On extensions of bounded subgroups in Abelian groups

S.S. GABRIYELYAN

Abstract. It is well-known that every bounded Abelian group is a direct sum of finite cyclic subgroups. We characterize those non-trivial bounded subgroups H of an infinite Abelian group G, for which there is an infinite subgroup G_0 of G containing H such that G_0 has a special decomposition into a direct sum which takes into account the properties of G, and which induces a natural decomposition of H into a direct sum of finite subgroups.

Keywords: Abelian group; bounded group; simple extension

Classification: Primary 20K21; Secondary 20K27

1. Introduction

Recall that an Abelian group G is of finite exponent or bounded if there exists a positive integer n such that ng = 0 for every $g \in G$. The minimal integer n with this property is called the *exponent* of G and is denoted by $\exp(G)$. When G is not bounded, we write $\exp(G) = \infty$ and say that G is of infinite exponent or unbounded.

The structure theory of infinite Abelian groups is sufficiently difficult and complicated. Fortunately, for a bounded Abelian group G there is a complete and clear description of its structure: G is a direct sum of finite cyclic subgroups. If G is not of finite exponent, G can even not be decomposable into a direct sum of two non-trivial subgroups.

Let now H be a bounded subgroup of an infinite Abelian group G. As simple examples show, even in the case H is finite and cyclic, H may not be a direct summand of G. So it is important to find a subgroup G_0 of G containing Hsuch that G_0 has a decomposition into a direct sum of subgroups having simple forms which takes into account the properties of G (as $\exp(G)$), and which induces a decomposition of H into a direct sum of finite subgroups. The existence of such extensions of H plays an essential role in particular for constructing of Hausdorff group topologies on G having specific properties with respect to H. We demonstrate this by the following examples.

Let $G = \mathbb{Z}(3) \oplus \mathbb{Z}(2)^{\omega}$, $G_0 = \mathbb{Z}(2)^{\omega}$, H_1 is the first $\mathbb{Z}(2) \times \mathbb{Z}(2)$ in G and $H_2 = \mathbb{Z}(3)$. It is easy to see that G does not admit a connected Hausdorff group topology (see [4, §9]). On the other hand, Markov showed in [5] that there is a

The author was partially supported by Israel Ministry of Immigrant Absorption.

locally connected Hausdorff group topology τ on G such that G_0 is the connected component of (G, τ) . So, algebraically H_1 can be extended to a subgroup G_0 which is connected. However, there is no Hausdorff group topology τ' on G in which H_2 is contained in a connected subgroup of (G, τ') because G_0 is clopen in any group topology on G [4, §9]. Further, it can be proved that there is a Hausdorff group topology ν on G such that H_1 is the von Neumann radical of (G,ν) , but for H_2 such topologies do not exist (see [2]). Actually, these positive and negative results for H_1 and H_2 in G (and more generally, for subgroups of Abelian groups of finite exponent) depend on the possibility to extend them to an infinite subgroup G_0 (maybe of a big cardinality) such that G_0 is a direct sum of finite subgroups of the same exponent (see [3]). Between all infinite extensions of H_1 in G, which can be represented as a direct sum of finite subgroups of the same exponent, there is the smallest one by cardinality, for example $G_1 = \mathbb{Z}(2)^{(\omega)}$. So, the subgroup G_1 has the following properties: (1) G_1 is of finite exponent as G_2 , (2) G_1/H_1 is countable, (3) $G_1 = \bigoplus_{i \in \omega} S_i$ with $\exp(G_i) = \exp(H_1)$ for all $i \in \omega$, and (4) this decomposition of G_1 induces a natural decomposition of H (see the conditions (2b) and (3) in the definition below).

Assume now that H is a finite non-trivial subgroup of an Abelian group G of infinite exponent. It is well-known that G contains a subgroup S which has one of the form \mathbb{Z} , $\mathbb{Z}(p^{\infty})$ or $\bigoplus_{i \in \omega} S_i$ with $\exp(H) \leq \exp(S_0) < \exp(S_1) < \ldots$ So it is quite natural to consider the subgroup $G_0 := S + H$. Then G_0 takes into account the properties of G and has infinite exponent as G, and G_0/H is countable.

For infinite bounded subgroups H of G the situation is more delicate, but these examples explain our definition of simple extension given below. We note that the main result of the article plays a crucial role for a description of bounded subgroups H of an Abelian non-torsion-free group G for which there exists a Hausdorff group topology τ such that H is the von Neumann radical of (G, τ) (see [3]).

Denote by o(g) the order of an element g of an Abelian group G. The subgroup of G generated by a subset A is denoted by $\langle A \rangle$. We shall say that an Abelian group X satisfies condition (Λ) if X is a finite direct sum of groups of the form $\mathbb{Z}(p^a)^{(\kappa)}$, where p is prime, a is a natural number and the cardinal κ is infinite.

