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Paratopological (topological)

groups with certain networks

CHUAN Liu

Abstract. In this paper, we discuss certain networks on paratopological (or topo-
logical) groups and give positive or negative answers to the questions in [13]. We
also prove that a non-locally compact, k-gentle paratopological group is metriz-
able if its remainder (in the Hausdorff compactification) is a Fréchet-Urysohn
space with a point-countable cs*-network, which improves some theorems in
[Liu C., Metrizability of paratopological (semitopological) groups, Topology Appl.
159 (2012), 1415-1420], [Liu C., Lin S., Generalized metric spaces with algebraic
structures, Topology Appl. 157 (2010), 1966-1974].
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1. Introduction

Recall that a topological group G is a group G with a (Hausdorff) topology such
that the product map of G x G into G is jointly continuous and the inverse map of
G onto itself associating ! with arbitrary £ € G is continuous. A paratopological
group G is a group G with a topology such that the product map of G x G into
G is jointly continuous. A semitopological group is a group with a topology such
that the product map of G x G into G is separately continuous. A quasitopological
group is a semitopological group and the inverse map is continuous.

Let X be a topological space and F' is a subset of X, F' is called a sequential
neighborhood of x in X if every sequence converging to z is eventually in F. F
is a sequentially open subset of X if I is a sequential neighborhood of x for each
xeF.

Definition 1.1. Let & = J .y &, be a cover of a space X such that for each
x e X, ()it UV € &, then W C UNYV for some W € Z,; (b) the family
P, is a network of z in X, i.e,, x € (| Py, and if © € U with U open in X, then
P c U for some P € Z,.

(1) The family & is called a sn-network (sequential neighborhood network) for
X [12] if each element of P, is sequential neighborhood of z for all € X. X is
called snf-countable if X has a sn-network P such that each P, is countable.



112

C. Liu

(2) The family & is called a so-network (sequentially open network) [12] for
X if each element of P, is a sequentially open neighborhood of X. X is called
sof-countable if X has a so-network P such that each &, is countable.

(3) Fix z € X, P, is said to be a strong so-network at z if P, is a so-network
at x, and for any sequential open set W with x € W, there is a P € P, such that
rePCW.

(4) The family & is called a weak base [1] for X if for every A C X, the set A
is open in X whenever for each x € A there exists P € P, such that P C A. X
is called weakly first-countable if for each z € X, &, is countable.

We can see that first-countable — sof-countable — snf-countable; first-count-
able — weakly first-countable — snf-countable. A sequential, snf-countable (sof-
countable) space is weakly first-countable (first-countable).

In this paper, we consider the following questions.

Question 1.2 ([13, Question 4.1]). Let G be a snf-countable semitopological
group or quasitopological group. Is G sof-countable?

Question 1.3 ([13, Question 4.3]). Let G be a topological group. Is oG a topo-
logical group?

Question 1.4 ([13, Question 4.5]). Is every snf-countable topological group an
N-space?

Question 1.5 ([13, Question 4.6]). Does every snf-countable w-narrow topologi-
cal group have a countable sn-network?

Question 1.6 ([13, Question 4.12]). Let G be a paratopological group with a
Gs-diagonal. If G is a wM -space, is it metrizable?

We shall give positive answers to Question 1.6 (when G is regular) and nega-
tive answers to Questions 1.2, 1.4, 1.5. Ordman and Smith-Thomas [18] gave an
example that the sequential coreflection of a topological group is not a topolog-
ical group, it implies the answer of Question 1.3 is negative, we present another
example for Question 1.3 and give a sufficient and necessary condition for G to
be a topological group in terms of strong so-network.

By a remainder of a space X we mean the subspace bX \ X of a Hausdorff
compactification bX of X. Arhangel’skii [2] proved that if the remainder of a
Hausdorff compactification of a non-locally compact topological group G has a
point-countable base, then G and bG are separable and metrizable. It is natural
to ask if Arhangel’skii’s result is still valid for a paratopological group. The au-
thor [15] proved that Arhangel’skii theorem is valid for a k-gentle paratopological
group. We could improve the above result by replacing “point-countable base”
with “Fréchet-Urysohn space with a point-countable cs*-network”.

