to be a flat M-Set.

Every transitive M-Set is flat, and, as mentioned, so are all G-Sets. An intran-
sitive flat M-Set Y having {Xi : i ∈ I} as its set of orbits (where I is an index set)
will be denoted Y = 〈⊔i∈IXi,M〉. For i ∈ I, Xi is the underlying set of a subalge-
bra denoted Xi. For α ∈ Con(X), and for i ∈ I, let αi = Cg(α∩(Xi×Xi)); abus-
ing the notation slightly, αi will also be interpreted as a congruence ofXi. Observe
that Con(Xi) is isomorphic to the ideal of Con(Y) given by {αi : α ∈ Con(X)}.
It is convenient to have multiple ways to describe both an orbit and “restrictions”
of congruences to orbits: For u ∈ Y , Xu will denote the orbit containing u, and
for α ∈ Con(Y), αu is Cg(α ∩ (Xu × Xu)). If u, v are in different orbits, let
αu,v = Cg(α ∩ (Xu ×Xv)), the restriction of α to the two orbits Xu and Xv.

For a lattice L, a covers b, denoted a ≻ b, if a > b and for all c ∈ L, if a > c ≥ b,
then c = b. Elements of L that cover 0 are called atoms ; elements of L covered
by 1 are called co-atoms . For a bounded lattice L, when the context is clear, 0
denotes the bottom element of L and 1 the top element of L; exceptions are made
for congruence lattices (and other sublattices of partition lattices), where ∆ and
∇ are used to denote the bottom and top elements, respectively. If a, b ∈ L and
b ≥ a, let I[a, b] denote the interval {c ∈ L : b ≥ c ≥ a}. For a bounded lattice L,
a 0,1 sublattice S of L is a sublattice containing 0 and 1 of L. A sublattice S
of a lattice L is said to be cover-preserving embedded in L if a ≻ b in S implies
that a ≻ b in L as well. Mn is the lattice having n atoms that are also co-atoms,
a lattice with n + 2 elements. For an algebraic lattice A, A ⊕ 1 is the lattice A
topped by a new greatest element. For n ∈ N, let n be the n-element chain. (So 1
is the trivial lattice.) For background on algebras and lattices, consult [1] and [3].
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1.2.1 Π-product lattices: definition, examples, and elementary prop-
erties. For a set I, let Π(I) denote the lattice of partitions4 of I; for α ∈ Π(I)
and a, b ∈ I, if a and b are in the same class of α, write aαb or (a, b) ∈ α. Let
a/α = {b ∈ I : aαb}, the α class of a. If i ∈ I, and i/α is a singleton set, then i
will be said to be α-isolated .

Π-product lattices are now defined. Let {Li : i ∈ I} be a multiset of lattices in-
dexed by a set I. (For i ∈ I, 0i, 1i will often be used to denote the bottom and top
elements of Li, respectively.) The Π-product lattice Π({Li : i ∈ I}) is subdirectly
embedded into (

∏
i∈I Li)×Π(I), and a generic element a of (

∏
i∈I Li)×Π(I) is

denoted by (. . . , ak, . . . , σ), where k ∈ I, ak ∈ Lk, and σ ∈ Π(I); the component
σ will be referred to as the “right-most component” or as “R(a)”.

Definition 1.3. Let I be an index set, with |I| > 1, and let {Li : i ∈ I} be
a multiset of algebraic lattices. The Π-product lattice Π({Li : i ∈ I}) is the
sublattice of (

∏
i∈I Li)×Π(I) consisting of elements of the form (. . . , ak, . . . , α)

where for k ∈ I, if k is not α-isolated, then ak = 1k.
For i ∈ I, the lattice Li is said to be a factor of Π({Li : i ∈ I}). Those

Π-product lattices having a finite set of factors, say L1, . . . , Ln, are denoted
Π(L1, . . . , Ln).

Lastly, the one-element lattice is considered a Π-product lattice.

Let a = (. . . , ai, . . . , R(a)) ∈ Π({Li : i ∈ I}). For k ∈ I, the “kth component
of a” will be referred to as a(k) or as ak. Π-product lattices are complete lattices,
as is easily verified. For a set I, with |I| > 1, note that the partition lattice
Π(I) is isomorphic to the Π-product lattice having |I| trivial factors. Requiring
in the definition that each factor of a Π-product lattice is algebraic will promote
Π-product lattices to algebraic lattices, as will be shown in Lemma 1.6 below.
Lemma 1.4(2) shows that a Π-product lattice Π({Li : i ∈ I}) enjoys a property
that the full direct product (

∏
i∈I Li)×Π(I) does not.

Lemma 1.4. Let L = Π({Li : i ∈ I}) be a Π-product lattice.

(1) An element of L is maximal if and only if it is of the form (. . . , ak, . . . , α),
where for all k ∈ I, ak = 1k and α is maximal in Π(I).

(2) With j the meet of the maximal elements of L, the interval I[j, 1] is

isomorphic to Π(I).

Proof: Elements of the form (. . . , 1k, . . . , α), where ak = 1k for all k ∈ I, and
α is maximal in Π(I), are clearly maximal; moreover, if a is not 1L and a =
(. . . , ai, . . . , R(a)), then a is bounded above by the maximal element (. . . , 1i, . . . , µ),
where µ is maximal in Π(I), µ ≥ R(a), and for all k ∈ I, ai = 1i, completing
the proof of (1). For (2), that Π({Li : i ∈ I}) is complete means that the meet
of the maximal elements of Π({Li : i ∈ I}) exists; denote it by j. The map

4The lattice of partitions of I is isomorphic to the lattice of equivalence relations of I, and
no distinction will be made between these two lattices, or between partitions and equivalence
relations.
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R : I[j, 1L] → Π(I) given by l → R(l) (for all l ∈ I[j, 1L]) is a lattice isomor-
phism. �

Remark 1.5. For a Π-product lattice Π({Li : i ∈ I}), let j be the meet of its
maximal elements. For each i ∈ I, the element (. . . , . . . , 1i, . . . ,∆), where for
k ∈ I with k 6= i, ak = 0k, is denoted ji. Of course I[0, ji] ∼= Li, ∨i∈I ji = j, and
I[0, j] ∼=

∏
i∈I Li.

Example 1.1. Consider the following two Π-product lattices Π(2, 2, 2) and
Π((2)3, 1, 1). Let α1 = 1|2, 3, α2 = 1, 3|2, α3 = 1, 2|3. Observe that in Π(2, 2, 2),
for each of i = 1, 2, 3, there are two elements having right-most component αi.
Also, there are eight elements having right-most component ∆, and there is one
element having right-most component ∇, for a total of 15 elements. Now consider
Π((2)3, 1, 1). There are eight elements having right-most component α1, eight
elements having right-most component ∆, and for each of i = 2, 3, there is one
element having right-most component αi, from which it follows that this lattice
has 19 elements.

Example 1.2. Suppose A is an algebraic lattice with a unique co-atom. Thus
A ∼= (B⊕ 1), where B is an algebraic lattice. Suppose that B ∼= C ×D. Then, as
is not difficult to show, A ∼= Π(C,D) with the unique co-atom of Π(C,D) given
by (1C , 1D,∆). The last sentence also indicates that any two-factor Π-product
lattice has a unique co-atom. The following has been shown: An algebraic
lattice L is isomorphic to a two-factor Π-product lattice if and only if
L has a unique co-atom.

Note also that for algebraic lattices C and D, Π(C,D) ∼= Π(1, C×D), so quite
different pairs of factors might determine the same isomorphism class of Π-product
lattices. However, if L and N are Π-product lattices and L has more than two
factors, then L and N are isomorphic if and only if there is a matching between
the multisets of factors of L and of M such that matched pairs are isomorphic
lattices. See Lemma 3.2(5).

Example 1.3. Consider first 〈{0, 1, 2}, C3〉, where C3 is the three-element group
of transformations of {0, 1, 2} generated by the 3-cycle (0, 1, 2). Now let X be
the “doubling” of 〈{0, 1, 2}, C3〉; that is, X = 〈{0, 1, 2} ⊔ {0, 1, 2}, C3〉, where the
action of C3 is the same on both copies of {0, 1, 2}.

Let J be the congruence on X that collapses each orbit to a singleton. (So
withX above,X/J is isomorphic to the two-element disconnected unary algebra.)
For i = 1, 2, let Ji be the congruence that collapses one orbit (so for i = 1, 2,
Ji = {(x, y) : x = y or {x, y} ⊆ Xi}); that each orbit in this example is simple
implies that Ji is a minimal congruence.

Let {0̇, 1̇, 2̇} and {0̈, 1̈, 2̈} denote the two copies of X . X has just three more
congruences, α1 = Cg(0̇, 0̈), α2 = Cg(0̇, 1̈), and α3 = Cg(0̇, 2̈), each a minimal
congruence that is also a maximal congruence; thus, Con(X) is isomorphic to
A(3). Figure 2.1 provides the Hasse diagram of Con(X) along with its so-called
transitivity labeling; the transitivity labeling is described in Section 2.1.
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From Lemma 1.4(2) it follows that Con(X) is not isomorphic to a partition
lattice, but it does contain numerous 0,1 cover-preserving embedded Π-product
sublattices. Here is the list of them: Let A be the five-element lattice with under-
lying set {∆,J ,J1,J2,∇}, a lattice isomorphic to Π(2, 2); B, with underlying set
{∆, α1, α2, α3,∇}, is isomorphic to Π(1, 1, 1) ∼= M3; C1, C2, C3, each isomorphic
to Π(1, 2) ∼= 3; D1, D2, each isomorphic to Π(1, 3) ∼= 4.