Definition 1. Let G be an infinite Abelian non-torsion-free group and H its non-zero bounded subgroup. We say that H has a *simple extension* in G if there is a subgroup G_0 of G which has a decomposition of the form

$$G_0 = X \oplus \bigoplus_{i \in \omega} S_i,$$

where:

- (1) if $X \neq \{0\}$, then X is a subgroup of H satisfying condition (Λ);
- (2) one of the following conditions holds:
 - (a) $S_i = \{0\}$ for every $i \in \mathbb{N}$, and S_0 has one of the form $\mathbb{Z} \oplus H_0$ or $\mathbb{Z}(p^{\infty}) + H_0$, where H_0 is a finite (maybe trivial) subgroup of H;

(b) for every $i \in \omega$, S_i is a finite non-trivial subgroup of G such that either

$$\exp(H) \le \exp(S_0) < \exp(S_1) < \dots, \quad \text{or}$$
$$\exp(H) = \exp(S_0) = \exp(S_1) = \dots;$$

(3)
$$H = X \oplus \bigoplus_{i \in \omega} (S_i \cap H).$$

Returning to the first above-mentioned example we see that H_1 has a simple extension (for instance, G_1), but H_2 does not have simple extensions in G.

The main goal of the article is to characterize all bounded subgroups of an infinite Abelian non-torsion-free group G which have a simple extension in G.

Theorem 2. Let H be a non-zero bounded subgroup of an infinite Abelian group G. Then:

- (i) if $\exp(G) = \infty$, then H has a simple extension in G;
- (ii) if exp(G) < ∞, then H has a simple extension in G if and only if G contains a subgroup of the form Z(exp(H))^(ω).

In Theorems 9 and 10 below we prove more precise results.

2. The proof of Theorem 2

We shall use the following easy corollary of Prüfer-Baer's theorem [1, 11.2].

Lemma 3. Let G be an infinite Abelian group of finite exponent. Then G is the direct sum $G = G_0 \oplus G_1$ of a finite (maybe trivial) subgroup G_0 and a subgroup G_1 satisfying condition (Λ).

Let us recall that a subset X of an Abelian group G is called *independent* if for every finite sequence x_1, \ldots, x_n of pairwise distinct elements of X and each sequence m_1, \ldots, m_n of integers $m_1x_1 + \cdots + m_nx_m = 0$ implies $m_ix_i = 0$ for all $i = 1, \ldots, n$.

Proposition 4. Let $G = \mathbb{Z}(p^{\infty}) + H$, where *H* is an infinite Abelian group of finite exponent. Then there is a finite (maybe trivial) subgroup H_0 of *H* and an infinite subgroup H_1 of *H* such that

- (1) $H = H_0 \oplus H_1;$
- (2) $G = (\mathbb{Z}(p^{\infty}) + H_0) \oplus H_1;$
- (3) H_1 satisfies condition (Λ).

PROOF: By Prüfer-Baer's theorem [1, 11.2], H has a decomposition $H = \bigoplus_{i \in I} C_i$, where C_i are cyclic finite groups. As H is bounded, $\mathbb{Z}(p^{\infty}) \cap H$ is finite, so there exists a finite subset $J \subseteq I$ such that $\mathbb{Z}(p^{\infty}) \cap H \subseteq \bigoplus_{i \in J} C_i$.

We claim that the sum

$$G = \left(\mathbb{Z}(p^{\infty}) + \bigoplus_{i \in J} C_i \right) + \left(\bigoplus_{i \in I \setminus J} C_i \right)$$

is direct. Indeed, let $t = f + g \in (\mathbb{Z}(p^{\infty}) + \bigoplus_{i \in J} C_i) \cap (\bigoplus_{i \in I \setminus J} C_i)$, where $f \in \mathbb{Z}(p^{\infty})$ and $g \in \bigoplus_{i \in J} C_i$. Then $f = t - g \in \bigoplus_{i \in J} C_i$ by the definition of J. Thus $t \in \bigoplus_{i \in J} C_i$. Since also $t \in \bigoplus_{i \in I \setminus J} C_i$, we obtain t = 0 and the sum is direct.

Using Lemma 3, decompose $\bigoplus_{i \in I \setminus J} C_i = H'_0 \oplus H_1$, where H'_0 is finite and H_1 satisfies condition (Λ). Put $H_0 = H'_0 \oplus (\bigoplus_{i \in J} C_i)$. Then H_0 is a finite (maybe trivial) subgroup of H and H_1 is infinite. By construction and the claim, H_0 and H_1 satisfy conditions (1)–(3) of the proposition.

The next proposition is not trivial only for uncountable subgroups and its proof essentially repeats the proof of Proposition 4.

Proposition 5. Let an Abelian *p*-group *G* have the form $G = \langle A \rangle + H$, where *H* is an uncountable subgroup of *G* of finite exponent and $A = \{g_i\}_{i=1}^{\infty}$ is an independent sequence in *G*. Then there is a countable (maybe trivial) subgroup H_0 of *H* and an uncountable subgroup H_1 of *H* such that

(1)
$$H = H_0 \oplus H_1$$
;

(2)
$$G = (\langle A \rangle + H_0) \oplus H_1;$$

(3) H_1 satisfies condition (Λ).

PROOF: By [1, 11.2], H has a decomposition $H = \bigoplus_{i \in I} C_i$, where C_i are cyclic finite groups. As $\langle A \rangle$ is countable, there exists a countable subset $J \subseteq I$ such that $\langle A \rangle \cap H \subseteq \bigoplus_{i \in J} C_i$. We claim that the sum

$$G = \left(\langle A \rangle + \bigoplus_{i \in J} C_i \right) + \left(\bigoplus_{i \in I \setminus J} C_i \right)$$

is direct. Indeed, let $t = f + g \in (\langle A \rangle + \bigoplus_{i \in J} C_i) \cap (\bigoplus_{i \in I \setminus J} C_i)$, where $f \in \langle A \rangle$ and $g \in \bigoplus_{i \in J} C_i$. Then $f = t - g \in \bigoplus_{i \in J} C_i$ by the definition of J. Thus $t \in \bigoplus_{i \in J} C_i$. Since also $t \in \bigoplus_{i \in I \setminus J} C_i$, we obtain t = 0 and the sum is direct.