All spaces are Hausdorff unless stated otherwise. The notations N, Q, R denote
natural numbers, rational numbers and real numbers respectively. The letter e
denotes the neutral element of a group. F(X) is a free group on X. Readers may
refer to [2], [7], [10] for notations and terminology not explicitly given here.
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2. Main results

Let X be a topological space, a function d : X x X — R¥ is a symmetric on
the set X if for z,y € X
(1) d(z,y) =0 if and only if x = y,
(2) d(ZL‘, y) = d(y,:r)
A space X is said to be symmetrizable if there is a symmetric d on X satisfying

the following condition: U C X is open if and only if for each x € U, there exists
€ > 0 with B(z,e) C U. Here B(x,¢) = {y € z : d(z,y) € €}.

Ezxample 2.1. There is a separable, snf-countable quasitopological group that is
not sof-countable.

PROOF: Let G = R? with usual addition “+7”, then (G,+) is a group. Define
d:G x G— RTU{0} as follows:

lv —a'|, z#a2'y=19;
A ! !
y=vy'l, z=2"y#y;
d(@y). (@ gy = {0 7Y Ay
0, r=z,Yy=1Y;
1, otherwise.

It is easy to check that d(z,y) is a symmetric and (G, +) is a separable, qu-
asitopological group. G is weakly first-countable, in fact, for each x € G, let
Pr ={B(z,1/n) : n € N}, where B(z,1/n) ={y € G : d(z,y) < 1/n}.

It is easy to see that (0,0) is a cluster point of {(r1,72) : 71,72 € Q1}, where
Qt ={r € Q:r > 0}. If G is first-countable, then there is a sequence {s, :
n € N} C {(r1,72) : r1,72 € QT} such that s, — (0,0). d(sn,(0,0)) — 0 by
[10, Lemma 9.3]. This is a contradiction since d(s,, (0,0)) = 1. Hence G is not
first-countable. Therefore, G is not sof-countable since a sof-countable sequential
space is first-countable. (I

The proof of the following proposition is based on the idea in [13].

Proposition 2.2. Let G be a paratopological group satistying the condition (w):
for any two sn-networks {U,(e) : a« € T'}, {Vg(e) : B € T'} at e and for any a € T,
there exists B € T' such that Vz(e) C Uy (e). Then there is a so-network {W,(e) :
a € T'} ate and for each o € T, there exists 8 € T such that Wg(e)Wg(e) C Wy (e).

PROOF: Since G is a paratopological group, {U,(e)Uy(e) : o € T'} is still a sn-
network at e. Let Wy(e) = {z € Uyl(e) : 2Ug(e) C Uy(e) for some g € T'} C
Ua(e). So e € Wy(e) for each «, then {W,(e) : « € T'} is a network at e and
satisfies the condition (a) in Definition 1.1, in fact, for any W,(e), Wg(e), let
U,(e) C Ua(e) NUg(e), Wy(e) = {z € U,(e) : zUs(e) C Uy(e)}, then W, (e) C
Wa(e) N Wg(e). We prove that each Wy (e) is sequentially open. For y € W, (e)
and {y,} is a sequence converging to y, yUs(e) C U, (e). By the condition (w), we
choose v € T such that U,(e)U,(e) C Ug(e). (yU,(e))Uy(e) C yUg(e) C Uy(e),
which implies yU,(e) C Wy(e). Since yU, (e) is a sequential neighborhood of y,
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then {yn} is eventually in yU,(e), hence {y,} is eventually in W, (e) and W, (e)
is sequentially open. For o € T', choose 8 € T so that Ug(e)Ug(e) C Uy (e). For
y,z € Wg(e) = {x € Ug(e) : U, (e) C Ug(e) for some v € I'} C Ug(e) we have
yU,(e) C Ugle), zU,(e) C Ug(e), then yzU,(e) C yU,(e)zU,(e) C Us(e)Ugs(e) C
Ua(e), that implies yz € W,(e), and hence Wz(e)Wpg(e) C Wy (e). O

Lemma 2.3. Let {U, : n € N} be a decreasing countable network at x and W
be sequential neighborhood of x, then there exists ng € N such that U,, C W.