Of these only A ∼= Π(2, 2) might indicate that X has exactly two orbits,
each orbit having congruence lattice 2, and so, not surprisingly, Π(Con(X)) =
Π(A(3)) = A, which can be verified from the definition of Π, given by Defini-
tion 2.6 and Definition 2.7.

Example 1.4. It is shown that, as stated in the second paragraph of the paper,
2 × 2 has no intransitive G-Set representation: Let X be a flat M-Set, and once
again let J be the congruence that identifies the elements within each orbit. So
X/J has singleton orbits, and Con(X/J ) is isomorphic to a partition class Π(I),
where I indexes the orbits of X. Thus if X has more than two orbits, Con(X)
has a copy of M(3), a five-element lattice. If X has two orbits, one of which is
a singleton orbit, then, as is easy to verify, J is its unique maximal congruence.
Lastly, if X has two non-singleton orbits X1 and X2, then it is not difficult to see
that I[∆,J ] ∼= Con(X1)× Con(X2), a direct product of two non-trivial lattices,
and since J < ∇, Con(X) has more than four elements. It now follows that 2× 2
has no intransitive flat M-Set representation; thus, it has no intransitive G-Set
representation.

As mentioned above, Π-product lattices are algebraic; indeed, every non-trivial
Π-product lattice is isomorphic to the congruence lattice of some intransitive flat
M-Set, as is shown in Lemma 1.6 below.

Lemma 1.6. Let I be an index set with |I| > 1, and suppose {〈Xi, Vi〉 : i ∈ I} =
{Xi : i ∈ I} is a multiset of transitive M-Sets. Then Π({Con(Xi) : i ∈ I}) is

the congruence lattice of the intransitive flat M-Set 〈⊔i∈IXi,
∏

i∈I Vi〉, where for

m ∈
∏

i∈I Vi, and for i ∈ I with xi ∈ Xi, m(xi) = mi(xi), the latter determined

by 〈Xi, Vi〉. Moreover, for all i ∈ I, Con(〈Xi,
∏

i∈I Vi〉) ∼= Con(〈Xi, Vi〉).
Thus each non-trivial Π-product lattice Π({Li : i ∈ I}) is representable by an

intransitive flat M-Set 〈⊔i∈IXi,M〉 where, for all i ∈ I, Li
∼= Con(Xi).

Proof of Lemma 1.6: For i ∈ I, let Xi = 〈Xi, Vi〉 be a transitive M-Set. Form
the flat M-Set X = 〈⊔i∈IXi,

∏
i∈I Vi〉 where the action of

∏
i∈I Vi is as described

in the statement of the lemma.∏
i∈I Vi acts independently on the orbits, and this implies that if i 6= j in I,

and xi ∈ Xi and xj ∈ Xj, then Cg(xi, xj) contains Xi ×Xj .
A function F : Con(X) → Π({Con(Xi) : i ∈ I}) is defined: For α ∈ Con(X),

let F (α) = (. . . , αk, . . . , R(α)), where for k ∈ I, αk is the restriction of α to
Xk, and for j, k ∈ I, (j, k) ∈ R(α) if there exist xj ∈ Xj and xk ∈ Xk such
that (xj , xk) ∈ α. By the previous paragraph, it follows both that F maps into
Π({Con(Xi) : i ∈ I}) and that F is injective. It is routine to verify that F is
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surjective and that F and F−1 are order-preserving. Since the domain and co-
domain of F are both complete lattices, it follows that F is a lattice isomorphism,
completing the proof of the first part.

By [2], given an algebraic lattice A, there exists an M-Set 〈U,M〉 that repre-
sents A. Adding all constant operations to U results in a new M-Set 〈U,MC〉 that
still represents A. Now given a multiset of algebraic lattices {Li : i ∈ I}, using
the above construction with the “constant-augmented” M-Sets, a flat intransitive
M-Set can be formed that represents Π({Li : i ∈ I}). �

Corollary 1.7. (1) Each non-trivial Π-product lattice is representable by an

intransitive G-Set.

(2) The class of finite lattices that are representable by finite M-Sets is closed

under Π-product.

Proof: As mentioned, every algebraic lattice is representable by a transitive G-
Set [10]. When the construction of Lemma 1.6 is applied to G-Sets, the monoid
that acts on the disjoint union of sets is a direct product of G-Sets, which is also
a G-Set, which proves (1). That same construction of Lemma 1.6 given a finite
set of finite M-Sets outputs a finite flat M-Set, which is sufficient for (2). �

Definition 1.8. Let Y = 〈⊔i∈IXi,M〉 be an intransitive flat M-Set. Then Y
satisfies Property K if whenever xi ∈ Xi, xj ∈ Xj whereXi, Xj are distinct orbits,
then Cg(xi, xj) contains Xi ×Xj .

Remark 1.9. Note that in the definition above, “Xi×Xj” could be replaced by
“Xi × Xi” with the resulting definition equivalent to the given one, a fact that
will be used without comment.

Observe that the flat intransitive M-Set Y = 〈⊔i∈I ,
∏

i∈I Vi〉 of Lemma 1.6
satisfies Property K.

1.3 How Π-product lattices are 0,1 embedded in congruence lattices
of flat intransitive M-Sets. Suppose Y = 〈⊔i∈[n]Xi,M〉 is an intransitive flat
M-Set.

Let the direct product M I act on ⊔i∈IXi as follows: For m = (. . . ,mi, . . . ,
mj , . . .) ∈ M I and xi ∈ Xi (where i ∈ I), let m(xi) = mi(xi), this last output
determined by 〈Xi,M〉. M I is defined in a manner similar to a definition given
in Lemma 1.6; in Lemma 1.6, one begins with a set of transitive M-Sets, whereas
here the transitive M-Sets are given as orbits of a single intransitive flat M-Set.

Definition 1.10. Let Π(Y) = 〈⊔i∈IXi,M
I〉, where the action of M I on ⊔i∈IXi

is as given above.

Let ∆(M I) = {(. . . ,mi, . . . ,mj , . . .) : ∀i, j ∈ I, mi = mj} on Y ; its action
⊔i∈IXi is identical with that of M ; thus, Con(Y) contains Con(Π(Y)) as a 0, 1
sublattice, one that is (as will be proven in Lemma 5.5) a cover-preserving sublat-
tice. The important J congruence (seen in two examples above) is defined next,
followed by Lemma 1.12 which list elementary properties of J . Then Lemma 1.13
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describes relationships involving Property K, Π-product lattices, and Π(Y) flat
M-Sets, and the J relation.

Definition 1.11. Let Y = 〈⊔i∈IXi,M〉 be an intransitive flat M-Set.

(1) Let J = {(a, b) ∈ Y 2 : ∃i ∈ I such that {a, b} ⊆ Xi}.
(2) For i ∈ I, let Ji = {(a, b) : a = b or {a, b} ⊆ Xi}.
(3) For γ ∈ Con(Y), let Jγ be the J relation on Y/γ.

Observe that (a, b) ∈ J implies that (a/γ, b/γ) ∈ Jγ .

Lemma 1.12. Let Y = 〈⊔i∈IXi,M〉 be a flat M-Set. Then the following hold:

(1) J is a congruence, as is, for i ∈ I, Ji;

(2) Y/J is a flat M-Set whose |I| orbits are all singletons;

(3) Con(Y/J ) is isomorphic to a partition lattice; and

(4) J = ∨i∈IJi, and I[∆,J ] ∼=
∏

i∈I Con(Xi).

Proof: (1) is obvious. That J collapses orbits but does not identify elements
in different orbits implies that Y/J is a flat M-Set having singleton orbits, those
orbits in one-to-one correspondence with I. ThusM acts like the trivial monoid on
Y/J , and therefore its congruence lattice is isomorphic to Π(I). (4) is clear. �

Lemma 1.13. Let Y be an intransitive flat M-Set. Then the following hold:

(1) Con(Π(Y)) is a 0, 1 sublattice of Con(Y);
(2) Π(Y) is an intransitive flat M-Set having the same orbits as Y;

(3) Π(Y) satisfies Property K;

(4) Con(Π(Y)) is isomorphic to a Π-product lattice, namely Π({Con(Xi) :
i ∈ I});

(5) α ∈ Con(Π(Y)) if and only if (c, d) ∈ α− J implies (Xc ×Xd) ⊂ α;
(6) all elements in Con(Y) that are comparable to J are in Con(Π(Y)); that

is, I[∆,J ] ∪ I[J ,∇] is contained in Con(Π(Y));
(7) the meet of the maximal congruences ofΠ(Y) is J , and the map x → x∧J

is a surjective lattice homomorphism from Con(Y) to I[∆,J ]; and
(8) Y satisfies Property K if and only if Con(Π(Y)) = Con(Y). Thus, if

Y = 〈⊔i∈IXi,M〉 satisfies Property K, then Con(Y) is isomorphic to a

Π-product lattice, namely Π({Con(Xi) : i ∈ I}).