Using Lemma 3, decompose $\bigoplus_{i \in I \setminus J} C_i = H'_0 \oplus H_1$, where H'_0 is finite and H_1 satisfies condition (Λ). Put $H_0 = H'_0 \oplus (\bigoplus_{i \in J} C_i)$. Then H_0 is a countable (maybe trivial) subgroup of H and H_1 is infinite. By construction and the claim, H_0 and H_1 satisfy conditions (1)-(3) of the proposition.

We omit the proof of the following simple lemma.

Lemma 6. Let a sequence $\{b_n\}$ in an Abelian group G be independent and H be a finite subgroup of G. Then there is n_0 such that $H \cap \langle b_{n_0}, b_{n_0+1}, \ldots \rangle = \{0\}$.

We denote division by ":". In the next proposition we set $\infty - 1 = \infty$.

Proposition 7. Let G be an Abelian p-group of the form $G = \langle A \rangle + H$, where H is a nonzero countable group of finite exponent and $A = \{g_i\}_{i=0}^{\infty}$ is an independent sequence such that either

- (a) $\exp(H) \le N \le o(g_0) < o(g_1) < \dots$ for some natural number N, or
- (b) $\exp(H) = o(g_i)$ for every $i \ge 0$.

Then G has a subgroup G_0 of the form

$$G_0 = \bigoplus_{i=0}^{\infty} (H_i + \langle e_i \rangle)$$

where

- (1) the independent sequence $\{e_i\}$ satisfies the same condition (a) or (b) as the sequence $\{g_i\}$;
- (2) there is $0 < M \leq \infty$ such that H_j is a finite nonzero subgroup of G for every $0 \leq j < M$, and, if $M < \infty$, $H_j = \{0\}$ for each $j \geq M$; (3) $H = \bigoplus_{i=0}^{\infty} H_i$.

PROOF: We distinguish between two cases.

Case 1. $\langle A \rangle \cap H$ is finite (maybe trivial). By Lemma 6 we can choose $k \geq 0$ such that $(\langle A \rangle \cap H) \cap \langle g_k, g_{k+1}, \dots \rangle = \{0\}$. Then also $H \cap \langle g_k, g_{k+1}, \dots \rangle = \{0\}$. Set $e_i = g_{k+i}$, for every $i \ge 0$. Let $H = \bigoplus_{i=0}^{M-1} \langle h_i \rangle$, where $M \le \infty$ and $i \in \mathbb{N}$ [1, 11.2]. Set $G_0 = \langle e_0, e_1, \ldots \rangle + H$. Then we have

$$G_0 = \bigoplus_{i=0}^{\infty} (H_i \oplus \langle e_i \rangle),$$

where $H_i = \langle h_i \rangle$ if i < M, and $H_i = 0$ for $i \ge M$. Then G_0 is as desired.

Case 2. $\langle A \rangle \cap H$ is infinite. Then H is countably infinite. Let $H = \bigoplus_{i=0}^{\infty} \langle h_i \rangle$ [1, 11.2]. We shall construct the sequences $\{H_n\}$ and $\{e_n\}$ by induction. Set

 $G^0 = G, \quad H^0 = H, \text{ and } g_i^0 = g_j, \forall j \ge 0.$

Put $e_0 = g_0^0$. Choose the minimal index $\kappa_1 \ge 0$ such that

$$H^0 \cap \langle e_0 \rangle = \left(\bigoplus_{i=0}^{\kappa_1} \langle h_i \rangle \right) \cap \langle e_0 \rangle.$$

Set

$$Y_k^1 = \langle \left\{ g_{k+i}^0 \right\}_{i=1}^\infty \rangle, k \ge 0, \quad H_0 = \bigoplus_{i=0}^{\kappa_1} \langle h_i \rangle, \text{ and } X_1 = \bigoplus_{i=\kappa_1+1}^\infty \langle h_i \rangle$$

Then $H_0 \neq 0$ and $H^0 = H_0 \oplus X_1$. We will need that

(1)
$$(H_0 + \langle e_0 \rangle) \cap X_1 = \{0\}.$$

Indeed, let $ae_0 + h_0 = x$, where a is integer, $h_0 \in H_0$ and $x \in X_1$. Then $ae_0 = x - h_0 \in H^0$ and hence $ae_0 \in H_0$. Thus $x = ae_0 + h_0 \in H_0 \cap X_1 = \{0\}$, and hence x = 0.

We distinguish between two subcases.

Subcase 2.1. There is $k \ge 0$ such that

$$(Y_k^1 + X_1) \cap (H_0 + \langle e_0 \rangle) = \{0\}.$$

Then we set

$$H^{1} = X_{1} = \bigoplus_{i=\kappa_{1}+1}^{\infty} \langle h_{i} \rangle, \quad g_{j}^{1} = g_{k+1+j}^{0}, \forall j \ge 0, \text{ and } G^{1} = \langle \left\{ g_{j}^{1} \right\}_{j=0}^{\infty} \rangle + H^{1}.$$

So $H = H^0 = H_0 \oplus H^1$ and $(H_0 + \langle e_0 \rangle) \cap G^1 = \{0\}$, and we can proceed to the second step for G^1, H^1 and the independent sequence $\{g_j^1\}_{i=0}^{\infty}$ satisfying the same condition (a) or (b) as the sequence $\{g_i^0\}$.