PROOF: Suppose not, U, \ W # @ and pick =, € U, \ W. Then z,, — x and
{zn} NW = (. This is a contradiction since W is a sequential neighborhood
of x. 0

Note that if G is snf-countable, we may assume G has a decreasing countable
sn-network. By Lemma 2.3, a snf-countable paratopological group satisfies the
condition (w).

Corollary 2.4 ([13, Theorem 3.4]). Every snf-countable paratopological group
G is sof-countable.

Since a weakly first-countable space is a sequential snf-countable space and a
sequential sof-countable space is first-countable, we have the following.

Corollary 2.5. Let G be a weakly first-countable paratopological group. Then
G is first-countable.

Definition 2.6. Let (X, 7) be a space. A sequential closure topology o, [8] on
X is defined as follows: O € o, if and only if O is a sequentially open subset in
(X, 7). The topological space (X, o) is denoted by ¢ X.

Obviously, 0 X is a sequential space for any space X. If G is a topological
group, it is easy to see that oG is a quasitopological group.

Theorem 2.7. Let G be a paratopological group. Then oG is a paratopological
group if and only if G has a strong so-network P, at e satisfying the condition (x):
for each Py € P,, there is a P, € P, such that P,P, C P;.

PROOF: Necessity: Let {V,(e) : @ € '} be the local base at e in oG, and let W
be a sequentially open neighborhood of G with e € W, then W is open in oG,
there is a Vz(e) € {Va(e) : @ € T'} such that Vg(e) C W. Since {Vy(e) : a € T'}
is a so-network at e in G, then {V,(e) : a € I'} is a strong so-network at e in G.
Since oG is a paratopological group and {V,(e) : a € T'} is the local base at e, it
is easy to see that the condition (x) is satisfied.

Sufficiency: Suppose G has a strong so-network {V,(e) : a € T'} at e such
that for each Vi (e), Va(e)Vs(e) C Vu(e). Fix a,b € G, and let U be an open
neighborhood (in ¢G) of ab. Since (ab)~1U is a sequentially open neighborhood of
ein G, thereisa V € {V,(e) : @« € '} such that V C (ab) U, then abV C U. Let
W, W’ e {V,(e): « € T'} such that WW C V, W C W and W’b C bW (note that
e € bW b~ is sequentially open in ). Then aW’, bW’ are open neighborhoods of
a,b in oG respectively, aW' bW’ C abWW' C abWW C abV C U. O
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Corollary 2.8. Let G be a topological group. Then oG is a topological group
if and only if G has a strong so-network P, at e satisfying the condition (x): for
each P, € P., there is a P, € P, such that P,P, C P;.

Corollary 2.9 ([13, Theorem 4.4]). Let G be a snf-countable topological group.
Then oG is a topological group.

PROOF: By Proposition 2.2, G has a countable so-network P, at e satisfying the
condition (x): for each P, € P., there is a P» € P, such that PoP» C P;. We
also can see that P, is a strong so-network at e by Lemma 2.3. Then oG is a
topological group by Corollary 2.8. O

Proposition 2.10. Let F(X) be a free topological group on a sequential space X .
Then o F(X) is a topological group if and only if F(X) is a sequential space.

PRrROOF: Sufficiency is obvious.

Necessity: Suppose F(X) is not sequential, then the topology on oF(X) is
strictly finer than the topology on F(X) and the topology on X as a subspace
of o F(X) is compatible with the original topology on X (note that X is sequen-
tial). However, the topology on F'(X) is the finest group topology on F(X) that
generates on X its original topology [6, Corollary 7.1.8]. Hence o F(X) is not a
topological group. O

Remark: Usually, the sequential coreflection of a topological group need not
to be a topological group. Let S, be the space obtained by identifying all limit
points of the topological sum of w; convergent sequences. Then S, is Fréchet-
Urysohn. Let F(S,,,) be the free topological group on S,,,, by [6, Theorem 7.1.13
(b)], F(S.,) contains a closed copy of S, XSy, . Since S, XS, is not a sequential
space [9], then F'(S,,) is not a sequential space, hence its sequential coreflection
oF(S.,) is not a topological group by Proposition 2.10.

