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One-dimensional model describing the

non-linear viscoelastic response of materials

Tomáš Bárta

Abstract. In this paper we consider a model of a one-dimensional body where
strain depends on the history of stress. We show local existence for large data
and global existence for small data of classical solutions and convergence of the
displacement, strain and stress to zero for time going to infinity.

Keywords: viscoelasticity; integrodifferential equation; classical solution; global
existence; implicit constitutive relations

Classification: 45K05, 45G10, 74D10

1. Introduction

If we want to describe deformations of a body, relations between stress and
strain (so called constitutive relations) play a crucial role. Classical models ex-
pressed stress as a function of strain. In the last years, models where strain is a
function of stress or where their dependence is given by a relation (neither of them
is a function of the other one) started to be studied more intensively (see e.g. Ra-
jagopal [12], Málek [8], Málek, Pr̊uša and Rajagopal [9], Pr̊uša and Rajagopal [11],
Buĺıček et al. [1]).

Muliana, Rajagopal and Wineman have introduced in [10] a model of a vis-
coelastic body where strain is a function of the history of stress (in contrast to
classical integral viscoelastic models where stress was considered as a function of
the history of strain). According to [10], this new model was tested on human
patellar tendons and fits very well the measured data.

The equations of this model read as follows

ρutt(t, x) = σx(t, x) + f(t, x), (t, x) ∈ Q,(1)

ux(t, x) = α(σ(0, x))β(t) +

∫ t

0

d

dσ
α(σ(s, x))σt(s, x)β(t − s) ds, (t, x) ∈ Q(2)

where Q = (0,+∞)× [0, 1], u is displacement, σ is stress, f is an external force,
ρ > 0 is constant density and α : R → R, β : R+ → R are material functions.
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In [10], some examples of function α, β are given, namely β has the following
form

β(t) = J0 +

n
∑

i=1

Ji(1− e−t/τi), e.g., β(t) = J0 + J1(1− e−t/τ1),

with Ji, τi positive constants (more generally, β is a generalized creep function)
and α is

α(σ) = C1σ + C2σ
2 or α(σ) = a

[

1− exp

(

− λσ√
1 + bσ2

)]

+
µσ

√

1 + γσ2
,

where C1, C2, a, b, γ, λ, µ are positive constants.
In this paper we show local existence of classical solutions for large data and

global existence for small data for this kind of equations supplemented by certain
initial and boundary conditions. In fact, we show that equation (2) can be solved
for σ, so we can express stress as a function of the strain. By inserting the obtained
formula for σ into (1) we get an equation of the form

(3) utt(t, x) = ψ(ũx(t, x))uxx(t, x)−ψ(ũx(t, x))

∫ t

0

r(t− s)uxx(s, x) ds+ f(t, x),

where

ũ(t, x) := u(t, x)−
∫ t

0

r(t− s)u(s, x) ds.

So, we are coming back to a model where stress is depending on the history
of strain. Such equations were studied in the eighties by many authors (Mac-
Camy [7], Staffans [14], Dafermos and Nohel [2], Hrusa and Nohel [5], Hrusa and
Renardy [6]). In contrast to these works, in our case function ψ depends on the
whole history of u and not only on the present value u(t).1 This is the reason why
some estimates must be done more carefully and therefore we present proofs of
local and global existence for (3) in this paper, even if the method of the proofs
remains unchanged.

Section 2 contains the main results — local and global existence, uniqueness
and asymptotics for (1), (2). In Section 3 we present reduction to equation (3).
Sections 4, 5 and 6 are devoted to the reduced equation (3), namely some notations
and technical lemmas in Section 4 and proofs of local (resp. global) existence in
Section 5 (resp. Section 6).

1There is also a very general result of Hrusa [4] which covers this type of dependence, however
that result deals with the history to −∞, so the solutions are smooth on (−∞, T ]. In our case,
if we considered zero history for negative times, there would be typically a jump in zero.
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2. Main results

We supplement our model with Dirichlet boundary conditions

(4) u(t, 0) = u(t, 1) = 0, t ≥ 0

and initial conditions

(5) u(0, x) = u0(x), u̇(0, x) = u1(x), x ∈ [0, 1].

Our assumptions for local existence and large data are the following (Hk denotes
the Sobolev space W k,2, T ∈ (0,+∞]).

(L1) α ∈ C3(R) with 0 < α′(z) < αM on R.
(L2) β ∈ C3([0, T ]) with β(0) 6= 0.
(L3) u0 ∈ H3([0, 1]) with u′0(x)/β(0) ∈ α(R) and u1 ∈ H2([0, 1]).
(L4) f ∈ C1([0, T ], L2([0, 1])) ∩ C([0, T ], H1([0, 1])), ftt ∈ L2([0, T ], L2([0, 1])).
(L5) uk(0) = uk(1) = 0 for k = 0, 1, 2, where

(6) u2(x) :=
u′′0(x)

ρβ(0)α′(α−1(
u′

0
(x)

β(0) ))
+ f(0, x).

Let us remark that condition u′(x)/β(0) ∈ α(R) is necessary, otherwise the
equation (2) could not have a solution for small t and condition (L5) is also
necessary since it is a compatibility condition for initial and boundary values.

We say that a solution (classical) defined on [0, T ′) is maximal , if it cannot be

extended to a (classical) solution on a larger interval [0, T̃ ′), T̃ ′ > T ′.

Theorem 2.1 (Local existence). Let (L1)–(L5) be satisfied. Then there exist
T ′ ≤ T and functions

u ∈
3
⋂

k=0

C3−k([0, T ′], Hk([0, 1])), σ ∈
2
⋂

k=0

C2−k([0, T ′], Hk([0, 1]))

which solve (1), (2), (4), (5). Moreover, if u : [0, T ′) → R is a maximal solution
and

(7) sup
t∈[0,T ′)

∫

[0,1]

u2(t)+u2x(t)+u
2
xx(t)+u

2
xxx(t)+u

2
t (t)+u

2
tx(t)+u

2
txx(t)dx < +∞,

then T ′ = T .