Proof: The explanation for (1) was given right after Definition 1.10. The proof
of Lemma 1.6 can be slightly modified to produce proofs for (2), (3), and (4) of
this lemma. For (5), if α ∈ Con(Π(Y)), that M I acts independently on orbits and
M I is transitive on each orbit ensure that if (c, d) ∈ α−J , then (Xc ×Xd) ⊂ α.
Conversely, using that J is invariant under M I , if α ∈ Con(X) has the property
that (c, d) ∈ α − J implies (Xc × Xd) ⊂ α, then α is also invariant under M I ;
therefore, α ∈ Con(Π(Y)). For (6), a congruence α ∈ I[J ,∇] (an interval of
Con(Y)) contains J so it certainly satisfies (c, d) ∈ α−J impliesXc×Xd ⊆ α, and
congruences in I[∆,J ] satisfy (in a vacuous way) that same sufficient condition
for containment in Con(Π(Y)).
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For (7), by Lemma 1.12(3), I[J ,∇] is isomorphic to a non-trivial partition
lattice (a lattice whose maximal elements meet to their bottom element); thus, J
is a meet of the maximal congruences contained in Y. Suppose for contradiction
that there exists φ maximal in Con(Π(Y)) but φ 6≥ J . Thus there exists i ∈ I
such that φi does not contain Ji = Cg(Xi×Xi). Since Π(Y) satisfies Property K,
it follows that if j ∈ I and i 6= j, thenXi×Xj∩φ = ∅. Let ρ = Ji∨Cg(Y −{Xi}), a
congruence of Π(Y) that is not maximal (since φi < Cg(Xi×Xi)) and contains φ,
a contradiction. It now follows that the meet of the maximal congruences of Π(Y)
is J . The last part of (7) now follows from the first part of (7) and the fact that in
any Π-product lattice whose meet of maximal elements is j, the map x → (x∧ j)
is a surjective lattice homomorphism onto I[0, j].

For the “if and only if” part of (8), suppose first that Y satisfies Property K.
Property K implies that for all congruences α ∈ Con(Y), if (c, d) ∈ α − J , then
Xc × Xd ⊂ α, which implies that α ∈ Con(Π(Y)). Conversely, if Con(Y) =
Con(Π(Y)), then since Π(Y) satisfies Property K (as shown in (3) of this lemma)
and Property K is a property defined in terms of principal congruences and orbits,
and these agree with those of Π(Y), it follows readily that Y satisfies Property K.
For the last part of (8), assume Y satisfies Property K. As the first part of (8)
showed, Con(Y) = Con(Π(Y)); now from (4) of this lemma, Con(Π(Y)) ∼=
Π({Con(Xi) : i ∈ I}), and the last part of (8) now follows. �

Remark 1.14. (1) For the flat M-set X of Example 1.3, Con(Π(X)) has
underlying set {∆,J1,J2,J ,∇} (a sublattice denoted A): Adding the
non-diagonal operations of C3 × C3 kills off the congruences α1, α2, α3.
Notice that Con(Π(X)) = Π(Con(X)), an equality that Theorem 2.8
states holds for an arbitrary flat intransitive M-Set Z.

(2) By Lemma 1.13(8) a flat intransitive M-Set satisfying Property K has a
congruence lattice isomorphic to a Π-product lattice. The converse is also
true, and is part of the statement of Theorem 2.4. (See (4) implies (2)).

2. Statement of the two main theorems

Theorem 2.4 provides necessary and sufficient conditions for a flat intransitive
M-Set to satisfy Property K, and Corollary 2.5 states that a lattice having no
A(1) cover-preserving sublattice can be represented by an intransitive flat M-Set
if and only if it is isomorphic to a Π-product lattice. Several definitions are needed
before Theorem 2.4 can be stated.

2.1 Transitivity labeling of congruence lattices of M-Sets. Let X =
〈X,M〉 be an arbitrary M-Set . The monoid of transformations M determines
a quasiordering ≥M on X , called the algebraic quasiorder , given by a ≥M b if
there exists t ∈ M such that t(a) = b. Let J be the equivalence relation given by
(a, b) ∈ J if a ≥M b and b ≥M a. Observe that X is transitive if and only if J
is the universal relation, and that the J relation given in Definition 1.11 for flat
M-Sets coincides on flat M-Sets with the J relation just defined.
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For u ∈ X , let Ju denote the equivalence class of J containing u. Let X/J
denote the set of J classes of X, and observe that there is a partial order on X/J
given by: Ju ≥M Jv if u, v ∈ X and u ≥M v. An M-Set 〈X,M〉 is flat if and only
if X/J is an anti-chain.

The transitivity labeling for the Hasse diagram of an arbitrary M-Set is defined.

Definition 2.1. Let X be a flat M-Set. If β ≻ α in Con(X), then the edge 〈α, β〉
of the Hasse diagram of Con(X) is labeled as follows:

(1) + (written as Tr 〈α, β〉 = + ) if for all (a, b) ∈ β−α, there exists s ∈ M
such that (s(a), b) ∈ α;

(2) otherwise, 〈α, β〉 is labeled −−− (written as Tr 〈α, β〉 = −−−).

Remark 2.2. Let X be any M-Set.

(1) Note that if γ ∈ Con(X) and φ ≻ µ ≥ γ in Con(Y), then the definition
of the transitivity labeling guarantees that Tr 〈µ, φ〉 = Tr 〈µ/γ, φ/γ〉.

(2) If β ≻ ∆, observe that Tr 〈∆, β〉 = + if and only if β ≤ J .

Using basic properties of algebraic lattices and a Zorn’s Lemma argument, it
is not difficult to show (but it will not be used in this paper) that for any M-Set
X = 〈X,M〉, the M-Set X is transitive if and only if all transitivity labels of
the Hasse diagram of Con(X) are + . An interval I[µ, γ] is transitive if for all
(a/µ, b/µ) ∈ X/µ, there exists f ∈ M such that f(a/µ) = b/µ. It is not difficult
to prove that I[µ, γ] is transitive if and only if all transitivity labels of the Hasse
diagram of the interval I[µ, γ] are + . The transitivity labeling of the eight-
element congruence lattice of the six-element M-Set X of Example 1.3 is given
below.

∆

∇

J

J1 J2 α1 α2 α3

+
+

+

++
+

+

−
−

−

−

Figure 2.1. Con(X) ∼= A(3), transitivity-labeled

Remark 2.3. The remarks that follow involve M-Sets that are not necessarily
flat, and they will not be used in this paper: For arbitrary M-Sets, J is not in
general a congruence. See [6] (in which the transitivity labeling was called the
signed labeling), where it was proven that there exists a non-obvious semimodu-
larity5 constraint on congruence lattices of arbitrary algebras, and [7], where the
transitivity labeling is used to show that there exist transitivity-forcing algebraic

5A lattice L is semimodular, if a, b, c ∈ L, b ≻ a and c ∧ b = a, then a ∨ c ≻ c.
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lattices, lattices whose every representation (finite or infinite) is transitive, and
there also exist strongly-transitivity-forcing lattices L satisfying the following: If
X is an M-Set, γ > µ in Con(X), and L ∼= I[µ, γ], then I[µ, γ] is a transitive
interval. For example, if L is a non-semimodular algebraic lattice all of whose
proper subintervals are semimodular, then L is strongly-transitivity-forcing, as is
proven in [7].

2.1.1 The statement of the first main theorem. The first main theorem
incorporates a slight reformulation of a non-trivial result ((1) implies (2) of The-
orem 2.4 below) of B. Vernikov in [11]. In fact, the proof of (1) implies (2) is that
of Vernikov (except for small details), and is given here for completeness and to
frame the proof of the equivalence of (2) through (5) in Theorem 2.4.

Theorem 2.4. Let I be an index set with |I| > 1, and let X = 〈⊔i∈IXi, L〉 be
an intransitive flat M-Set. Consider the five statements below.

(1) Con(X) contains no cover-preserving sublattice isomorphic to A(1).
(2) X satisfies Property K.

(3) Con(X) contains no non-uniformly labeled cover-preserving sublattice iso-

morphic to A(1).
(4) Con(X) is isomorphic to a Π-product lattice.
(5) Con(X) ∼= Π({Con(Xi) : i ∈ I}).

Then

(a) (due to B. Vernikov) (1) implies (2).
(b) (2), (3), (4), and (5) are equivalent.

The next corollary completely characterizes, for a broad class containing several
important classes of lattices, those algebraic lattices that have a representation
by an intransitive flat M-Set.

Corollary 2.5. An algebraic lattice L having no cover-preserving sublattice iso-

morphic to A(1) has an intransitive M-Set representation if and only if L is

isomorphic to a Π-product lattice.

2.2 The statement of the second main theorem, Theorem 2.8. For an
algebraic lattice L, a certain subset of the Π-product sublattices of L, its Π-
possible sublattices, are defined in Definition 2.6.