A subset B of a paratopological group G is called w-narrow in G if, for each
neighborhood U of the neutral element of G, there is a countable subset F' of G
such that B C FUNUF.

Let X = II;c; X; be the product of spaces X;, with i € I. A standard base of
the w-box topology on X consists of the w-cubes B = Il;c;B;, where each B; is
open in X; (and, clearly, the number of indices ¢ € T with B; # X is countable).

Ezample 2.11. There is a Lindeldf (hence, w-narrow), snf-countable, zero-dimen-
sional topological group G such that G™ is topologically isomorphic to G, w(G) =
c and G does not have a o-locally finite network.

Proor: Let D = {0,1} be the discrete topological group with operation “addi-
tion”. In the product group I1D¢, consider the subgroup G = oIID¢ = {z € I1D* :
|supp (z)| < w}, where supp (x) denotes the set {a € wy : x(a) # 0}. Endow G
with w-box topology T. Then (G,+,T) is a zero-dimensional topological group.
It is proved in [6, Example 4.4.11] that G is a Lindel6f topological P-group, G™
is topologically isomorphic to G and w(G) = c.
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Claim. Every countable subset of G does not have a cluster point.

Suppose not, then there is a countable subset A of G such that a € A\ {a} for
some a € G. Put J = U{supp (x) : @ € A\ {a}}, then J is a countable subset
of wi. Let V = 1IIY; N G, where p(Y;) = D if i ¢ J U supp (a); p(Y;) = {1} if
i € supp (a); p(Y;) = {0} if ¢ € J\ supp (a). V is an open neighborhood of a since
V =11Y; is open in I1D® that is endowed with w-box topology. It is easy to see
that VN A = 0. This is a contradiction.

1) G is snf-countable.
By Claim, there is no non-trivial convergent sequence in G, {z} is a sequential
neighborhood of = € GG, hence G is snf-countable.

2) G does not have o-locally finite network.

Suppose that G has a o-locally finite network. Since G is a Lindelof space,
G is a cosmic space (i.e. G has a countable network). Hence G is hereditarily
separable. This is a contradiction since |G| > w and every countable subset of G
is discrete by Claim. O

Remark: The topological group G in Example 2.11 is neither an N-space nor
a cosmic space (i.e. a space with countable network). Hence the answers for
Questions 1.4, 1.5 are negative. However, the group G in Example 2.11 is not
separable. Note that a separable topological group is w-narrow [6, Corollary 3.4.8],
it is natural to ask if there is a Lindelof, separable, snf-countable topological group
that is not a o-space.

In what follows, we construct a Lindelof, separable, snf-countable topological
group that is not a o-space.

Simon [19] proved the following:

Theorem 2.12. There is a countable dense subset A of TID® such that |H| = 2°
for any infinite subset H C A.

The following proposition comes from a discussion with Arhangel’skii.

Proposition 2.13. There is a Lindeldf, separable space Y satisfying the follow-
ing:
(1) Y is not a o-space (i.e. a space having no o-locally finite network);

(2) every compact subset of Y is finite;
(3) Y™ is Lindelof for each n € N.

PRrROOF: Let A(IID¢) = X U X; be the Alexandroff duplicate of X = IID¢, where
X, is a copy of X, and let GG be the Lindelof topological group of Example 2.11.
Since G is zero-dimensional and w(G) = ¢, then G is homeomorphic to a subspace
of X =TIID¢ by [7, Theorem 6.2.16]. By Theorem 2.12, we can choose a countable
dense subset A of X such that [H| = 2¢ for any infinite subset H C A. Let
Ay C X7 be a copy of A, and let Y = G U A;. Note that G is a Lindelof space
that is not a o-space and A; is countable, then Y is a Lindelof, separable space
that is not a o-space. We prove each compact subset of Y is finite. Let K be
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a compact subset of Y, then K NG is compact in Y since G is a closed subset of Y.
By Claim in Example 2.11, KNG is finite. If K N A; is infinite, by Theorem 2.12,
|[KNA|=2° KNA; C K CY,then KN A NG C KNG is an infinite compact
subset of G. This is a contradiction. So K N A; is finite, therefore K is finite.
Note that G™ is Lindel6f for each n and A; is countable, it is easy to see that
Y™ is a union of countably many Lindel6f subspaces, hence Y is Lindel6f for
each n. (]

Theorem 2.14. There is a Lindeldf, separable, snf-countable topological group
that is not a o-space.