Before we formulate the assumptions for global existence, let us say that ϕ :
R+ → R is called a Bernstein function if ϕ(x) > 0 for all x > 0 and the k-th
derivative satisfies (−1)kϕ(k)(x) ≤ 0 for all x > 0 and all k = 1, 2, 3, . . . . For
a Bernstein function, we define ϕ∞ := limt→+∞ ϕ(t) if it is finite and ϕ1(t) :=
ϕ∞ − ϕ(t), t ≥ 0.

Our assumptions for global existence and small data are the following.

(G1) α ∈ C3(V ) with α(0) = 0, α′(0) > 0 (V is a neighborhood of 0).
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(G2) β is a Bernstein function with β(0) > 0, β1, β
′ ∈ L1(R+).

(G3) u0 ∈ H3([0, 1]) and u1 ∈ H2([0, 1]).
(G4) f ∈ C1(R+, L

2([0, 1])) ∩C(R+, H
1([0, 1])), ftt ∈ L2(R+, L

2([0, 1])).
(G5) uk(0) = uk(1) = 0 for k = 0, 1, 2 where u2 is defined by (6).

Let us define the following quantities

U0 := ‖u0‖2H3 + ‖u1‖2H2 ,

F := sup
t≥0

∫ 1

0

f2 + f2
x + f2

t dx+

∫ +∞

0

∫ 1

0

f2 + f2
x + f2

t + f2
tt dxdt.

Theorem 2.2 (Global existence). Let (G1)–(G5) be satisfied. Then there exists

µ > 0 such that if U0, F < µ then there exists a solution u ∈ ⋂3
k=0 C

3−k(R+, H
k([0, 1])),

σ ∈
⋂2

k=0 C
2−k(R+, H

k([0, 1])) to (1), (2), (4), (5). Moreover,
(8)
u, ux, ut, uxx, utx, utt, uxxx, utxx, uttx, uttt ∈ Cb(R+, L

2([0, 1]))∩L2(R+, L
2([0, 1])),

and

(9) u, ux, ut, uxx, utx, utt → 0 and σ, σx, σt → 0

uniformly on [0, 1] as t→ +∞.

Let us remark that functions α, β from [10] mentioned in the beginning of this
paper satisfy the assumptions of the Theorems (more precisely, if α is an odd
function defined as above for non-negative arguments).

3. Reduction to a single equation

Integration by parts in equation (2) yields

ux(t, x) = α(σ(0, x))β(t) + [β(t− s)α(σ(s, x))]t0 +

∫ t

0

α(σ(s, x))β′(t− s) ds,

i.e.,

(10) ux(t, x) = β(0)α(σ(t, x)) +

∫ t

0

α(σ(s, x))β′(t− s) ds.

We solve this equation for α(σ(t, x)). It is easy to show that the solution is

α(σ(t, x)) :=
1

β(0)
ux(t, x)−

1

β(0)

∫ t

0

r(t− s)ux(s, x) ds,

where r satisfies

(11) r +
1

β(0)
r ∗ β′ =

1

β(0)
β′.
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This last equation is linear and scalar and its solution r ∈ L1
loc(R+) (resp.

L1([0, T ])) exists by Theorem 2.3.1 in [3] (resp. its proof), whenever β′ ∈ L1
loc(R+)

(resp. L1([0, T ])). Then, if α is invertible, we can write

(12) σ(t, x) := α−1

(

1

β(0)
ux(t, x)−

1

β(0)

∫ t

0

r(t − s)ux(s, x) ds

)

and insert this into equation (1)

ρutt =
d

dx
α−1

(

1

β(0)
ux(t, x)−

1

β(0)

∫ t

0

r(t − s)ux(s, x) ds

)

+ f

=
d

dx
α−1(ũx/β(0)) + f,

where

ũ := ux(t, x)−
∫ t

0

r(t − s)ux(s, x) ds.

If α is differentiable with nonzero derivative, we can write

(13) utt(t, x) = ψ(ũx(t, x))uxx(t, x)−ψ(ũx(t, x))
∫ t

0

r(t−s)uxx(s, x) ds+f(t, x),

where

ψ(ũ) =
1

ρβ(0)α′(α−1(ũ/β(0)))
.

It was mentioned above that such equations were studied by many authors.
So, we will formulate the assumptions and existence results in the spirit of their
results and show that the assumptions are satisfied if (L1)–(L5), resp. (G1)–(G5)
hold.

Assume

(l1) there exists U ⊂ R open, ψ ∈ C2(U), ψ(u) > 0 for all u ∈ U .
(l2) r ∈ C2([0, T ]).
(l3) u0 ∈ H3([0, 1]), u1 ∈ H2([0, 1]) such that u′0(x) ∈ U for all x ∈ [0, 1].

(l4) f ∈ ⋂1
k=0 C

1−k([0, T ], Hk([0, 1])), ftt ∈ L2([0, T ], L2([0, 1])).
(l5) uk(0) = uk(1) = 0 for k = 0, 1, 2, where u2 is given by

(14) u2(x) := ψ(u′0(x))u
′′
0 (x) + f(0, x)

Theorem 3.1. Let (l1)–(l5) hold. Then there exists T ′ ∈ (0, T ] such that (13),

(4), (5) has a maximal solution u ∈ ⋂3
k=0 C

3−k([0, T ′], Hk([0, 1])). Moreover, if
u : [0, T ′) is a maximal solution and

(15) sup
t∈[0,T ′)

∫

[0,1]

u2(t)+u2x(t)+u
2
xx(t)+u

2
xxx(t)+u

2
t (t)+u

2
tx(t)+u

2
txx(t)dx < +∞,

then T ′ = T .
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The global existence result is based on the fact that the kernel is strongly
positive definite. We say that a function a : R+ → R is positive definite if

Q(a, T, v) :=

∫ T

0

v(t)

∫ t

0

a(t− s)v(s) ds dt ≥ 0

for all T > 0 and v ∈ L2(0, T ). It is strongly positive definite, if there exists
ε > 0 such that t 7→ aε(t) := a(t) − εe−t is positive definite. Let us define

R(t) :=
∫ +∞

t
r(s) ds and formulate the assumptions.