Subcase 2.2. For every $k \ge 0$,

$$(Y_k^1 + X_1) \cap (H_0 + \langle e_0 \rangle) \neq \{0\}.$$

In this case, because of finiteness of $H_0 + \langle e_0 \rangle$ and since $\exp(X_1) < \infty$, we can choose the maximal natural number m satisfying the following condition:

(*) there is a nonzero element $h \neq 0$ of $H_0 + \langle e_0 \rangle$ such that for infinitely many indices k, there are $y_k \in Y_k^1$ and $z_k \in X_1$ for which

$$y_k + z_k = h$$
 and $o(y_k) = p^m$.

Fix h satisfying (*) and choose the following:

(i) a sequence of indices of the form

(2)
$$0 < i_1^0 < \dots < i_{s_0}^0 < i_1^1 < \dots < i_{s_1}^1 < i_1^2 < \dots;$$

- (ii) a sequence of integers $a_1^k, \ldots, a_{s_k}^k$, where $(a_i^j, p) = 1$ for all i and j; (iii) a sequence of natural numbers $r_1^k, \ldots, r_{s_k}^k, \forall k \ge 0$; and
- (iv) a sequence z_0, z_1, \ldots in X_1 ,

such that, for every $k \ge 0$,

(3)
$$0 \neq h = a_1^k p^{r_1^k} g_{i_1^k}^0 + \dots + a_{s_k}^k p^{r_{s_k}^k} g_{i_{s_k}^k}^0 + z_k \text{ and } o(h - z_k) = p^m.$$

Set $t_k = \min\{r_1^k, \dots, r_{s_k}^k\}$ and

$$y'_{k} = a_{1}^{k} p^{r_{1}^{k} - t_{k}} g_{i_{1}^{k}}^{0} + \dots + a_{s_{k}}^{k} p^{r_{s_{k}}^{k} - t_{k}} g_{i_{s_{k}}^{k}}^{0}, \forall k \ge 0.$$

So $o(p^{t_k}y'_k) = p^m$ and $o(y'_k) = p^{t_k+m}$ for all $k \ge 0$. By (2), the sequence $\{y'_k\}_{k=0}^{\infty}$ is independent and $p^{t_k}y'_k + z_k = h \in H_0 + \langle e_0 \rangle$ for every $k \ge 0$.

Subcase 2.2(a). Assume that $\exp(H) \leq N \leq o(g_0) < o(g_1) < \dots$ Then. by (2), $\exp(H) \le N \le o(y'_0) < o(y'_1) < \dots$, and hence $t_0 < t_1 < \dots$ Set

$$g'_k = p^{t_{2k+1}-t_{2k}} y'_{2k+1} - y'_{2k}, \quad \forall k \ge 0.$$

180

Subcase 2.2(b). Assume that $\exp(H) = o(g_k), \forall k \ge 0$. Then $t_k = t_{k+1}$ and $p^{t_k+m} = \exp(H)$ for every $k \ge 0$. Put

$$g'_k = y'_{2k+1} - y'_{2k}, \quad \forall k \ge 0.$$

In both subcases 2.2(a) and 2.2(b) we have the following:

- (α_1) the sequence $\{g'_i\}_{i=0}^{\infty}$ is independent by (2),
- (α_2) the sequence $\{g'_j\}_{j=0}^{\infty}$ satisfies the same condition (a) or (b) as $\{g^0_j\}$,
- $(\alpha_3) \ o(g'_k) = o(y'_{2k}) = p^{t_{2k}+m}, \text{ for every } k \ge 0,$

$$(\alpha_4) \ p^{t_{2k}}g'_k = p^{t_{2k+1}}y'_{2k+1} - p^{t_{2k}}y'_{2k} = z_{2k} - z_{2k+1} \in X_1 \text{ by } (3).$$

Set $Y_k' = \langle \{g_j'\}_{j=k}^{\infty} \rangle, \, k \ge 0$. Let us prove the following:

Claim. There is $k \ge 0$ such that

$$(Y'_k + X_1) \cap (H_0 + \langle e_0 \rangle) = \{0\}.$$

PROOF OF CLAIM: Assuming the converse we can find (as in (i)–(iv)) a nonzero element h' of $H_0 + \langle e_0 \rangle$, a sequence of indices of the form

$$1 < l_1^0 < \dots < l_{q_0}^0 < l_1^1 < \dots < l_{q_1}^1 < l_1^2 < \dots$$

a sequence of integers $b_1^k, \ldots, b_{q_k}^k, (b_i^j, p) = 1$, for all *i* and *j*, a sequence of natural numbers $w_1^k, \ldots, w_{q_k}^k, \forall k \ge 0$, and a sequence x_0, x_1, \ldots in X_1 , such that

$$0 \neq h' = b_1^k p^{w_1^k} g'_{l_1^k} + \dots + b_{q_k}^k p^{w_{q_k}^k} g'_{l_{q_k}} + x_k, \quad \forall k \ge 0.$$

Suppose there exists $k_0 \ge 0$ such that $w_i^k \ge t_{2l_i^k}$ for all $1 \le i \le l_{q_k}^k$ and for each $k \ge k_0$. Then, by (α_4) ,

$$0 \neq h' = b_1^k p^{w_1^k - t_{2l_1^k}} \left(p^{t_{2l_1^k}} g_{l_1^k}' \right) + \dots + b_{q_k}^k p^{w_{q_k}^k - t_{2l_{q_k}^k}} \left(p^{t_{2l_{q_k}^k}} g_{l_{q_k}^k}' \right) + x_k \in X_1,$$

for every $k \ge k_0$. This contradicts (1) since $h' \in H_0 + \langle e_0 \rangle$.