Definition 2.6. Let L be a lattice. A sublattice A of L is Π-possible if the
following hold:

(1) A is a 0, 1 cover-preserving embedded sublattice of L;
(2) A is isomorphic to a Π-product lattice; and
(3) let k be the meet of the maximal elements of A. Then the following must

hold:
(a) the intervals of L given by I[0, k] and I[k, 1] are both contained in

A, and
(b) if b ≤ k and I[b, k] is isomorphic to a non-trivial partition lattice,

then n is maximal in L and n ≥ b jointly imply that n ∈ A.
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Note that the only Π-possible sublattice of A(3) ∼= Con(X), the two-orbit flat
M-Set of Example 1.3, is the lattice A, having underlying set {∆,J1,J2,J ,∇};
the 3-chains D1, D2, D3 all fail 3(b), while B and the 4-chains D1 and D2 fail
3(a).

Definition 2.7. Let L be a non-trivial algebraic lattice. If L has a Π-possible
sublattice A such that every Π-possible sublattice of L is contained in A, then
Π(L) = A; otherwise, Π(L) = 1.

Since the only Π-possible sublattice of A(3) is A, it follows that Π(A(3)) = A.
The notation“Π” is used in quite a few ways, and the tight interplay of these
usages is the crux of the first part of Theorem 2.8. As it turns out, Theo-
rem 2.8(1), (2), and (3) all follow from that first part of the theorem, in tandem
with Lemma 3.2(5), a lemma that catalogs properties of Π-product lattices.

Theorem 2.8. If X is an intransitive flat M-Set, thenΠ(Con(X)) = Con(Π(X)).
Moreover, for an algebraic lattice L, the following hold when X is a flat M-Set.

(1) If Π(L) is the trivial lattice and L ∼= Con(X), then X is transitive.

(2) Suppose Π(L) = Π(L1, L2). If L ∼= Con(X), then either X is transitive

or X has two orbits, X1 and X2, and L1 × L2
∼= Con(X1) × Con(X2);

and

(3) if Π(L) = Π({Li : i ∈ I}), |I| > 2, and L ∼= Con(X), then either X
is transitive or X = 〈⊔i∈IXi,M〉, and after suitably ordering the orbits,

Li
∼= Con(Xi).

Section 3 provides more information about Π-product lattices. Section 4 con-
sists of the proof of Theorem 2.4, and Section 5 provides the proof of Theorem 2.8.
Section 6 discusses further work and present some problems.

3. Structure of Π-product lattices

Recall that a non-trivial lattice L is directly indecomposable if whenever there
exist lattices M and N such that L ∼= M ×N , then at least one of M,N is trivial;
the congruence distributivity of the variety of lattices implies the following fact
(one that will be used later): For a lattice L, if n and m are positive integers,
L has a direct factorization into n directly indecomposable lattices, and L is the
direct product of m non-trivial lattices, then n ≤ m. As Lemma 1.4 indicates,
partition lattices play an important role in this paper.

It is well known that the join of the atoms of a partition lattice is ∇, and the
meet of its maximal elements is ∆; further properties that will used in this paper
are given below.

Observation 3.1. Observations concerning partition lattices follow.

(1) It is well known that if I is a non-empty set with |I| > 1, then Π(I) is

simple. Thus, non-trivial partition lattices are directly indecomposable.

(2) Observe that if Π(X) is a non-trivial partition lattice, and ρ > ∆, then

there exists φ ∈ Π(X) such that ρ ≻ φ in Π(X): To form such φ, divide
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a non-singleton class C of ρ into two non-empty subsets, but otherwise

leave ρ alone. Moreover, with ρ > ∆ and φ chosen so that ρ ≻ φ, there
exists a maximal equivalence relation ν such that ν ≥ φ but ν 6≥ ρ.

(3) Suppose I has more than two elements and i ∈ I. Let σi be the partition

of I having two classes {i} and I − {i}. So σi is maximal in Π(I), and
σi has the additional property that I[∆, σi] is isomorphic to Π(I − {i}).
A property that will be used several times in the paper is this: If µ is

maximal in Π(I), the interval I[∆, µ] is directly indecomposable if and

only if µ = σi, for some i ∈ I.

In Lemma 3.2, for the Π-product lattice L, let j be the meet of the maxi-
mal elements of L, and let ji = (. . . , 1i, . . . ,∆), where for k 6= i, ji(k) = 0k.
Observe again that I[0, ji] ∼= Li and ∨i∈Iji = j. Recall that for a ∈ L with
a = (. . . , ai, . . . , α), R(a) = α. Also, let 1L be denoted by 1.

Lemma 3.2. Let L = Π({Li : i ∈ I}) be a non-trivial Π-product lattice with j
the meet of its maximal elements.

(1) Π({Li : i ∈ I}) is isomorphic to a partition lattice if and only if for all

i ∈ I the lattice Li is trivial.

(2) If m ∈ L and I[m, 1] is isomorphic to a partition lattice, then m ≥ j.
(3) For all a ∈ L, the interval I[a, 1] is isomorphic to a Π-product lattice.
(4) Suppose |I| > 2. Let i ∈ I and let σi ∈ Π(I) consist of two classes, a

singleton class {i} and the class I − {i}. Then {(. . . , ai, . . . , σi) : If k 6=
i then ak = 1k} = R−1(σi), and R−1(σi) is isomorphic to both Li and to

I[0, ji].
(5) Suppose L = Π({Li : i ∈ I}) and N = Π({Nj : j ∈ J}) are Π-product

lattices. Then Π({Li : i ∈ I}) ∼= Π({Nj : j ∈ J}) if and only if

(a) |I| = 2 and (L1 × L2) ∼= (N1 ×N2), or
(b) |I| > 2 and there is a bijection φ : I → J such that for all i ∈ I,

Li
∼= Nφ(i).

Proof: If L = Π({Li : i ∈ I}), then L is subdirectly embedded into (
∏

i∈I Li)×
Π(I). If |I| > 1 and L is isomorphic to a partition lattice, then L must be non-
trivial and simple. Since Π(I) is also non-trivial, it follows readily for all i ∈ I
that Li are trivial. The other direction of (1) follows from the definition of a Π-
product lattice. For (2), if m ∈ L is such that I[m, 1] is isomorphic to a partition
lattice, then the maximal elements in I[m, 1] meet to m; by Lemma 1.4, m ≥ j.
For (3), let a = (. . . , ai, . . . , α) ∈ Π({Li : i ∈ I}). If a = 1, then I[a, 1] is the
trivial lattice, a lattice that is by definition a Π-product lattice. Suppose a < 1.
In that case, α < 1Π(I). Let I/α denote the set of classes of α. So |I/α| > 1.
A multiset of lattices {MU : U ∈ I/α} is defined: If U is a non-singleton class
of α, let MU = 1; if U = {i} is a non-singleton class of α, let MU = I[ai, 1i]
(where ai ∈ Li is the component of a contained in Li). Consider S : I[a, 1] →
Π({MU : U ∈ I/α}) where for b ≥ a and b = (. . . , bi, . . . , β), S(b)(U) = 1U if
U is a non-singleton class of α (since MU is the trivial lattice no other choice
for S(b)(U) is possible), while if U = {k} ⊂ I, then S(b)(U) = ak (where ak is



Congruence lattices of intransitive G-Sets and flat M-Sets 473

the component of a that is contained in Lk); also, R(S(b)) = β/α ∈ Π(I/α). If
y = (. . . , ci, . . . , ρ/α) ∈ Π({MU : U ∈ I/α}) (so ρ ≥ α in Π(I)), then y has a
unique preimage S−1(y) = d in I[a, 1]: The right-most element of d will be ρ, and
for n ∈ I, d(n) = 1n if n/ρ is a non-singleton class, and d(n) = an otherwise. Both
S and S−1 are order-preserving, and since I[a, 1] and Π({MU : U ∈ I/α}) are
both complete, S is a lattice isomorphism, completing the proof of (3). (4) follows
directly from definitions. (5)(a) follows from the observation of Example 1.2 that
a Π-product lattice with a unique co-atom must have two factors, and that if
L = Π(A,B) is a two-factor Π-product lattice, then L ∼= (A×B)⊕ 1.

For (5)(b), suppose |I| > 2 and that T : L = Π({Li : i ∈ I}) → M = Π({Nj :
j ∈ J}) is an isomorphism. Let j, k be the meet of maximal elements of L and
M respectively. By Lemma 1.4, I[j, 1] and I[k, 1] are isomorphic to non-trivial
partition lattices, so both are simple lattices. Since T is an isomorphism, T (I[j, 1])
is both isomorphic to a non-trivial partition lattice and an upper interval in M .
From (2) of this lemma, T (j) ≥ k. Similarly, T−1(k) ≥ j. It follows that T (j) = k.