(g1) ∃m > 0 such that ψ ∈ C2(−m,m) with ψ(0) > 0.
(g2) r, r′ ∈ L1(R+) ∩ C1(R+) and R ∈ L1(R+) is strongly positive definite

and R(0) < 1.
(g3) u0 ∈ H3([0, 1]) and u1 ∈ H2([0, 1]).
(g4) f ∈ C1(R+, L

2([0, 1])) ∩ C(R+, H
1([0, 1])), ftt ∈ L2(R+, L

2([0, 1])).
(g5) uk(0) = uk(1) = 0 for k = 0, 1, 2 where u2 is defined by (14).

Theorem 3.2. Let (g1)–(g5) hold. Then there exists µ > 0 such that if U0,

F ≤ µ, then there exists a (unique) global solution u ∈ ⋂3
k=0 C

3−k(R+, H
k([0, 1]))

to (13), (4), (5). Moreover, u satisfies
(16)
u, ux, ut, uxx, utx, utt, uxxx, utxx, uttx, uttt ∈ Cb(J, L

2([0, 1])) ∩ L2(J, L2([0, 1]))

and

(17) u, ux, ut, uxx, utx, utt → 0

uniformly on [0, 1] as t→ +∞.

Now, we show that Theorems 2.1 and 2.2 follow from Theorems 3.1 and 3.2.
The latter theorems will be proved in the next sections.

We show that (l1)–(l5) follow from (L1)–(L5). From (L1) it follows that α
is invertible on α(R) and from (L3) it follows that there exists a neighborhood
U of {u′0(x)/β(0);x ∈ [0, 1]} which lies in α(R). Then ψ is well defined on U
and it is C2(U) (α′ 6= 0) and positive. It remains to show that r ∈ C2([0, T ]).
Since β ∈ C3([0, T ]), we have β′ ∈ L1([0, T ]), hence r ∈ L1([0, T ]) (by proof of
Theorem 2.3.1 in [3]). It follows from β′ ∈ C2([0, T ]) and properties of convolution
that r satisfying (11) belongs to C2([0, T ]).

We show that (g1)–(g5) follow from (G1)–(G5). From (G1) there is a neighbor-
hood of zero where α is invertible and α′ > 0. Then ψ is well defined, positive and
C2 on a neighborhood of zero. Since β is a Bernstein’s function, β′ is completely

monotone (it means (−1)kβ(k) ≥ 0 on R+ for all k = 1, 2, 3, . . . ). Therefore r
is also completely monotone by Theorem 5.3.1 in [3]. Moreover, by the same

Theorem, r ∈ L1 and R(0) =
∫ +∞

0 r(t) dt < 1. Since R is positive and R′ = −r,
it follows that R is completely monotone and by Proposition 16.4.3. in [3], R is
strongly positive definite (equivalently “of strong positive type”). We show that



One-dimensional model describing the non-linear viscoelastic response of materials 233

R ∈ L1(R+). Compute convolution of (11) with constant 1 and multiply by β(0).
We obtain

β(0)(R(0)−R(t)) + r ∗ (β(·)− β(0))(t) = β(t) − β(0).

We can rewrite this equation as

β∞(R(0)−R(t)) + r ∗ (β(·)− β∞)(t) = β(t)− β(0),

i.e.

(18) β∞R(t) = r ∗ (β(·) − β∞)(t) − (β(t)− β∞)− β∞ + β(0) + β∞R(0).

Then R ∈ L1(R+) since β − β∞ = β1 ∈ L1(R+), r ∈ L1(R+) and −β∞ + β(0) +
β∞R(0) = 0 (this follows immediately by taking the limit for t→ +∞ in (18)).

Clearly, the assertions of Theorem 3.1, resp. 3.2 imply the assertions of The-
orem 2.1, resp. 2.2 with function σ defined by (12). So, to prove Theorems 2.1,
2.2 it is sufficient to prove Theorems 3.1, 3.2.

Let us mention that in the case introduced in [10] (β(t) = J0 +
∑n

i=1 Ji(1 −
e−t/τi)) we can compute r explicitly. In fact, we have β′ =

∑

Ji/τie
−t/τi . If we

had β̃′(t) = ce−λt, then r̃(t) = ce−λ(1+c/λ)t (applying the Laplace transform to
(11)). Hence, by linearity we have r(t) =

∑n
i=1 µie

−λit for appropriate positive
constants µi, λi.

Concerning properties of

ψ =
1

ρβ(0)(α−1)′

in case of α’s from the examples above, the first example (quadratic dependence)
yields that γ := α−1 is concave with γ′(0) > 0 and γ(z) → 0 for z → +∞. Then ψ
is positive and ψ(z) → ∞ for z → +∞. In the second example, α(σ) has a finite
limit for σ → +∞, so ψ is defined (and positive) on a bounded interval [−A,A]
with zero limits at the endpoints. However, since we will prove just local existence
for arbitrary data and global existence for small data, the shape of ψ will not be
very important for us. These functions ψ satisfy the assumptions (l1), (g1).

4. Notation and preliminaries

Let us introduce some notation. In the following, we denote by ‖ · ‖q the norm
on Lq([0, 1]), by ‖ · ‖S,p,q the norm on Lp([0, S], Lq([0, 1])) (sometimes we will
write shortly ‖ · ‖p,q if S is clear from the context). Partial derivatives of v will
be denoted by vt, vx, vtx, . . . , or ∂

2
t ∂

3
xv. If u : [0, S] × [0, 1] → R, we will often

write u(t) instead of u(t, ·). We denote QS := [0, S]× [0, 1].
P will be a generic function of one or more variables with values in R+ that

maps bounded sets on bounded sets. By Z we will denote a generic function that
maps bounded sets to bounded sets and is continuous in 0 and Z(0) = 0. C > 0
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will be a generic constant. P , Z, and C may vary from expression to expression.
Let us define the difference operator ∆h by

(∆hf)(t) := f(t+ h)− f(t),

where f is any function defined on R+ with values in a Banach space.