So we can suppose that there is an infinite set I of indices such that for every $k \in I$ there exists an index $1 \leq \xi_k \leq q_k$ for which $w_{\xi_k}^k < t_{2\mu_k}$, where $\mu_k = l_{\xi_k}^k$. For every $k \in I$ set $\lambda_k = \min\{w_1^k, \ldots, w_{q_k}^k\}$ and

$$y_k'' = b_1^k p^{w_1^k - \lambda_k} g_{l_1^k}' + \dots + b_{q_k}^k p^{w_{q_k}^k - \lambda_k} g_{l_{q_k}^k}'$$

Since $l_1^k > k$ it follows that $y_k'' \in Y_k^1$ for every $k \ge 0$. Thus, for all $k \in I$, we obtain the following:

• $y_k'' \in Y_k^1$, • $0 \neq p^{\lambda_k} y_k'' + x_k = h' \in H_0 + \langle e_0 \rangle$, • and, by (α_1) and (α_3) ,

$$o(p^{\lambda_{k}}y_{k}'') = \max\left\{o(y_{2l_{1}}'): p^{w_{1}^{k}}, \dots, o(y_{2l_{q_{k}}}'): p^{w_{q_{k}}^{k}}\right\}$$

$$\geq o(y_{2\mu_{k}}'): p^{w_{\xi_{k}}} \quad (\text{since } w_{\xi_{k}}^{k} < t_{2\mu_{k}})$$

$$\geq o(y_{2\mu_{k}}'): p^{t_{2\mu_{k}}-1} = (\text{by } (\alpha_{3})) = p^{m+1}.$$

Since I is infinite we obtained a contradiction to the choice of m (see condition (*)), thus proving the claim.

By the claim we can choose k such that $(Y'_k + X_1) \cap (H_0 + \langle e_0 \rangle) = \{0\}$. Taking into account (α_1) and (α_2) , we can put

$$H^1 = X_1, \quad g_j^1 = g'_{k+j}, \forall j \ge 0, \text{ and } G^1 = \langle \{g_j^1\}_{j=0}^{\infty} \rangle + H^1,$$

So $(H_0 + \langle e_0 \rangle) \cap G^1 = \{0\}$ and we proceed to the second step for G^1 , H^1 and the independent sequence $\{g_j^1\}_{j=0}^{\infty}$ satisfying respectively one of the conditions (a) or (b) as $\{g_i^0\}$.

Iterating this process, we can find a sequence $\{H_i\}_{i=0}^{\infty}$ of finite nonzero subgroups of H and an independent sequence $\{e_i\}_{i=0}^{\infty}$ satisfying the same condition (a) or (b) as the sequence $\{g_i\}$ such that

$$H = \bigoplus_{i=0}^{\infty} H_i \text{ and } (H_k + \langle e_k \rangle) \cap \left(\sum_{i=k+1}^{\infty} (H_i + \langle e_i \rangle)\right) = \{0\}, \text{ for every } k \ge 0.$$

Hence the sum $G_0 := \sum_{i=0}^{\infty} (H_i + \langle e_i \rangle)$ is direct. Thus G_0 is as desired. This completes the proof of the proposition.

In what follows we use the next well-known folklore lemma (the proof is similar to that of Lemma 4.2 of [6]):

Lemma 8. Let G be an Abelian group of infinite exponent. Then one of the following assertions holds.

- (i) G is not torsion. Then G has a subgroup $H \cong \mathbb{Z}$.
- (ii) G is torsion but not reduced. Then G has a subgroup H ≅ Z(p[∞]) for some prime p.
- (iii) G is both torsion and reduced. Then G has a subgroup $H \cong \bigoplus_{i=0}^{\infty} \mathbb{Z}(n_i)$, where $n_0 < n_1 < \dots$

The next two theorems imply and make more precise Theorem 2.

Theorem 9. Let G be an Abelian group of infinite exponent and H its nontrivial subgroup of finite exponent. Then at least one of the following assertions holds.

- (1) G contains an element g of infinite order. If we set $G_0 = \langle g \rangle + H$, then $G_0 \cong (\mathbb{Z} \oplus H_0) \oplus X$, where
 - (a) H_0 is a finite (maybe trivial) subgroup of H,
 - (b) $H = H_0 \oplus X$,

On extensions of bounded subgroups in Abelian groups

- (c) $X \neq \{0\}$ if and only if H is infinite. In this case X satisfies condition (Λ) .
- (2) G contains a subgroup Y of the form $\mathbb{Z}(p^{\infty})$. If we set $G_0 = Y + H$, then $G_0 \cong (\mathbb{Z}(p^{\infty}) + H_0) \oplus X$, where
 - (a) H_0 is a finite (maybe trivial) subgroup of H,
 - (b) $H = H_0 \oplus X$,
 - (c) $X \neq \{0\}$ if and only if H is infinite. In this case X satisfies condition (Λ) .
- (3) G is both torsion and reduced. Then G has a subgroup G_0 of the form

$$G_0 = X \oplus \bigoplus_{i=0}^{\infty} (H_i + \langle e_i \rangle),$$

where

(a) the independent sequence $\{e_i\}$ satisfies the condition

$$\exp(H) \le o(e_0) < o(e_1) < \dots;$$

(b) there is 0 ≤ M ≤ ∞ such that H_j is a finite nonzero subgroup of G for every 0 ≤ j < M, and, if M < ∞, H_j = {0} for each j ≥ M;

(c)
$$H = X \oplus \bigoplus_{i=0}^{\infty} H_i;$$

(d) $X \neq \{0\}$ if and only if H is uncountable. In this case X satisfies condition (Λ) .