As in Observation 3.1, for i ∈ I, let σi be the maximal element of Π(I) having
classes {i} and I−{i}. Abusing the notation slightly, let σi also refer to a maximal
element in L, namely (. . . , 1i, . . . , σi), where for all i ∈ I, ai = 1i. It follows from
Observation 3.1 that the interval in L given by I[j, σi] is isomorphic to Π(I−{i}),
a simple, non-trivial lattice. Because T is a lattice isomorphism, it follows that
there exists a maximal element τj ∈ M such that I[k, τj ] is simple and T (σi) = τj .
Thus T induces a bijection φ : I → J . Observe that R−1(σi) is an interval of
L whose every element is bounded above by exactly one maximal element of L,
namely σi. Thus, T (R−1(σi)) is an interval whose every element is bounded by
just one maximal element of M , and this maximal element must be φ(σi). Now
using (4) of this lemma, it follows that Li

∼= Nφ(i).
Conversely, if there is a bijection φ : I → J such that for all i ∈ I there exists

an isomorphism φi : Li → Nφ(i), then the map W : Π({Li : i ∈ I}) → Π({Nj :
j ∈ J}) given by W (. . . , ai, . . . , α) = (. . . , bφ(i), . . . , φ(α)), where bφ(i) = φi(ai)
and φ(α) is the partition of J formed from α under the bijection φ, is easily seen
to be an isomorphism between Π({Li : i ∈ I}) and Π({Nj : j ∈ J}). �

4. Proof of Theorem 2.4

An important property of congruences of intransitive flat M-Sets that are not
contained in J is given in Lemma 4.1; its corollary, Corollary 4.2, provides a
useful characterization of Property K. Lemma 4.1 and Corollary 4.2 are both due
to Vernikov.

Lemma 4.1. Suppose that X = 〈⊔i∈IXi,M〉 is an intransitive flat M-Set, θ ∈
Con(X), and (c, d) ∈ θ − J . Then Xc/θc ∼= (Xc ⊔Xd)/θc,d ∼= Xd/θd.

Proof: It can be assumed that X = Xc ⊔ Xd. Let F : Xc/θc → X/θ be such
that for all u/θc ∈ Xc/θc, F (u/θc) = u/θ. It is clear that F is a well-defined and
injective map. Let v ∈ Xd, and consider v/θ ∈ (Xc ⊔ Xd)/θ. Because M acts
transitively on Xd, there exists m ∈ M such that m(d) = v. Thus, (m(c),m(d)) =
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(m(c), v) ∈ θ and F (m(c)/θc) = v/θ, from which it follows that F is bijective.
For m ∈ M , F (m(u/θc)) = F (m(u)/θc) = m(u)/θ = m(u/θ) = m(F (u/θc)), the
first and second-to-last equality because θ ∈ Con(X), completing the proof. �

Corollary 4.2. Let X = 〈⊔i∈IXi,M〉 be a flat intransitive M-Set. Then X
does not satisfy Property K if and only if there exists a congruence γ ∈ Con(X)
containing a pair (c, d) ∈ γ − J , Xc/γc ∼= Xd/γd, and Xc/γc is not isomorphic

to the trivial M-Set.

Lemma 4.3. Let X = 〈⊔i∈IXi,M〉 be an intransitive M-Set, and let u, v ∈ X
with Xu 6= Xv.

(1) i : 〈Xu ⊔Xv,M〉 → X, given by i(x) = x, is a unary algebra monomor-

phism.

(2) ι : Con(〈Xu⊔Xv,M〉) → I[∆,∇u,v] where for all α ∈ Con(〈Xu⊔Xv,M〉),
ι(α) = Cg(α) is a cover-preserving lattice isomorphism that satisfies the

following: If β ≻ α in Con(〈Xu⊔Xv,M〉), then Tr 〈α, β〉 = Tr 〈ι(α), ι(β)〉.

Proof: It is routine to verify that i is a unary algebra monomorphism and that
ι is an order-preserving lattice injection, and these guarantee that Tr 〈α, β〉 =
Tr 〈ι(α), ι(β)〉. �

Lemma 4.4. Suppose X is a flat M-Set satisfying Property K. Then all homo-

morphic images of X satisfy Property K.

Proof: Let X and γ ∈ Con(X). For contradiction, assume X/γ does not satisfy
Property K, a failure witnessed by a, b, c ∈ X , where (a, b) ∈ Jγ − Cg(a, c), and
(a, c) /∈ Jγ . Observe that (a, c) /∈ J , and X satisfies Property K now implies that
Xa ×Xa is contained in Cg(a, c).

That (a, b) ∈ J would then imply that (a, b) ∈ Cg(a, c), from which it follows

that (a, b) ∈ Cg(a, c), a contradiction. On the other hand, if (a, b) /∈ J , then
(a, b) ∈ Jγ implies there exists (u, v) ∈ γ∧ (Ja×Jb). That X satisfies Property K

implies that (a, b) ∈ Cg(u, v). That Cg(u, v) ≤ γ means that a = b, which is not
possible. �

The following observation is folklore and will be used without comment.

Lemma 4.5. Let α, β, γ ∈ Con(X), where X is an M-Set. If β ≻ α, γ ∧ β = α,
and γ ∨ β ⊆ γ ◦ β ◦ γ, then β ∨ γ ≻ γ.

Theorem 2.4 will be proven in four parts. First it will be shown in a single
proof that (1) implies (2) and that (3) implies (2). Then it will be shown that (2)
implies (3). (2) implies (5) has been already proven in Lemma 1.13(8). Observe
that (5) implies (4) is obvious, so the proof of Theorem 2.4 will be completed with
the proof of (4) implies (2).

Proof of (1) implies (2), and proof of (3) implies (2). It will be shown
that if a flat M-Set X fails Property K, then Con(X) contains a cover-preserving
embedded non-uniformly labeled A(1). Repeated use will be made (in this part,
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and in other parts of the proof of this theorem) of Remark 2.2(1) which guarantees
that if ρ is a congruence of an M-Set X and Con(X/ρ) has a non-uniformly labeled
cover-preserving embedded A(1), then so does Con(X).

Failures of Property K occur in two-orbit subalgebras, so by the statement of
Lemma 4.3 (which states, essentially, that for c, d in different orbits, the tran-
sitivity labeling of the Hasse diagram of Con(〈Xc ⊔ Xd,M〉) coincides with the
transitivity labeling of I[∆,∇c,d]), it can be assumed that X has two orbits. So
let X = 〈Xc⊔Xd,M〉, a two-orbit flat M-Set that does not satisfy Property K, as
witnessed by Cg(c, d). By Lemma 4.1 and Corollary 4.2, it can be assumed that
Xc/Cg(c, d)c ∼= Xd/Cg(c, d)d, a non-trivial M-Set. Let ρ = Cg(c, d)c ∨Cg(c, d)d;
observeX/ρ has two isomorphic orbits (the two orbits isomorphic to Xc/Cg(c, d)c
and Xd/Cg(c, d)d, respectively).

Now let Z = X/ρ. Since the two orbits of Z are isomorphic, without loss of

generality Z can be assumed to have the following form: Z = 〈V̇ ⊔ V̈ ,M〉, where
M acts the same on both orbits; that is, for a, b ∈ V , and for m ∈ M , m(ȧ) = ḃ

if and only if m(ä) = b̈.

That Con(V̇) is algebraic implies there exist β̇ ≻ α̇, a pair of covering congru-

ences in Con(V̇). Since V̇ and V̈ are isomorphic, there exists a correspond-

ing covering pair β̈ ≻ α̈ in Con(V̈). Observe that β̇ ∨ (α̇ ∨ α̈) = β̇ ∨ α̈ =

β̇ ∪ α̈ ⊆ (α̇ ∨ α̈) ◦ β̇ ◦ (α̇ ∨ α̈). From Lemma 4.5 and since the inclusion of

the last sentence hold with β̈ in place of β̇, the following holds:

(1) β̇ ∨ (α̈ ∨ α̇) ≻ α̈ ∨ α̇

(2) β̈ ∨ (α̈ ∨ α̇) ≻ α̈ ∨ α̇

Now replace Z = 〈V̇ ⊔V̈ ,M〉 by Z/(α̇∨α̈) = W, and observe that the two orbits

of W are isomorphic to V̇/α̇ and V̈/α̈, respectively, and by the manner in which
α̇ and α̈ were selected (they were “counterpart” congruences in a pair of identical
orbits), it can be assumed that W has identical orbits. But now in addition, W
has a pair of minimal congruences, both contained in the J congruence of W.

Some properties of W are given.

• The flat M-Set W has two orbits; the orbits are identical. Abusing the
notation slightly, denote the two orbits by V̇ and V̈ .

• W does not satisfy Property K. Indeed, with c ∈ V , the congruence
Cg(ċ, c̈) = ∆ ∪ {(k̇, k̈) : k ∈ V } is minimal and meets J trivially.

• W has a minimal congruence contained in J1, and, once again abusing
the notation slightly, let this congruence be denoted β̇. That W is a
“doubling” of the transitive M-Set V̇ implies there exists a counterpart
congruence β̈, one that is minimal and contained in J2 and satisfies the
following: For all a, b ∈ V , if (ȧ, ḃ) ∈ β̇ if and only if (ä, b̈) ∈ β̈.

• (β̇ ∨ β̈) ∧ Cg(ċ, c̈) = ∆.

Claim 4.6. The following hold:

(1) Cg(ċ, c̈) ∨ β̇ = Cg(ċ, c̈) ∨ β̈;

(2) Cg(ċ, c̈) ∨ β̇ ≻ Cg(ċ, c̈); and
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(3) Cg(ċ, c̈) ∨ β̇ ≻ (β̇ ∨ β̈).