Lemma 4.1 ([13, Lemma IV.9]). Let a ∈ L1(R+) be strongly positive definite
and a′, a′′ ∈ L1(R+). Then there exists κ > 0 such that for every S > 0 and every
w ∈ C([0, S], X) we have

∫ t

0

‖w(s)‖2 ds ≤ κ‖w(0)‖2 + κQ(a, t, w) + κ lim inf
h→0+

1

h2
Q(a, t,∆hw)

for all t ∈ [0, S).

Lemma 4.2 ([13, Lemma III.7(i)]). Let F ∈ Ck(R). Then F ◦ w ∈ W k,2([0, 1])
whenever w ∈W k,2([0, 1]) and for every K > 0 there exists C(K) > 0 such that

sup{‖F (w)‖Wk,2 : w ∈W k,2([0, 1]), ‖w‖Wk,2 ≤ K} ≤ C(K).

Lemma 4.3. Let r ∈ W 1,1 ∩W 1,∞(R+) and set Iv(t) :=
∫ t

0
r(t − s)v(s)ds for

any v ∈ L1
loc(R+, X) (where X is a Banach space). Then there exists C > 0 and

a function P : [0,+∞) → [0,+∞) bounded on bounded sets such that

(i) ‖v‖S,∞,2 ≤M implies ‖Iv‖S,∞,2 ≤ S · P (M),
(ii) ‖vx‖S,∞,2 ≤M implies ‖Ivx‖S,∞,2 ≤ S · P (M),
(iii) ‖vt‖S,∞,2 ≤M implies ‖Ivt ‖S,∞,2 ≤ C‖v(0)‖2 + S · P (M),
(iv) ‖v‖S,∞,2 ≤M implies ‖Ivt ‖S,2,2 ≤ S · P (M),
(v) ‖v‖S,∞,2, ‖vt‖S,∞,2 ≤M implies ‖Ivtt‖S,2,2 ≤ S · P (M),
(vi) ‖vx‖S,∞,2 ≤M implies ‖Iv‖S,1,∞ ≤ S · P (M).

Proof: The proof is straightforward using Hölder inequality. The only tricks are

writing v(t) = v(0) +
∫ t

0
vt in (iii) and using Sobolev embedding in (vi), which

gives ‖v‖S,∞,∞ ≤ CM . In (v) one has to differentiate r once and v once in the
integral term. �

Lemma 4.4. Let k, m ∈ N ∪ {0}, p ∈ [1,∞], r(l) ∈ L1(R+) ∩ L∞(R+) for
l = 0, . . . , k and define the mapping u→ ũ by

ũ(t, x) := u(t, x) +

∫ t

0

r(t− s)u(s, x)ds.

Then

‖∂kt ∂mx ũ(t)‖p ≤ c

k
∑

l=0

‖∂lt∂mx u(t)‖p + c‖∂mx u‖t,2,p,

‖∂kt ∂mx ũ(t)‖p ≤ c

k
∑

l=0

‖∂lt∂mx u(t)‖p + c‖∂mx u(s)‖t,∞,p,
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‖∂kt ∂mx ũ‖t,∞,p ≤ c
k
∑

l=0

‖∂lt∂mx u‖t,∞,p

and

(19) ‖∂kt ∂mx ũ‖t,2,p ≤ c
k
∑

l=0

‖∂lt∂mx u‖t,2,p

with c depending on the norm of r and independent of

u ∈W k,∞([0, S],Wm,p([0, 1]))

(resp. u ∈ W k,2([0, S],Wm,p([0, 1])) in case of the last inequality), t ∈ [0, S] and
S > 0.

Proof: The proof is straightforward. �

5. Local existence

In this section we will prove Theorem 3.1. Let us first consider the linearized
equation

utt = ψ(w̃x)uxx + ψ(w̃x)

∫ t

0

r(t − s)wxx(s)ds+ f(t).

Let us denote

Bw := ψ(w̃x) and gw := ψ(w̃x)

∫ t

0

r(t− s)wxx(s) ds+ f(t).

Then, by Lemma III.3 in [13], the linear equation has a unique solution u ∈
⋂3

k=0 C
3−k([0, T ], Hk([0, 1])) for each w ∈ ⋂3

k=0 C
3−k([0, T ], Hk([0, 1])). In the

following two lemmas we show that the mapping w 7→ u is a contraction on
X(T ′,M) if T ′ is small and M large enough, where

X(T ′,M) = {w ∈
3
⋂

k=0

W 3−k,∞([0, T ′], Hk([0, 1])), ∂kt w(0, ·) = uk(·),

k = 0, 1, 2, and M(w) :=

3
∑

k=0

3−k
∑

l=0

sup
t∈[0,T ′]

‖∂kx∂ltw(t)‖22 ≤M}.

So, the existence and uniqueness will be proved by the following two lemmas
and the Banach contraction theorem. The moreover-part follows from standard
continuation arguments.

In the following, we will often use S2 ≤ S assuming that S ≤ T ′ ≤ 1.