PROOF: (1) Let G contain an element g of infinite order. It is clear that G_0 is a direct sum, i.e., $G_0 = \langle g \rangle \oplus H$.

If *H* is *infinite*, by Lemma 3, *H* can be represented in the form $H = H_0 \oplus X$, where H_0 is finite (maybe trivial) and *X* satisfies condition (Λ). So $G_0 \cong (\mathbb{Z} \oplus H_0) \oplus X$.

If H is finite we set $H_0 = H$. Then $G_0 \cong \mathbb{Z} \oplus H_0$.

(2) Let G contains a subgroup Y of the form $\mathbb{Z}(p^{\infty})$.

If H is *infinite*, the assertion follows from Proposition 4.

If H is *finite*, it is enough to set $H_0 = H$ (and X = 0).

(3) Let G be both torsion and reduced. For a prime p, let H_p and G_p be the p-components of H and G respectively. Since H is of finite exponent, there are pairwise disjoint primes $p_1, \ldots, p_n, p_{n+1}, \ldots, p_N$, where $n < \infty$ and $n \le N \le \infty$, such that (see [1, Theorem 2.1])

$$H = \bigoplus_{i=1}^{n} H_{p_i}$$
 and $G = \bigoplus_{i=1}^{n} G_{p_i} \oplus G_1$,

where $G_1 = \bigoplus_{i=n+1}^{N} G_{p_i}$ and all the groups H_{p_i} and G_{p_i} are nonzero.

We distinguish between the following two cases.

Case 1. $\exp(G_1) = \infty$. By Lemma 8, there is an independent sequence $\{e_n\}_{n=0}^{\infty}$ in G_1 , where $\exp(H) \le o(e_0) < o(e_1) < \dots$

S.S. Gabriyelyan

Subcase 1.1. Assume that H is uncountable. By Lemma 3, $H = H_0 \oplus X'$, where H_0 is finite (maybe trivial) and X' is an uncountable subgroup of H satisfying condition (Λ). Set X = X'.

If $H_0 \neq 0$, we set

$$G_0 = \left((H_0 \oplus \langle e_0 \rangle) \oplus \bigoplus_{i=1}^{\infty} \langle e_i \rangle \right) \oplus X$$
, and $H_i = 0$, for every $i \ge 1$.

Then we obtain the desired (with M = 1).

If $H_0 = 0$ and hence H = X, we set

$$G_0 = \left(\bigoplus_{i=0}^{\infty} \langle e_i \rangle \right) \oplus X$$
, and $H_i = 0$, for every $i \ge 0$.

Then we obtain the desired (with M = 0).

Subcase 1.2. Assume that H is countably infinite. By Lemma 3, $H = H_0 \oplus X'$, where H_0 is finite (maybe trivial) and X' is a countably infinite subgroup of H satisfying condition (Λ). By [1, 11.2] we have $X' = \bigoplus_{i=1}^{\infty} \langle h_i \rangle$. Set

$$G_0 = (H_0 \oplus \langle e_0 \rangle) \oplus \bigoplus_{i=1}^{\infty} (H_i \oplus \langle e_i \rangle)$$
, where $H_i = \langle h_i \rangle$ for every $i \ge 1$.

Then we obtain the desired (in this case X = 0 and $M = \infty$).

Subcase 1.3. Assume that H is finite and non-trivial. In this case we set

$$H_0 = H, \ G_0 = (H_0 \oplus \langle e_0 \rangle) \oplus \bigoplus_{i=1}^{\infty} \langle e_i \rangle, \text{ and } H_i = 0, \text{ for every } i \ge 1.$$

Then we obtain the desired (in this case X = 0 and M = 1).

Case 2. $\exp(G_1) < \infty$. In this case there is $1 \le l \le n$ such that $\exp(G_{p_l}) = \infty$. If $\bigoplus_{i=1,i\neq l}^n H_{p_i}$ is finite, we set $H'_0 := \bigoplus_{i=1,i\neq l}^n H_{p_i}$ and X' = 0. If $\bigoplus_{i=1,i\neq l}^n H_{p_i}$ is infinite, then, by Lemma 3, $\bigoplus_{i=1,i\neq l}^n H_{p_i} = H'_0 \oplus X'$, where H'_0 is finite (maybe trivial) and X' satisfies condition (Λ). Set $N = \exp(H)$.