Proof: As remarked above, (ȧ, ḃ) ∈ β̇ if and only if (ä, b̈) ∈ β̈. From (ȧ, ä), (ḃ, b̈)

are both contained in Cg(ċ, c̈), it follows both that β̈ ≤ Cg(ċ, c̈) ∨ β̇, and that

β̇ ≤ Cg(ċ, c̈) ∨ β̈, from which (1) follows.

Observe that Cg(ċ, c̈)∨ β̇ ⊆ Cg(ċ, c̈) ◦ β̇ ◦ Cg(ċ, c̈). By Lemma 4.5, Cg(ċ, c̈)∨

β̇ ≻ Cg(ċ, c̈), completing the proof of (2).

For (3), using (1) and the proof of (2), it follows that Cg(ċ, c̈) ∨ (β̇ ∨ β̈) =

Cg(ċ, c̈)∨ β̇ ⊆ Cg(ċ, c̈) ◦ β̇ ◦Cg(ċ, c̈). Now observe that Cg(ċ, c̈) ◦ β̇ ◦ Cg(ċ, c̈) ⊆

β̈∪β̇ ∪ (Cg(ċ, c̈) ◦ β̇) ∪ (β̇ ◦Cg(ċ, c̈)). Moreover, Cg(ċ, c̈) ◦ β̇ = β̈ ◦ Cg(ċ, c̈), from
which it now follows that the union given in the previous sentence is contained in
(β̇ ∨ β̈) ◦ Cg(ċ, c̈) ◦ (β̇ ∨ β̈). Applying Lemma 4.5 yields (3), and completes the
proof of the claim.

Let φ = Cg(ċ, c̈) ∨ β̇. From Claim 4.6, it now follows that

(1) φ ≻ (β̇ ∨ β̈) ≻ β̇ ≻ ∆;

(2) (β̇ ∨ β̈) ≻ β̈; and
(3) φ ≻ Cg(ċ, c̈) ≻ ∆.

Thus, the six congruences named above ({∆, β̇, β̈, β̇ ∨ β̈, Cg(ċ, c̈), φ}) form a
cover-preserving embedded A(1) in Con(W). Since α̇, α̈ are both minimal congru-

ences and both are contained in J , it follows from Remark 2.2(2) that Tr 〈∆, β̇〉 =
+ = Tr 〈∆, β̈〉. That Cg(ċ, c̈)∩J = ∆, from Remark 2.2(2) again, the minimality
of Cg(ċ, c̈) implies that Tr 〈∆, Cg(ċ, c̈)〉 = −−−. That is, the above cover-preserving
embedded A(1) is non-uniformly labeled.

As remarked above, the transitivity-labeled congruence lattice ofW is identical
to that of an interval of Con(X) (whereX was the original flat M-SetX that failed
Property K); thus Con(X) contains a cover-preserving, non-uniformly labeled
A(1), completing the proofs of both (1) implies (2) and (3) implies (2).

+
+

+

+

+

−

−

φ

φ J∧

β β Cg( )c c,

Figure 4.1. X fails Property K leads to above labeled cover-preserving A(1)

Note that φ ⊆ Cg(ċ, c̈) ◦ β̇ ◦ Cg(ċ, c̈) implies that φ∧J = β̇ ∨ β̈, as indicated
in Figure 4.1 above.

Proof of (2) implies (3). By Lemma 4.4, for flat M-Sets, Property K is
preserved under homomorphism. As remarked, the transitivity labeling of the
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Hasse diagram of I[θ,∇] coincides with the transitivity labeling of the Hasse
diagram of Con(X/θ). Thus, to prove (2) implies (3) it suffices to show that if a
flat M-Set X has a congruence lattice that contains a cover-preserving embedded
non-uniformly labeled copy of A(1), the minimal element of which is ∆, then X
fails Property K, so for contradiction, assume that X satisfies Property K.

Claim 4.7. If an intransitive flat M-Set Z satisfies Property K, φ ≻ ∆ in Con(Z),
and Tr 〈∆, φ〉 = −−−, then there exist u, v ∈ Z such that φ − ∆ = {(u, v), (v, u)}.
Moreover, if ρ ≻ ∆ in Con(X) and ρ 6= φ, then (ρ ∨ φ) ≻ ρ.

Proof: That Tr 〈∆, φ〉 = −−− implies by Remark 2.2(2) that φ∧J = ∆; therefore,
(u, v) ∈ φ − ∆ implies that Xu and Xv are distinct orbits. That X satisfies
Property K and φ∧J = ∆ implies that Ju = J ∧Cg(Xu×Xu) = ∆. So Xu and
Xv are singleton orbits, from which it follows that φ−∆ = {(u, v), (v, u)}. With
ρ ≻ ∆, observe that ρ∨ φ ⊆ ρ ◦ φ ◦ ρ, and this implies that ρ∨ φ ≻ ρ, completing
the proof of the claim.

Because γ ∨ α does not cover α, it follows from Claim 4.7 that Tr 〈∆, γ〉 = +.
Because the labeling is not uniform, it follows from Remark 2.2(2) that α ∨ γ =
β ∨ γ 6≤ J (otherwise, all labels are +). Thus Tr 〈∆, α〉 = −−− = Tr 〈∆, α〉. It will
be shown that there is no {r, s, t} ⊆ X consisting of three distinct elements that
satisfy “r α s γ t”: If such a trio existed, then (s, t) ∈ J −∆ and (r, s) ∈ α− J .
That X satisfies Property K implies that (s, t) ∈ Cg(r, s) = α, which is not
possible. Now it follows readily that (α ◦ γ) ∪ (γ ◦ α) ⊆ (α ∪ γ), from which it
follows that (α ∨ γ) ⊆ (γ ◦ α) ∪ α ∪ γ. By Lemma 4.5, γ ∨ α ≻ α, and this is
not the case. Thus X satisfies Property K implies there exists no non-uniformly
labeled cover-preserving embedded A(1) in Con(X). �

Proof of (2) implies (5). As mentioned, this part was proved with Lem-
ma 1.13(8).

Proof of (4) implies (2). Assume for contradiction that X fails Property K
but Con(X) is isomorphic to a Π-product lattice.

Claim 4.8. If I is a set with more than one element, L ∼= Π(I), and L represents
an intransitive flat M-Set Y, then Y has |I| orbits, each of which is a singleton
set.

Proof of claim: It is known that Π(I) is semimodular; therefore, it has no
cover-preserving embedded copy of A(1). Using the already proven logical equiv-
alence of (2) and (3), Y satisfies Property K, and using (2) implies (5) (also
proven) it follows that Con(Y) is isomorphic to the non-trivial Π-product lat-
tice Π({Con(Xi) : i ∈ I}), where the factors are the congruence lattices of the
orbits of Y. That Y satisfies Property K implies that Con(Y) = Con(Π(Y)),
and Lemma 1.13(7) implies that J is the meet of the maximal congruences of Y.
That Con(Y) is a Π-product lattice whose maximal elements meet to J implies
that the map x → (x∧J ) (for all x ∈ Con(Y)) is a lattice homomorphism. That
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L ∼= Con(Y) and L is simple implies that the lattice homomorphism is an isomor-
phism or is trivial. It is not an isomorphism because then F (∇) = F (J ) would
imply that ∇ = J , which is not possible since X is an intransitive flat M-Set.
Thus, J must be ∆, and since I[∆,J ] ∼=

∏
i∈I Con(Xi), the direct product of the

congruence lattices of the orbits of X, this implies that all orbits of X are trivial,
which establishes the claim.

Returning to the proof, because X does not satisfy Property K, there exist
c, d ∈ X such that Xc 6= Xd and Cg(c, d)c < Jc and Cg(c, d)d < Jd. Let
γ ∈ Con(X) be such that γ ≤ J and γ is the congruence that identifies all
orbits with the exception of Xc and Xd; that is, γ = Cg((X − (Xc ∪Xd))

2). By
Lemma 3.2(3), Con(X/γ) is also isomorphic to a Π-product lattice. By choice
of γ, X/γ does not satisfy Property K. As is the case for any flat intransitive
M-Set, Jγ is a meet of some subset of the maximal congruences of X/γ. Observe
that (X/γ)/Jγ

∼= Π(m), where m is the number of orbits of both X/γ and of
(X/γ)/Jγ . Note that m ≤ 3.

Let µ ∈ Con(X) be such that µ ≥ γ and µ/γ is the meet of all maximal
congruences of X/γ. Using that X/γ is a Π-product lattice, since µ/γ is the
meet of maximal elements of a Π-product lattice, Lemma 1.4(2) guarantees that
I[µ/γ,∇] is isomorphic to a partition lattice. By Claim 4.8, X/µ has singleton
orbits. Since Jγ ≥ µ/γ ≥ γ/γ, it follows that X/γ, (X/γ)/Jγ , and (X/γ)/(µ/γ)
all have the same number of orbits, namely m.