PROOF: Let Y be the space in Proposition 2.13, and let F'(Y) be the free topo-
logical group on Y. Since Y is separable and Y™ is Lindelof for each n, F(Y) is
also Lindeléf and separable by [6, Corollary 7.1.18, Theorem 7.1.13]. F(Y") is not
a o-space since Y is not a o-space. We prove that each compact subset of F(Y)
is finite. Let K be a compact subset of F(Y). Since Y is Dieudonné-complete,
by [5, Corollary 1.8], there exist a compact Z C Y and n € N such that K is a
continuous image of a subspace in Z". Z is finite since each compact subset of Y
is finite, Z™ is also finite, hence K is finite and F(Y") is snf-countable. [l

A space X is a g¢-space if X has a g-function satisfying: for z € X, if z,, €
g(n,x), then {z,} has a cluster point in X. A space X is a wM-space if there
exists a sequence (U,,) of open covers of X such that if x,, € st?(x,U,) for each
n € N, then the set {z, : n € N} has a cluster point in X.

Theorem 2.15. Let G be a regular paratopological group in which each singleton
is a Gg-set. If G is a wM-space, then G is metrizable.

PROOF: Since GG is a wM-space, then G is a g¢-space. Moreover, G is first-
countable since a regular g-space in which each singleton is a Ggs-set is first-
countable [17], hence G has a regular Gs-diagonal [14]. Therefore, G is metrizable
since a wM-space with a regular Gs-diagonal is metrizable [20]. O

Remark: Theorem 2.15 gives a positive answer to Question 1.6 when G is
regular and T7. But the author doesn’t know if we can replace “paratopological
group” with “semitopological group” in Theorem 2.15.

Next, we discuss remainder of a paratopological group in its Hausdorff com-
pactification. Arhangel’skii [2] proved the following.

Theorem 2.16 ([2]). Let G be a non-locally compact topological group and the
remainder Y = bG \ G have a point-countable base. Then G and bG are separable
and metrizable.

Let f: X — Y be a map. The map f is called k-gentle [4] if for each compact
subset F' of X the image f(F') is also compact. A paratopological group is called
k-gentle if the inverse map x — z~ ! is k-gentle. Liu and Lin [16] improved the
result by replacing “point-countable base” with “pseudo open s-image of a space
with a point-countable base”. On the other hand, the author also proved the
following theorem on k-gentle, paratopological group.
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Theorem 2.17 ([15]). Let G be a non-locally compact, k-gentle paratopological
group and the remainder Y = bG \ G have a point-countable base. Then G and
bG are separable and metrizable.

Next, we are able to improve both theorems in [15], [16].

A family S of subsets of a space X is said to be a k-sensor [3] at € X if, for
each open neighborhood O(z) of x and each open set U such that x € U, there
exists P € S satisfying the following conditions: P C O(z) and z € U N P.

If there exists a countable k-sensor at x, the space is said to be countably
k-sensitive at x [3].

The family & is called a cs*-network for X [12] if, whenever x € X and
a sequence S converges to x € U with U open, there exists P € P such that
x € P C U and P contains a subsequence of S.

Tanaka [21] proved that a space X is a pseudo open s-image of a space with
a point-countable base if and only if X is a Fréchet-Urysohn space with a point-
countable cs*-network.

Lemma 2.18. Let X be a Fréchet-Urysohn space with a point-countable cs*-
network. Then X is of countably k-sensitive at each v € X.

PROOF: X is a Fréchet-Urysohn space with a point-countable cs*-network P. Fix
r € X, an open neighborhood O(z) of x and an open set U with x € U. Let
Pr={P € P :x € P}, |Ps| <w. Since X is Fréchet-Urysohn, there is a sequence
S C U converging to z. P, is a cs*-network at x, then there is P € P, such that
x € P C O(zx) and P contains a subsequence Sy of S. = € S, c PNU. Hence P,
is a countable k-sensor at x. Il

Theorem 2.19. Let G be a non-locally compact, k-gentle paratopological group.
If the remainder Y = bG \ G is a pseudo open s-image of a space with a point-
countable base, then G and bG are separable and metrizable.