Lemma 5.1. The mapping w 7→ umapsX(T ′,M) into itself if T ′ is small enough
and M large enough.
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Proof: Let us drop the subscript w and write B := Bw and g := gw. Let
S ∈ (0, T ) be arbitrary. From Lemma III.3 in [13] we have

Em(u(t)) ≤ Γ(U,K,L0) exp(S · Λ(U,K,L, S)), for all t ∈ [0, S],

where

Em(u(t)) :=
3
∑

k=0

3−k
∑

l=0

‖∂kt ∂lxu(t)‖22,

U := max
t∈[0,S]

‖g(t)‖22 + max
t∈[0,S]

‖∂tg(t)‖22 + max
t∈[0,S]

‖∂xg(t)‖22 +
∫ S

0

‖∂2t g(t)‖2 dt,

K := max
t∈[0,S]

‖B(t)‖22 + max
t∈[0,S]

‖∂xB(t)‖22,

L :=

2
∑

k=0

2−k
∑

l=0

sup
t∈[0,S]

‖∂kt ∂lxB(t)‖22,

L0 :=

1
∑

k=0

2−k
∑

l=0

‖∂kt ∂lxB(0)‖22

and Γ, Λ are functions that are bounded on bounded sets. We estimate these
terms by a function of M(w).

Working on [0, S], by Lemma 4.4 we have M(w̃) ≤ CM(w). Now, from
Lemma 4.2 it follows that L ≤ PL(M). L0 is constant since the initial values
are fixed. Further,

B(t, x) = ψ(u′0(x)) +

∫ t

0

d

dt
(ψ(wx))(s, x) ds,

Bx(t, x) = ψ(u′0(x))x +

∫ t

0

d

dt
(ψ(wx))x(s, x) ds,

which implies K ≤ CK+S ·PK(M). We postpone the proof of U ≤ CU+S ·PU (M)
and believe for a while that it holds.

Take M1 > max(CK , CU , L0) and M > 0 such that Γ([0,M1]
3) ⊂ [0,M/100].

Take any S ∈ (0, T ). Then U , K, L ≤ P (M) for all w ∈ X(S,M). Hence,

Ñ := Λ([0, P (M)]3 × [0, S]) is bounded and we can take T ′ ∈ (0, S) such that

T ′ ·max Ñ < ln 2. Moreover, we can take T ′ so small, that [U,K,L0] ∈ [0,M1]
3

for all w ∈ X(T ′,M). Hence, for all w ∈ X(T ′,M) we have

Em(u(t)) ≤ Γ(U,K,L0) exp(T
′ · Λ(U,K,L, T ′)) ≤ M

100
exp(T ′ ·max Ñ) < M/50

for all t ∈ [0, T ′], so u ∈ X(T ′,M).
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It remains to estimate U , where

U = max
t∈[0,S]

‖g(t)‖22 + max
t∈[0,S]

‖gx(t)‖22 + max
t∈[0,S]

‖gt(t)‖22 +
∫ S

0

‖gtt(t)‖2 dt.

Denoting I := r ∗ wxx we can write

U = max
t∈[0,S]

‖BI(t)‖22 + max
t∈[0,S]

‖BxI +BIx(t)‖22 + max
t∈[0,S]

‖BtI

+BIt(t)‖22 +
∫ S

0

‖BttI +BtIt +BItt(t)‖2 dt.

Since

(20) B,Bt, Btt, Bx, Btx, Bxx are bounded in L∞(L2) by P (M)

we have by Sobolev embeddings

(21) B,Bt, Bx are bounded in L∞(L∞) by P (M)

and as a consequence

(22) B,Bt are bounded in L2(L∞) by S · P (M)

Moreover,

(23) ‖B‖∞ ≤ ‖B(0)‖∞ +

∫ t

0

‖Bt‖∞ ≤ ‖B(0)‖∞ + S · ‖Bt‖∞.

Hence,

(24) B is bounded in L∞(L∞) by C + S · P (M).

Now, (21) and Lemma 4.3(i), (ii) yield

BI,BxI, BIx, BtI are bounded in L∞(L2) by S · P (M),

(24) and Lemma 4.3(iii) yield

BIt is bounded in L∞(L2) by C + S · P (M),

(22) and Lemma 4.3(iv), (v) yield

BtIt, BItt are bounded in L1(L2) by C + S · P (M),

and (20) and Lemma 4.3(vi) yield

BttI is bounded in L1(L2) by S · P (M).

Hence, U ≤ CU + S · PU (M). �
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Lemma 5.2. The mapping w 7→ u is a contraction on X(T ′,M) with respect to
the metric

d(w1, w2) :=

(

∫ T

0

2
∑

k=0

‖∂kx∂2−k
t (w1 − w2)(s)‖22 ds

)1/2

if T ′ is small enough.

Proof: In this proof we will write ‖ · ‖∞,2 instead of ‖ · ‖T ′,∞,2. The function d
is a metric and X(T ′,M) is complete with respect to this metric (see [13], p. 92–
93). For w1, w2 ∈ X(T ′,M) and their images u1, u2 we define U := u1 − u2,
W := w1 −w2 and Ψ := ψ(w̃1

x)−ψ(w̃2
x). Subtracting the equations for u1 and u2

we get

(25) Utt − ψ(w̃1
x)Uxx = J

where

J := Ψu2xx +Ψ

∫ t

0

r(t − s)w1
xx(s) ds+ ψ(w̃2

x)

∫ t

0

r(t− s)Wxx(s) ds.

Hence (differentiate (25) w.r.t. t and multiply Utt),

(26) UtttUtt − ψ(w̃1
x)UxxtUtt = (ψ(w̃1

x))tUxxUtt + JtUtt.