Since G is both torsion and reduced, by Lemma 8, there is an independent sequence $\{g_i\}_{i=0}^{\infty}$ in G_{p_l} satisfying the condition $N \leq o(g_0) < o(g_1) < \ldots$. Set $A := \{g_i\}_{i=0}^{\infty}$ and $Y := \langle A \rangle + H_{p_l}$. Note that H_{p_l} is nonzero by construction. If H_{p_l} is uncountable, we apply Proposition 5 to Y and H_{p_l} . If $H_0 \neq \{0\}$ in that Proposition 5 or in the case H_{p_l} is countable, we apply Proposition 7. So we can find a subgroup Y_0 of Y of the form

$$Y_0 = X'' \oplus \bigoplus_{i=0}^{\infty} (H^i_{p_l} + \langle e_i \rangle),$$

where

 (a_1) the independent sequence $\{e_i\}$ satisfies the condition

$$N \le o(e_0) < o(e_1) < \ldots;$$

(a₂) there is $0 \le M \le \infty$ such that $H^i_{p_l}$ is a finite nonzero subgroup of Y for every $0 \le i < M$, and, if $M < \infty$, $H^i_{p_l} = \{0\}$ for each $i \ge M$;

- $(a_3) \ H_{p_l} = X'' \oplus \bigoplus_{i=0}^{\infty} H^i_{p_l};$
- (a₄) $X'' \neq \{0\}$ if and only if H_{p_l} is uncountable. In this case X'' satisfies condition (Λ).

 ∞

Subcase 2.1. Assume that H is uncountable. Set $X = X' \oplus X''$. Then X is an uncountable subgroup of H satisfying the condition (A). Set

$$H^{0} = H'_{0} \oplus H^{0}_{p_{l}}, \ H^{i} = H^{i}_{p_{l}} \text{ for } i \ge 1, \text{ and } G_{0} = X \oplus \bigoplus_{i=0}^{\infty} (H^{i} + \langle e_{i} \rangle)$$

Since $H = X \oplus \bigoplus_{i=0}^{\infty} H^i$ we obtain the desired.

Subcase 2.2. Assume that H is countably infinite. Then X'' = 0, and X' is either trivial or $X' = \bigoplus_{i=1}^{\infty} H'_i$ by [1, 11.2], where H'_i is a finite (maybe trivial) cyclic group for every $i \ge 1$. Set $H^0 = H'_0 \oplus H^0_{p_l}$, and for every $i \ge 1$ put

 $H^i = H'_i \oplus H^i_{p_l}$ if $X' \neq 0$, and $H^i = H^i_{p_l}$ if X' = 0.

Then, by (a_2) , H^i is a finite (maybe trivial) subgroup of H for every $i \ge 0$, and $H = \bigoplus_{i=0}^{\infty} H^i$ by (a_3) . Setting

$$G_0 = \bigoplus_{i=0}^{\infty} (H^i + \langle e_i \rangle),$$

we obtain the desired by (a_1) .

Subcase 2.3. Assume that H is finite and non-trivial. In this case we put $H^0 = H$. By Lemma 6 we can choose $k \ge 0$ such that $H^0 \cap \langle \{g_{k+i}\}_{i=0}^{\infty} \rangle = \{0\}$. Set $e_i = g_{k+i}$ for every $i \ge 0$. Putting

$$G_0 = (H^0 \oplus \langle e_0 \rangle) \oplus \bigoplus_{i=1}^{\infty} \langle e_i \rangle$$
, and $H^i = 0$, for every $i \ge 1$,

we obtain the desired (in this case X = 0 and M = 1).

Theorem 10. Let G be an Abelian group of finite exponent and H its nonzero subgroup. If G contains a subgroup of the form $\mathbb{Z}(\exp(H))^{(\omega)}$, then G has a subgroup G_0 of the form

$$G_0 = X \oplus \bigoplus_{i=0}^{\infty} (H_i + \langle e_i \rangle),$$

where

(1) the independent sequence $\{e_i\}$ satisfies the condition

$$\exp(H) = o(e_0) = o(e_1) = \dots;$$

- (2) there is $0 < M \leq \infty$ such that H_i is a finite nonzero subgroup of G for every $0 \le j < M$, and, if $M < \infty$, $H_j = \{0\}$ for each $j \ge M$;
- (3) $H = X \oplus \bigoplus_{i=0}^{\infty} H_i;$
- (4) $X \neq \{0\}$ if and only if H is uncountable. In this case X satisfies condition (Λ) .

PROOF: For a prime p, let H'_p and G_p be the *p*-components of H and G respectively. Since G has finite exponent, by [1, 2.1] there are different primes p_1, \ldots, p_n , p_{n+1},\ldots,p_N , where $1 \leq n \leq N < \infty$, such that

$$H = \bigoplus_{k=1}^{n} H'_{p_k}$$
 and $G = \bigoplus_{k=1}^{n} G_{p_k} \oplus G_1$,

where $G_1 = \bigoplus_{k=n+1}^{N} G_{p_k}$ and all the groups H'_{p_k} and G_{p_k} are nonzero.

By assumption, for every $1 \leq k \leq n$, G_{p_k} has a subgroup of the form $\mathbb{Z}(\exp(H'_{n_k}))^{(\omega)}$. Thus, for every $1 \leq k \leq n$, G_{p_k} has an independent sequence $A_k = \{g_i^k\}_{i=0}^\infty$ such that $o(g_i^k) = \exp(H'_{n^k})$ for every $i \ge 0$.

Fix arbitrarily $k, 1 \le k \le n$, and consider the next two possible cases.