PROOF: By [4, Theorem 4.4], Y is either Lindeléf or pseudocompact. If Y is
Lindeldf, then G is a topological group [4, Corollary 4.5]. Hence G' and bG are
separable and metrizable by [16, Theorem 5.2].

If Y is pseudocompact, by Lemma 2.18, Y is of countably x-sensitive at each
x €Y. Then Y is first-countable by [3, Theorem 1.5]. ¥ has a point-countable
base since a first-countable, quotient s-image of a space with a point-countable
base has a point-countable base [11]. Therefore, G and bG are separable and
metrizable by Theorem 2.17. (|

REFERENCES

[1] Arhangel’skil A.V., Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.

[2] Arhangel’skii A.V., More on remainders close to metrizable spaces, Topology Appl. 154
(2007), 1084-1088.

[3] Arhangel’skii A.V., Components of first-countablity and various kinds of pseudoopen map-
pings, Topology Appl. 158 (2011), 215-222.



Paratopological (topological) groups with certain networks 119

[4] Arhangel’skii A.V., Choban M.M., On remainders of rectifiable spaces, Topology Appl.
157 (2010), 789-799.

[5] Arhangel’skii A.V., Okunev O.G., Pestov V.G., Free topological groups over metrizable
spaces, Topology Appl. 33 (1989), 63-76.

[6] Arhangel’skii A.V., Tkachenko M., Topological Groups and Related Structures, Atlantis
Press and World Sci., Hackensack, NJ, 2008.

[7] Engelking R., General Topology, PWN, Polish Scientific Pub., Warszawa, 1977.

[8] Franklin S., Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115.

[9] Gruenhage G., k-spaces and products of closed images of metric spaces, Proc. Amer. Math.
Soc. 80 (1980), 478-482.

[10] Gruenhage G., Generalized metric spaces, K. Kunen, J.E. Vaughan, eds., Handbook of
Set-Theoretic Topology, North-Holland, 1984, pp. 423-501.

[11] Gruenhage G., Michael E., Tanaka Y., Spaces determined by point-countable covers, Pacific
J. Math. 113 (1984), no. 2, 303-332.

[12] Lin S., On sequence-covering s-maps, Math. Adv. (China) 25 (1996), 548-551.

[13] Lin F., A note on paratopological groups with countable networks of sequential neighbor-
hoods, Topology Proc. 41 (2013), 9-16.

[14] Liu C., A note on paratopological groups, Comment. Math. Univ. Carolin. 47 (2006), no. 4,
633-640.

[15] Liu C., Metrizability of paratopological (semitopological) groups, Topology Appl. 159
(2012), 1415-1420.

[16] Liu C., Lin S., Generalized metric spaces with algebraic structures, Topology Appl. 157
(2010), 1966-1974.

[17] Michael E., A quintuple quotient quest, General Topology Appl. 2 (1972), 91-138.

(18] Ordman E., Smith-Thomas B., Sequential conditions and free topological groups, Proc.
Amer. Math. Soc. 79 (1980), no. 2, 319-326.

[19] Simon P., Divergent sequences in compact Hausdorff spaces, Topology, Vol. II (Proc. Fourth
Colloq., Budapest, 1978), pp.1087-1094, Colloq. Math. Soc. Jénos Bolyai, 23, North-
Holland, Amsterdam-New York, 1980.

[20] Shiraki T., M-spaces, their generalization and metrization theorems, Sci. Rep. Tokyo Ky-
oiku Daigaku A, 11 (1971), 57-67.

[21] Tanaka Y., Point-countable covers and k-networks, Topology Proc. 12 (1987), 327-349.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ZANESVILLE CAMPUS,
ZANESVILLE, OH 43701, USA

FE-mail: liucl@Qohio.edu

(Received May 20, 2012, revised April 17, 2013)