Integrating (26) over Qt and integrating the second term by parts we obtain

1

2
(‖Utt(t)‖22 + ‖Utx(t)‖22)

≤
∫ t

0

‖(ψ(w̃1
x))tUxx(s) + (ψ(w̃1

x))xUtx(s)‖2‖Utt(s)‖2 ds+
∫

Qt

|JtUtt|,

since Utt(0) = Uxx(0) = 0. The first integral on the right is bounded by

P (M)

∫ t

0

‖Uxx(s)‖22 + ‖Utx(s)‖22 + ‖Utt(s)‖22 ds

since (ψ(w̃1
x))x, (ψ(w̃

1
x))t are pointwise bounded by P (M). To estimate the second

integral, we use |Ψ(t, x)|, |ψ′(w̃1
x(t, x)) − ψ′(w̃2

x(t, x))| ≤ L supt∈[0,S] |Wx(t, x)|
(since w̃x ∈ L∞(L∞) and ψ, ψ′ are locally Lipschitz continuous) and the fact that
‖u2xx‖∞, ‖w1

xx‖∞, ‖uxxt‖∞,2 and other norms of derivatives of these functions are
bounded by P (M). In fact, since

Jt = Ψtu
2
xx +Ψu2xxt +Ψt(r ∗ w1

xx) + Ψr(0)w1
xx +Ψ(r′ ∗ w1

xx)

+ ψ(w̃2
x)t(r ∗Wxx) + ψ(w̃2

x)r(0)Wxx + ψ(w̃2
x)(r

′ ∗Wxx)
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we have

∫

Qt

|Jt||Utt| ≤
∫ t

0

‖Jt(s)‖22 + ‖Utt(s)‖22 ds

≤ T ′ · P (M)(‖Wxt‖2∞,2 + ‖Wxx‖2∞,2 + ‖Wx‖2∞,2) + ‖U2
tt‖22,2.

Putting the two estimates together (and using ‖Wx‖∞,2 ≤ c‖Wxx‖∞,2) we have

(27)

1

2
(‖Utt(t)‖22 + ‖Utx(t)‖22)

≤ P (M)

∫ t

0

‖Utt(s)‖22 + ‖Utx(s)‖22 + ‖Uxx(s)‖22 ds

+ T ′ · P (M)(‖Wxt‖2∞,2 + ‖Wxx‖2∞,2).

Rewriting (25) as

Uxx =
1

ψ(w̃1
x)

(J − Utt),

we obtain

(28) ‖Uxx(t)‖22 ≤ P (M)(‖J(t)‖22 + ‖Utt(t)‖22).

Since ‖u2xx(t)‖∞ ≤ P (M), ‖(r∗w1
xx)(t)‖∞ ≤ T ′P (M), ‖ψ(w̃2

x)(t)‖∞ ≤ P (M) and

‖(r ∗Wxx)(t)‖22 ≤ T ′‖r‖2∞‖Wxx‖2∞,2

we have

(29)
‖J(t)‖22 ≤ P (M)‖Wx‖2∞,2 + T ′ · P (M)‖Wxx‖2∞,2

≤ T ′ · P (M)(‖Wxt‖2∞,2 + ‖Wxx‖2∞,2).

Now, (27), (28) and (29) yield

‖Utt(t)‖22 + ‖Utx(t)‖22 + ‖Uxx(t)‖22

≤ P (M)

∫ t

0

‖Utt(s)‖22 + ‖Utx(s)‖22 + ‖Uxx(s)‖22 ds

+ T ′ · P (M)(‖Wxt‖2∞,2 + ‖Wxx‖2∞,2).

By Gronwall’s lemma we have

‖Utt(t)‖22+ ‖Utx(t)‖22+ ‖Uxx(t)‖22 ≤ T ′ ·P (M)(‖Wxt‖2∞,2+ ‖Wxx(t)‖2∞,2)e
T ′P (M),

so the mapping w 7→ u is a contraction if T ′ is sufficiently small. �



240 T. Bárta

6. Proof of global existence

In this section we prove Theorem 3.2. Since the proof is standard, we will make
it short and refer to proofs of Theorems IV.5 and IV.3 in [13] for more details.

Let us define ϕ(z) := 1/ψ(z) and multiply (13) by ϕ. We obtain

(30) ϕ(ũx(t, x))utt(t, x) = uxx(t, x)−
∫ t

0

r(t − s)uxx(s, x) ds+ h(ũx(t, x), t, x),

where h(z, t, x) = ϕ(z)f(t, x). After integration by parts we obtain

(31) ϕ(ũx(t, x))utt(t, x) = Auxx(t, x) +

∫ t

0

R(t− s)uxxt(s, x)ds+ g(ũ(t, x), t, x),

where

g(z, t, x) = h(z, t, x) +R(t)uxx(0, x) and A = 1−R(0) > 0.

We define

E(t) := max
[0,t]

∫ 1

0

{u2+u2x+u2t +u2xx+u2xt+u2tt+u2xxx+u2xxt+u2xtt+u2ttt}(x, s) dx

+

∫ t

0

∫ 1

0

{u2 + u2x + u2t + u2xx + u2xt + u2tt + u2xxx + u2xxt + u2xtt + u2ttt}(x, s) dxds

and

ν(t) := max
[0,1]×[0,t]

{u2x + u2xx + u2xt + u2tt}1/2(x, s).

Then by Sobolev embeddings we have

ν(t) ≤ c
√

E(t)

and by Lemma 4.4

‖ũx‖t,∞,∞, ‖ũxt‖t,∞,∞, ‖ũxx‖t,∞,∞ ≤ cν(t)

‖ũ...‖t,∞,2, ‖ũ...‖t,2,2 ≤ c
√

E(t),

where ũ... means any derivative (w.r.t. t and x) up to order three. In this section,
Z will be a generic function (of one or two variables) that maps bounded sets to
bounded sets and is continuous in 0 and Z(0) = 0. Function Z may vary from
expression to expression.

As in [13] (see pages 141, 142 for the arguments), the estimate

(32) E(t) ≤ Z(U0, F )(1 + E(T )3/2) + C(1 +
√

E(T ))E3/2(T ), t ∈ [0, T ]

implies global solution and (16) and (17) (C > 0 is a constant and Z(U0, F ) is
small for small values of U0 and F ). Uniqueness follows from Theorem 3.1, so it
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remains to show that (32) holds for every T > 0 and every solution defined on
[0, T ].

We will do it in 7 steps, but first we prove a lemma. Let us remark that we can
redefine ϕ and ψ on the complement of small neigborhood of zero without causing
any harm (since ũx(t, x) stays in a neighborhood of zero). So, we can assume
Mϕ := sup{|ϕ(z)|, |ϕ′(z)|, |ϕ′′(z)|; z ∈ R} < +∞, mϕ := inf{ϕ(z); z ∈ R} > 0 and
MR := sup{|R(t)|, |R′(t)|, |R′′(t)|; t ∈ R+} < +∞. In the following lemma we will
collect some estimates.