Then I[µ/γ,∇] ∼= Π(m) ∼= I[Jγ ,∇], and the finiteness of m implies that
µ/γ = Jγ . Thus Jγ is the meet of the maximal congruences of the Π-product
lattice Con(X/γ), from which it follows that the map x → (x ∧ Jγ) is a lattice
homomorphism of Con(X/J ).

For x ∈ X let x = x/γ. Observe that [Cg(c, d)∨ (Cg(Xc ×Xc))]∧Jγ contains

Cg(Xd×Xd), while (Cg(c, d)∧Jγ)∨(Cg(Xc×Xc)∧Jγ) does not contain Cg(Xd×
Xd). (In fact, the specific failure of Property K under discussion is determined by

(and equivalent to) the non-containment of Xd ×Xd in Cg(c, d).) Thus x → (x∧
Jγ) is not a homomorphism, from which it follows that Con(X) is not isomorphic
to a Π-product lattice, a contradiction that completes the proof of (4) implies (2),
and the proof of Theorem 2.4. �

5. Proof of Theorem 2.8

A series of lemmas and a corollary lead up to Lemma 5.5, where it is proved
that if X is a flat intransitive M-Set, then Con(Π(X)) is a Π-possible sublattice
of Con(X).

Lemma 5.1. Let X = 〈⊔i∈IXi,M〉 be a flat M-Set with γ ∈ Con(X) and γ ≤ J .

Then Π(X/γ) ∼= Π(X)/γ.

Proof: By Lemma 1.13(2), γ ≤ J implies that γ is a congruence relation on
Π(X). So “Π(X)/γ” makes sense. Also γ ≤ J implies thatX/γ = 〈⊔i∈I Xi/γi,M〉.
Thus Π(X/γ) is 〈⊔i∈I Xi/γi,M

I〉 whereM I acts in the usual way on ⊔i∈IXi. But
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Π(X)/γ is also 〈⊔i∈I Xi/γi,M
I〉, with M I acting the same as it does in Π(X/γ),

and the two flat M-Sets are isomorphic under an identity function involving the
underlying sets. �

Lemma 5.2. Let L be an algebraic lattice with a Π-possible sublattice A. Let

the meet of the maximal elements of A be k, and let l ∈ L be such that k ≥ l.
(So by definition of a Π-possible sublattice, l ∈ A). Then A∩I[l, 1] is a Π-possible
sublattice of the lattice I[l, 1], and the meet of the maximal elements of A∩I[l, 1]
is k.

Proof: That A is cover-preserving embedded in L implies that A∩I[l, 1] is cover-
preserving embedded in I[l, 1]. By Lemma 3.2(3), A ∩ I[l, 1] is isomorphic to a
Π-product lattice. Thus, Definition 2.6(1) and (2) (of a Π-possible sublattice) are
satisfied.

That k ≥ l implies that the maximal elements of I[l, 1] meet to k. Because
A is a Π-possible sublattice of L, by (3)(a) of Definition 2.6, I[l, k] and I[k, 1],
as intervals of L, are contained in A ∩ I[l, 1], so A ∩ I[l, 1] also satisfies (3)(a).
That A is Π-possible and satisfies Property (3)(b) of that definition, and that the
meet of maximals of A ∩ I[l, 1] is k, together imply that A ∩ I[l, 1] also satisfies
Property (3)(b). Thus A ∩ I[l, 1] is a Π-possible sublattice of I[l, 1]. �

Let X = 〈⊔i∈I Xi,M〉 be an intransitive flat M-Set, and α ∈ Con(X). Recall
that R(α) partitions I as follows: (i, j) ∈ R(α) if α ∩ (Xi ×Xj) 6= ∅.

Lemma 5.3. Let X = 〈⊔i∈I Xi,M〉 be an intransitive flat M-Set having a

maximal congruence γ. If γ 6≥ J , then R(γ) is the universal relation on I.

Proof: Suppose γ 6≥ J and is maximal. Let Γ ≥ J be the congruence that
identifies all orbits identified by R(γ). (So Γ = ∨{Cg(Xi × Xj) : (i, j) ∈ γ}.)
If γ is not universal on I, then Γ is a proper congruence that contains γ, so the
maximality of γ implies that Γ = γ, but then γ ≥ J , a contradiction. �

Corollary 5.4. Let X be a flat M-Set having a singleton orbit. Then the meet

of the maximal congruences of X is J .

Proof: Let γ ∈ Con(X) be such that R(γ) is the universal relation on I. That
there exists a singleton orbit and that each orbit is a transitive M-Set together
imply that γ = ∇. The lemma now follows from Lemma 5.3. �

Lemma 5.5. LetX = 〈⊔i∈IXi,M〉 be an intransitive flat M-Set. Then Con(Π(X))
is a Π-possible sublattice of Con(X).

Proof: By Lemma 1.13(4) and (7), Π(X) is known to be a Π-product lattice
whose maximal elements meet to J , and which satisfies I[∆,J ] ∪ I[J ,∇] ⊆
Con(Π(Y)). Thus (2) and (3)(a) of the Π-possible definition (Definition 2.6) are
satisfied.

It is proven next that (1) of the Π-possible definition is satisfied; that is, that
Con(Π(X)) is a cover-preserving embedded sublattice of Con(X). So suppose
γ ≻ µ in Con(Π(X)). Let (. . . , µi, . . . , R(µ)) be Π-product coordinates of µ, and
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let (. . . , γi, . . . , R(γ)) be Π-product coordinates of γ. Suppose first that R(γ) =
R(µ), from which it follows readily that γ ≻ µ in Con(Π(X)) implies that there
exists i ∈ I such that γi ≻ µi (in Con(Π(X))) and for all j ∈ I − {i}, γj = µj .
That γi, µi ≤ J implies that γi and µi are congruences of X itself. That I[∆,J ]
is an interval in Con(Π(X)) implies that for any (x, y) ∈ γ − µ, (x, y) ∈ γi − µi,
and µi ∨Cg(x, y) = γi in Con(X), from which it follows that γ ≻ µ in Con(X).

For the second and last case, suppose that γ ≻ µ in Con(Π(X)) and R(γ) 6=
R(µ). It follows readily that R(γ) ≻ R(µ) and that µi = γi for all i ∈ I. That
R(γ) ≻ R(µ) now implies for all (s, t) ∈ X2 that (s, t) ∈ γ − µ if and only if for
some i, j ∈ I, s ∈ Xi, t ∈ Xj , (i, j) ∈ R(γ) − R(µ). That γ ≻ µ in Con(Π(X))
and µ∨Cg(s, t) = γ implies that (Xi×Xi)∪ (Xj ×Xj) ⊂ µ. It follows that γ ≻ µ
in Con(X).

To complete the proof of the lemma, it must be proven that Property (3)(b)
is satisfied by Con(Π(X)). Suppose γ ∈ Con(Π(X)) is such that γ ≤ J and that
I[γ,J ] is isomorphic to a non-trivial partition lattice B.

By Lemma 3.2(3), Con(Π(Y)/γ) is isomorphic to a Π-product lattice, and by
Lemma 1.13(4), Con(Π(Y)/γ) ∼= Π({Con(Xi/γi) : i ∈ I}). Moreover, the meet
of the maximal congruences of Π(Y)/γ is Jγ .

Thus I[γ,J ] is isomorphic to
∏

i∈I Con(Xi/γi) ∼= B, and the lattice B is di-
rectly indecomposable. That γ ≤ J means thatX/γ is still intransitive; therefore,
for some i ∈ I, Con(Xi/γi) is trivial, and this implies that Xi/γi is a singleton
orbit. By Corollary 5.4, the maximal congruences of X/γ meet to Jγ , and it fol-
lows that every maximal congruence bounded below by γ is also bounded below
by J , completing the proof that Property (3)(b) is satisfied, and completing the
proof of the lemma. �

Lemma 5.6. Suppose A and B are both Π-possible sublattices of an algebraic

lattice L, with a the meet of the maximal elements of A, and with b the meet of

the maximal elements of B. If a and b are comparable, then a = b.

Proof: Suppose for contradiction that a > b. The hypotheses imply that I[a, 1]
and I[b, 1] are both isomorphic to partition lattices. Observation 3.1(2) guarantees
that there exists a0 ∈ L such that a ≻ a0 ≥ b and a lattice element n that is
maximal in I[b, 1], satisfying n ≥ a0 but n 6≥ a; thus, A fails Property (3)(b),
a contradiction. �

Lemma 5.7. Let X = 〈⊔i∈IXi,M〉 be a flat intransitive M-Set. Suppose µ ∈
Con(X) is such that µ∧J = ∆. Then I[∆, µ] ∼= I[∆, R(µ)], the latter an interval

in Π(I).

Proof: Suppose (u, v) ∈ µ − J . Since µ ∧ J = ∆, it follows that if w ∈ Xv

and (u,w) ∈ µ, then v = w. That Xu, Xv are orbits and M acts transitively on
them implies that µu,v ∩ (Xu ×Xv) is a matching of the elements in Xu and Xv;
moreover, if u0 ∈ Xu, v0 ∈ Xv, and (u0, v0) ∈ µ, then Cg(u, v) = Cg(u0, v0).