Case 1. H'_{p_k} is a (nonzero) countable group. So we can apply Proposition 7 to the group $\langle A_k \rangle + H'_{p_k} (\subseteq G_{p_k})$. Thus the group $\langle A_k \rangle + H'_{p_k}$ has a subgroup G_0^k of the form

$$G_0^k := \bigoplus_{i=0}^{\infty} \left(H_i^k + \langle e_i^k \rangle \right),$$

where

(a₁) the independent sequence $\{e_i^k\}$ satisfies the condition

$$\exp\left(H'_{p_k}\right) = o(e_1^k) = o(e_2^k) = \dots;$$

(a₂) there is $0 < M_k \le \infty$ such that H_i^k is a finite nonzero subgroup of G_0^k for every $0 \le i < M_k$, and, if $M_k < \infty$, $H_i^k = \{0\}$ for each $i \ge M_k$;

(a₃) $H'_{p_k} = \bigoplus_{i=0}^{\infty} H^k_i;$

In this case we also put $X_k = \{0\}$.

Case 2. H'_{p_k} is an uncountable group. Applying Propositions 5 to the group $\langle A_k \rangle + H'_{p_k} (\subseteq G_{p_k})$, we can find a countable (maybe trivial) subgroup S'_k of H'_{p_k} and an uncountable subgroup S_k'' of H'_{p_k} such that

- (b₁) $H'_{p_k} = S'_k \oplus S''_k;$ (b2) $\langle A_k \rangle + H'_{p_k} = (\langle A_k \rangle + S'_k) \oplus S''_k;$ (b3) S''_k satisfies condition (Λ).

Represent S_k'' in the form $S_k'' = X_k \oplus (\bigoplus_{i=0}^{\infty} R_i^k)$, where

On extensions of bounded subgroups in Abelian groups

- (c₁) R_i^k is nonzero and finite for every $i \ge 0$; (c₂) $\exp(S'_k \oplus \bigoplus_{i=0}^{\infty} R_i^k) = \exp(H'_{p_k})$;
- (c₃) X_k is uncountable and satisfies condition (A).

Now we can apply Proposition 7 to the group

$$(\langle A_k \rangle + S'_k) \oplus \bigoplus_{i=0}^{\infty} R_i^k = \langle A_k \rangle + \left(S'_k \oplus \bigoplus_{i=0}^{\infty} R_i^k \right).$$

Taking into account (b₁)–(b₃) and (c₁)–(c₃), we obtain that the group $\langle A_k \rangle$ + $H'_{p_k} (\subseteq G_{p_k})$ has a subgroup G_0^k of the form

$$G_0^k := X_k \oplus \bigoplus_{i=0}^{\infty} \left(H_i^k \oplus \langle e_i^k \rangle \right),$$

where

(a₄) the independent sequence $\{e_i^k\}$ satisfies the condition

$$\exp\left(H'_{p_k}\right) = o(e_1^k) = o(e_2^k) = \dots;$$

- (a₅) there is $0 < M_k \le \infty$ such that H_i^k is a finite nonzero subgroup of G_0^k for every $0 \le i < M_k$, and, if $M_k < \infty$, $H_i^k = \{0\}$ for each $i \ge M_k$;
- (a₆) $H'_{p_k} = X_k \oplus \bigoplus_{i=0}^{\infty} H_i^k;$
- (a₇) X_k is uncountable and satisfies condition (Λ).

Set $M = \max\{M_1, \ldots, M_n\}$ and

$$G_0 = \bigoplus_{k=1}^n G_0^k, \ X = \bigoplus_{k=1}^n X_k, \ H_i = \bigoplus_{k=1}^n H_i^k \text{ and } e_i = e_i^1 + \dots + e_i^n \text{ for every } i \ge 0.$$

By $(a_1)-(a_7)$, all the conditions (1)-(4) are fulfilled. The theorem is proved.

PROOF OF THEOREM 2: (i) immediately follows from Theorem 9.

(ii) If H has a simple extension in G, then G has a subgroup of the form $\mathbb{Z}(\exp(H))^{(\omega)}$ by item (2b) of the definition of simple extension. The converse follows from Theorem 10. \square

Acknowledgment. I wish to thank the referee for the suggestions which allow to simplify essentially the original proofs of Propositions 4 and 5.

References

- [1] Fuchs L., Abelian Groups, Budapest: Publishing House of the Hungarian Academy of Sciences 1958, Pergamon Press, London, third edition, reprinted 1967.
- [2] Gabriyelyan S.S., Finitely generated subgroups as a von Neumann radical of an Abelian group, Mat. Stud. 38 (2012), 124-138.
- [3] Gabriyelyan S.S., Bounded subgroups as a von Neumann radical of an Abelian group, preprint.

S.S. Gabriyelyan

- Markov A.A., On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3–64 (in Russian); English transl. in: Amer. Math. Soc. Transl. (1) 8 (1962), 195–272.
- [5] Markov A.A., On the existence of periodic connected topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1944), 225–232 (in Russian); English transl. in: Amer. Math. Soc. Transl. (1) 8 (1962), 186–194.
- [6] Nienhuys J.W., Constructions of group topologies on abelian groups, Fund. Math. 75 (1972), 101–116.

DEPARTMENT OF MATHEMATICS, BEN-GURION UNIVERSITY OF THE NEGEV, BEER-SHEVA P.O. 653, ISRAEL

E-mail: saak@math.bgu.ac.il

(Received April 19, 2013, revised October 10, 2013)