Lemma 6.1. The following estimates hold.

(i) ‖[ϕ(ũx(t, x))]tx‖2,2 ≤ C(1 +
√

E(t))
√

E(t).
(ii) ‖g(ũx(t, x), t, x)‖2,2 ≤ Z(U0, F ).

(iii) ‖[g(ũx(t, x), t, x)]t‖∞,2 ≤ Z(U0, F )(1 +
√

E(t)).
(iv) ‖[g(ũx(t, x), t, x)]tt‖2,2 ≤ Z(U0, F )(1 + E(t)).

Proof: (i) We have [ϕ(ũx(t, x))]tx = ϕ′′ũtxũxx + ϕ′ũtxx. Hence,

‖[ϕ(ũx(t, x))]tx‖2,2 ≤Mϕ(‖ũtx‖∞,∞‖ũxx‖2,2 + ‖ũtxx‖2,2)
≤ C(ν(t)

√

E(t) +
√

E(t)).

(ii) is obvious. (iii) We have [g(ũx(t, x), t, x)]t = ϕ′ũtxf + ϕft +R′u′′0 . Hence,

‖[g(ũx(t, x), t, x)]t‖∞,2 ≤MϕF (1 + ‖ũtx‖∞,2) +MRU0 ≤ Z(U0, F )(1 +
√

E(t)).

(iv) We have [g(ũx(t, x), t, x)]tt = ϕ′′ũ2txf + ϕ′ũttxf + 2ϕ′ũtxft + ϕftt + R′′u′′0 .
Then

‖[g(ũx(t, x), t, x)]tt‖2,2
≤MϕF (‖ũtx‖∞,∞‖ũtx‖2,2 + ‖ũttx‖2,2 + 2‖ũtx‖2,2 + 1) +MRU0

and using 2
√

E(t) ≤ 1 + E(t) we complete the proof. �

1st step. We will prove

(33) ‖utx(T )‖22 + ‖uxx(T )‖22 +Q(R, T, uxxt)

≤ Z(U0) + Cν(T )E(T ) + Z(F,U0)
√

E(T ).

Multiply (31) by uxxt and integrate over QT . On the left-hand side we get
(integration by parts, Dirichlet boundary conditions)

∫

QT

ϕ(ũx)uttuxxt = −
∫

QT

[ϕ(ũx)utt]xuxt

= −
∫

QT

[ϕ(ũx)]xuttuxt −
∫

QT

ϕ(ũx)uttxuxt
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= −
∫

QT

[ϕ(ũx)]xuttuxt −
∫

QT

d

dt

[

1

2
ϕ(ũx)u

2
tx

]

+

∫

QT

1

2
[ϕ(ũx)]tu

2
tx

= −
∫ 1

0

1

2
ϕ(ũx)u

2
tx(T ) +

∫ 1

0

1

2
ϕ(ũx)u

2
tx(0)

−
∫

QT

[ϕ(ũx)]xuttuxt +

∫

QT

1

2
[ϕ(ũx)]tu

2
tx.

On the right-hand side we obtain

∫ 1

0

1

2
Au2xx(T )−

∫ 1

0

1

2
Au2xx(0) +Q(R, T, uxxt) +

∫

QT

guxxt.

Together we have

1

2
mϕ

∫ 1

0

u2tx(T ) +
1

2
A

∫ 1

0

u2xx(T ) +Q(R, T, uxxt)

≤
∫ 1

0

1

2
Mϕ|u2tx(0)|+

∫

QT

Mϕ|ũxx||utt||uxt|+
∫

QT

1

2
Mϕ|ũxt||utx|2

+

∫ 1

0

1

2
A|uxx(0)|2 +

∫

QT

|g||uxxt| ≤ Z(U0) + Cν(T )E(T ) + Z(F,U0)
√

E(T ).

2nd step. We will prove

(34) ‖uttx(T )‖22 + ‖utxx(T )‖22 + lim
h→0

1

h2
Q(R, T,∆hψ(ux)xt)

≤ Z(U0, F )(1 + E(T )3/2) + C(ν(T ) + ν2(T ))E(T )

Apply ∆h to (31), then multiply by ∆hutxx, integrate over QT and denote the
obtained equation by (E). We integrate the left-hand side of (E) by parts with
respect to x and use the identity (easy computations)

∆h[fg]x = ∆h[fxg + fgx] = ∆hfxg(t+ h) + fx∆hg +∆hfgx(t+ h) + f∆hgx

to obtain

−
∫

QT

[∆hϕ(ũx)xutt(t+h)+ϕ(ũx)x∆hutt+∆hϕ(ũx)uttx(t+h)+ϕ(ũx)∆huttx]∆hutx.

Since

ϕ(ũx)∆huttx∆hutx =
1

2

(

d

dt
[ϕ(ũx)(∆hutx)

2]− ϕ(ũx)t(∆hutx)
2

)

we obtain

−1

2

∫ 1

0

ϕ(ũx)(∆hutx)
2(T ) +

1

2

∫ 1

0

ϕ(ũx)(∆hutx)
2(0) +

1

2

∫

QT

ϕ(ũx)t(∆hutx)
2
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−
∫

QT

[∆hϕ(ũx)xutt(t+ h) + ϕ(ũx)x∆hutt +∆hϕ(ũx)uttx(t+ h)]∆hutx.

Dividing by h2 and taking limh→0 we obtain that the left-hand side is

(35)

−1

2

∫ 1

0

ϕ(ũx)u
2
ttx(T ) +

1

2

∫ 1

0

ϕ(ũx)u
2
ttx(0) +

1

2

∫

QT

ϕ(ũx)tu
2
ttx

−
∫

QT

[ϕ(ũx)txutt + ϕ(ũx)xuttt + ϕ(ũx)tuttx]uttx.