Let µ ≤ β. Of course R(µ) ≥ R(β), and, from the previous paragraph, β is
completely determined by R(β). Thus the map R : I[∆, µ] → I[∆, R(µ)] is an
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order-preserving injection, and if Γ ≤ R(µ), the structure of the congruences in
I[∆, µ] (as described above) determines γ ∈ I[∆, µ] such that R(Γ) = γ. Note
that R and its inverse are clearly both order-preserving; thus, R is a lattice
isomorphism. �

Lemma 5.8. Let X be an intransitive flat M-Set, let A be a Π-possible sublattice
of Con(X), and let µ be the meet of the maximal elements of A. Then µ = J .

Proof: Suppose not. By Lemma 5.5, Con(Π(X)) is a Π-possible sublattice of
Con(X), and the meet of the maximals of Con(Π(X)) is J . So by Lemma 5.6(2),
it can be assumed that µ and J are incomparable.

Case 1. µ ∧ J = ∆.

By Lemma 5.7, I[∆, µ] ∼= I[∆, R(µ)], the latter an interval of Π(I) and therefore
isomorphic to a direct product of non-trivial partition lattices. It follows from
Observation 3.1(2) that there exists γ ∈ I[∆, µ] such that µ ≻ γ. In view of the
description of the congruences in I[∆, µ] given in Lemma 5.7 and its proof, such
a γ can be formed by meeting µ with a maximal congruence ν such that ν ≥ J .
But this implies that A fails Property (3)(b) (with ν ≥ γ but ν 6≥ µ).

Case 2. J > µ ∧ J > ∆.

Let ρ = µ ∧ J . The meet of the maximal congruences of Π(Y)/ρ is Jρ, and
by Lemma 5.2, A ∩ I[ρ,∇] is a Π-possible sublattice of Con(X/ρ). It is clear
that the maximal elements of A ∩ [ρ,∇] meet to µ/ρ. But Jρ ∧ µ/ρ = ∆, and
from Case 1, it follows that A ∩ I[ρ,∇] is not a Π-possible sublattice of X/ρ,
a contradiction. �

The first part of Theorem 2.8 is proven next.

Lemma 5.9. If Y is an intransitive flat M-Set, then Con(Π(Y)) = Π(Con(Y)).

Proof: To prove the lemma it suffices to show that if A is a Π-possible sublattice
of Con(X), then A is contained in Con(Π(X)). Since A is Π-possible and thus
cover-preserving embedded in Con(X), it follows that maximal elements of A are
also maximal in Con(X). By Lemma 5.8, the meet of the maximal elements of A
is J .

Suppose for contradiction that A contains a congruence α not in Con(Π(X)).
By Lemma 1.13, then there exists (c, d) ∈ α with Xc 6= Xd, but Xc ×Xd is not
contained in α. But by arguments used earlier, then the map x → x∧J would not
be a lattice homomorphism of A into I[∆,J ], contradicting that A is isomorphic to
a Π-product lattice having maximal element J . So A ⊆ Con(Π(X)), completing
the proof of the lemma. �

Completing the proof of Theorem 2.8: Suppose L is an algebraic lattice
and Y is a flat M-Set that represents L. If Π(L) is trivial but Y is intransitive,
then Con(Π(Y)) is non-trivial. But by Lemma 5.8, Con(Π(Y)) = Π(Con(Y)) =
Π(L), which is trivial, a contradiction. Thus Π(L) is trivial implies L has no
representation by an intransitive flat M-Set.
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Now given an algebraic lattice L such that Π(L) = Π({Lj : j ∈ J}), a non-
trivial Π-product lattice, by Lemma 5.9 any representation of L by a flat in-
transitive M-Set Y = 〈⊔i∈IXi,M〉 satisfies Con(Π(Y)) ∼= Π({Lj : i ∈ J}). By
Lemma 1.13(4), Con(Π(Y)) ∼= Π({Con(Xj) : j ∈ J}). Thus, Π({Con(Xj) : j ∈
J}) ∼= Π({Li : i ∈ I}). By Lemma 3.2(5), if |I| > 2, the factors match up isomor-
phically with the congruence lattices of the orbits of Y, and if |I| = 2, all other
flat intransitive M-Sets that represent L have two orbits and the product of the
congruence lattices of the two orbits must be isomorphic to the direct product of
the factors of Π({Li : i ∈ I}). �

6. Conclusion

Theorem 2.4 and Theorem 2.8 provide, via Π-product lattices and A(n), fun-
damental information about the congruence theory of flat intransitive M-Sets.

6.0.1 Two-orbit flat M-Sets. Two-orbit flat M-Sets are the obvious building
blocks of the flat intransitive M-Sets, but given a two-orbit M-Set X = 〈X1 ⊔
X2,M〉, that Π(Con(X)) = (Con(X1)× Con(X2))⊕ 1 reveals nothing that was
not already known. In [5], S. Radeleczki shows that if T is transitive, then for each
congruence α of T, the subgroup lattice of the automorphism group of T/α occurs
isomorphically as an ideal of the interval I[α,∇] of Con(T). In [8], in some sense
generalizing the above result in [5], it is shown that the more interesting aspects
of the structure of congruence lattices of a two-orbit flat M-Set X are largely
determined by coset lattices6 of automorphism groups of certain homomorphic
images of X.

6.1 Problems. In Corollary 1.7 it is shown that finite lattices that are repre-
sentable by a finite M-Set are closed under Π-product. Peter Mayr suggested the
following question.

Problem 2. If L1, . . . , Lk are each representable by a finite transitive G-Set, is

Π(L1, . . . , Lk) representable by a finite transitive G-Set?

As mentioned, using some of the methods developed here, it is shown that, with
high probability, a finite lattice having more than one co-atom has no representa-
tion by an intransitive flat M-Set [9]; however, little seems to be known about the
intransitive finite representations of a finite lattice, or about the likelihood that
a finite n-lattice has intransitive finite representations. An M-Set X = 〈X,M〉
is cyclic if there exists a ∈ X such that X = {m(a) : m ∈ M}; note that X is
cyclic if and only if it contains a unique maximal J class. Let i(n) be the number
of isomorphism classes of n-lattices having a finite intransitive M-Set representa-
tion, let l(n) be the number of isomorphism classes of n-lattices, and let b(n) be
the number of isomorphism classes of n-classes having a finite non-cyclic M-Set
representation.

6The empty set along with the cosets of a group G forms a lattice, ordered under set inclusion,
denoted R(G). R(G) contains multiple cover-preserving embedded copies of Sub(G).
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Problem 3. Find bounds for any of the following (perhaps after restricting to a

class C of finite lattices):

(1) lim supn→∞

i(n)
l(n) ;

(2) lim supn→∞

b(n)
l(n) ; or

(3) lim supn→∞

b(n)
i(n) .

6.1.1 0-Flat M-Sets. While flat M-Sets are important if for no other reason
than that they generalize G-Sets, few M-Sets have an intransitive flat M-Set
homomorphic image. It would be interesting to generalize the methods and results
here to a class of M-Sets broader than the flat M-Sets, a class onto which more
M-Sets map homomorphically. The 0-flat M-Sets are such a class.

Let 〈X,M〉 be an M-Set. Recall that an element 0 ∈ X (the “zero” of X)
satisfies the following: For all m ∈ M , m(0) = 0; moreover, for all a ∈ X , there
exists n ∈ M such that n(a) = 0.

Definition 6.1. (1) 〈X,M〉 is said to be 0-transitive if X = J ⊔ {0}, where
J is a J class.

(2) 〈X,M〉 is said to be 0-flat if X has a 0, and for all a, b ∈ X with b 6= 0, if
a ≥M b, then b ≥M a.

Note that 0-transitive M-Sets are 0-flat, and that a 0-flat M-Set Y can be
viewed as a “fusion at 0” of a set of 0-transitive algebras. Suppose X is not flat.
Let JM be the set of the maximal J classes of X, and let θJM = ∆ ∪ {(x, y) ∈
X2 : ∃u, v ∈ JM such that u > x and v > y}. Observe that θJM is a congruence
of X and that X/θJM is 0-flat. Thus each non-flat M-Set has an upper interval
in its congruence lattice that is isomorphic to the congruence lattice of a 0-flat
M-Set. (Unfortunately, however, the direct product of 0-flat M-Sets need not be
0-flat. Thus there exist non-flat M-Sets having no minimal 0-flat congruence.)

Suppose X is 0-flat. It is not true in general that J is a congruence. Let
K∗ = {(a, b) ∈ X2 : ∀f ∈ M (f(a), a) ∈ J if and only if (f(b), b) ∈ J }, and let
K = J ∧K∗. It is not difficult to verify that K∗ and K are congruences, and that
X is 0-transitive implies that K is its unique maximal congruence. The following
generalizes Property K from flat M-Sets to 0-flat M-Sets: X has Property K if
for all (a, b) ∈ K, if (a, c) /∈ J , then (a, b) ∈ Cg(a, c). J , K∗, K, and Property K
may be of some help in finding generalizations of Theorem 2.4 and Theorem 2.8
to 0-flat M-Sets, which in turn might be of help in Problem 3.

Problem 4. Generalize Theorem 2.4 and Theorem 2.8 to 0-flat M-Sets.
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