We divide the right-hand side of (E) by h2 and take limh→0. The first term on
the right-hand side of (E) easily yields

(36)
1

2
A

∫ 1

0

|utxx|2(T )−
1

2
A

∫ 1

0

|utxx|2(0)

and the second term (the convolution term) due to

∆h(f ∗ g)(t) = [f ∗ (∆hg)](t) +

∫ t+h

t

f(s)g(t+ h− s) ds

and
∫ T

0

f(t)∆hg(t) dt =

∫ h

0

f(t)g(t) dt−
∫ T+h

T

f(t)g(t) dt−
∫ T

0

∆f(t)g(t+ h) dt,

leads to

(37)

∫ 1

0

u2txx(0) dx−
∫ 1

0

R(T )utxx(0)utxx(T ) dt

+ ν

∫ 1

0

(R(0)−R(T ))utxx(0) + lim inf
h→0

Q(R, T,∆hutxx).

The last term on the right-hand side of (E) gives after integration by parts with
respect to t

(38) −
∫

QT

gttutxx.

Putting (36), (37), (38), (35) together we obtain

∫ 1

0

u2txx(T ) +

∫ 1

0

u2ttx(T ) + lim inf
h→0

Q(R, T,∆hutxx)

≤ C

∫ 1

0

|utxx(0)||utxx(T )| dt+ CU0 + C

∫

QT

|ũxt|u2ttx

+ C

∫

QT

|ϕ(ũx)tx||utt||uttx|+ C

∫

QT

Mϕ|ũxx||uttt||uttx|
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+ C

∫

QT

|ũxt|u2ttx + C

∫

QT

|gtt||utxx|.

So, we have that

∫ 1

0

u2txx(T ) +

∫ 1

0

u2ttx(T ) + lim inf
h→0

Q(R, T,∆hutxx)

≤ Z(U0)
√
E + Z(U0) + CνE + C(ν + ν2)E + CνE + CνE

+ Z(U0, F )(1 + E)
√
E

≤ Z(U0, F )(1 + E3/2) + C(ν + ν2)E,

where E, ν means E(T ), ν(T ) respectively.

3rd step. The estimates from 1st and 2nd steps and Lemma 4.1 give

(39) ‖uttx(T )‖22 + ‖utxx(T )‖22 + ‖utx(T )‖22 + ‖uxx(T )‖22 + ‖utxx‖22
≤ Z(U0, F )(1 + E(T )3/2) + C(ν(T ) + ν2(T ))E(T )

4th step. We will prove

(40) ‖utt(T )‖22 + ‖uttt(T )‖22 + ‖uttt‖22
≤ Z(U0, F )(1 + E(T )3/2) + C(ν(T ) + ν2(T ))E(T )

Taking L2-norms of (13) we have

‖utt(t)‖22 ≤ C‖uxx(t)‖22 + C‖uxx‖2∞,2 + Z(U0, F ).

Differentiating the equation (30) with respect to t, moving the term with ϕ′ to
the right-hand side, squaring and integrating over [0, 1] w.r.t. x yields

(41)
‖uttt(t)‖22 ≤ C(‖utxx(t)‖22 + ‖r(t)uxx(0)‖22 + ‖(r ∗ uxxt)(t)‖22

+ ‖[h(ũx, t, x)]t‖22 + ‖ϕ′(ũx(t))‖2∞‖ũtx(t)‖2∞‖utt(t)‖22).

This is estimated by

C‖uxxt(t)‖22 + Z(U0) + C‖uxxt‖22,2 + Z(F )(1 +
√

E(t)) + Cν(t)2E(t).

Integrating (41) over [0, T ] we get

‖uttt‖22,2 ≤ C‖uxxt‖22,2+Z(U0)+C‖r‖21‖uxxt‖22,2+Z(F )(1+
√

E(t)+Cν(t)2E(t)).

Since all the terms on the right-hand sides are estimated in (39), estimate (40) is
proven.
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5th step. We will prove

(42) ‖uttx‖22,2 ≤ Z(U0, F )(1 + E(T )3/2) + C(ν(T ) + ν2(T ))E(T ).

Using difference operators one can derive

∫ T

0

∫ 1

0

u2ttx =

∫ T

0

∫ 1

0

utttutxx +

∫ 1

0

utxxutt(0)−
∫ 1

0

utxxutt(T ).

Then apply estimates of ‖uttt(T )‖22 and ‖utxx(T )‖22 proved above.

6th step. We will prove

(43) ‖uxxx(T )‖22+‖uxxx‖22,2 ≤ Z(U0, F )(1+E(T )3/2)+C(ν(T )+ν2(T ))E(T )

Rewrite (31) as

(44) uxx −
∫ t

0

r(t − s)uxx(s) ds = G

with

G(t, x) := ϕ(ũx(t, x))utt(t, x)− ϕ(ũx(t, x))f(t, x).

Solving this equation for uxx we get

(45) uxx := G+ k ∗G and uxxx = Gx + k ∗Gx,

where k satisfies k+ k ∗ r = r. Then k ∈ L1(R+) by Theorem 5.3.1 in [3]. Taking
‖ · ‖2,2 and ‖ · ‖∞,2 norms of the second equality in (45) and using

‖Gx(t)‖22 ≤ Cν2(t)‖utt(t)‖22 + C‖uttx(t)‖22 + CZ(F )(1 + ‖uxx(t)‖22)

and the estimates derived in the previous steps we get (43).

7th step. It remains to show the estimates for ux, ut, u in L∞(L2) and utt, utx,
uxx, ux, ut, u in L2(L2). All these estimates except uxx follow from Poincaré
inequality, the estimate for uxx can be easily derived from the first equality in
(45), since we already have estimates for utt.

The estimate (32) is proved and the proof of global existence is complete.
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[8] Málek J., Mathematical properties of flows of incompressible power-law-like fluids that are

described by implicit constitutive relations, Electron. Trans. Numer. Anal. 31 (2008), 110–
125.
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