269

Dihedral-like constructions of automorphic loops

Mouna Aboras

Abstract. Automorphic loops are loops in which all inner mappings are automorphisms. We study a generalization of the dihedral construction for groups. Namely, if (G, +) is an abelian group, $m \ge 1$ and $\alpha \in \operatorname{Aut}(G)$, let $\operatorname{Dih}(m, G, \alpha)$ be defined on $\mathbb{Z}_m \times G$ by

 $(i, u)(j, v) = (i \oplus j, ((-1)^j u + v)\alpha^{ij}).$

The resulting loop is automorphic if and only if m = 2 or ($\alpha^2 = 1$ and m is even). The case m = 2 was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský. We present several structural results about the automorphic dihedral loops in both cases.

Keywords: dihedral automorphic loop; automorphic loop; inner mapping group; multiplication group; nucleus; commutant; center; commutator; associator sub-loop; derived subloop

Classification: Primary 20N05

1. Introduction

A set Q with a binary operation (\cdot) is a loop if for every $x \in Q$ the right and left translations R_x , $L_x : Q \longrightarrow Q$, $yR_x = y \cdot x$, $yL_x = x \cdot y$ are bijections of Q, and if there is a neutral element $1 \in Q$ such that $1 \cdot x = x \cdot 1 = x$ for every $x \in Q$.

Let Q be a loop. The group generated by R_x and L_x for all $x \in Q$ is called the *multiplication group* of Q and it is denoted by Mlt(Q). The subgroup of Mlt(Q) stabilizing the neutral element of Q is called the *inner mapping group* of Q and it is denoted by Inn(Q). It is well known that the inner mapping group Inn(Q) is the permutation group generated by

$$R_{x,y} = R_x R_y R_{xy}^{-1}, \quad T_x = R_x L_x^{-1}, \quad L_{x,y} = L_x L_y L_{yx}^{-1},$$

where $x, y \in Q$.

A loop is *automorphic* (also known as A-loop) if $\text{Inn}(Q) \leq \text{Mlt}(Q)$, that is, if every inner mapping of Q is an automorphism of Q. Note that groups are automorphic loops, but the converse is certainly not true.

Automorphic loops were first studied in 1956 by Bruck and Paige [3]. Structure theory for commutative and general automorphic loops was developed in

Research partially supported by the Simons Foundation Collaboration Grant 210176 to Petr Vojtěchovský.

[1], [5], [6]. In this paper, we generalize a construction of dihedral automorphic loops introduced by Kinyon, Kunen, Phillips and Vojtěchovský [1], where they focused on the special case m = 2. Here, we consider for an integer $m \ge 1$, an abelian group (G, +) and an automorphism α of G the loop $\text{Dih}(m, G, \alpha)$ defined on $\mathbb{Z}_m \times G$ by

(1)
$$(i,u)(j,v) = (i \oplus j, (s_j u + v)\alpha^{ij}),$$

where $s_j = (-1)^{j \mod m}$, and where we interpret α^{ij} as ordinary integral exponent. To make the multiplication formula unambiguous we demand that $i, j \in \{0, 1, \ldots, m-1\}$. Then we have $\alpha^i \alpha^j = \alpha^{i+j}$. There are several observations that we will use without reference for $i, j \in \mathbb{Z}_m, u \in G$:

- $s_i(s_j u) = (s_i s_j)u$, so we can write this as $s_i s_j u$,
- $s_i s_j u = s_j s_i u$,
- $s_i(u\alpha) = (s_i u)\alpha$,
- $s_i s_j = s_{i \oplus j}$, when *m* is even.

Note that with m = 1 the multiplication (1) reduces to (i, u)(j, v) = (i+j, u+v), so $\text{Dih}(1, G, \alpha) = \mathbb{Z}_1 \times G = G$. We will thus assume throughout the paper that m > 1.

This paper is organized as follows: Section 2 presents definitions and preliminary results about A-loops. We recall without proofs some facts from [1]. In Section 3 we determine all parameters m, G, α that yield automorphic loops. In Section 4 we show how to obtain the nuclei, the commutant and the center. In Section 5 we calculate the associator subloop A(Q) and the derived subloop Q'.

2. Definitions and preliminary results

In this section we introduce relevant definitions of loop theory [2], and we present some results on automorphic loops.

Definition 2.1. The *dihedral group* of order 2n, denoted by D_{2n} , is the group generated by two elements x and y with presentation $x^2 = y^n = 1$ and $x \cdot y = y^{n-1} \cdot x$.

The group D_{2n} is isomorphic to $Dih(2, \mathbb{Z}_n, 1)$. The generalized dihedral group $D_{2n}(G)$ is isomorphic to Dih(2, G, 1).

Since it suffices to check the automorphic condition on the generators of Inn(Q), we see that a loop Q is an automorphic loop if and only if, for all $x, y, u, v \in Q$,

$$(A_r) (uv)R_{x,y} = uR_{x,y} \cdot vR_{x,y},$$

$$(A_{\ell}) (uv)L_{x,y} = uL_{x,y} \cdot vL_{x,y},$$

$$(A_m) (uv)T_x = uT_x \cdot vT_x.$$

In fact it is not necessary to verify all of the conditions (A_r) , (A_ℓ) and (A_m) :

Proposition 2.2 ([4]). Let Q be a loop satisfying (A_m) and (A_ℓ) . Then Q is automorphic.

270

Definition 2.3. The *commutant* of a loop Q, denoted by C(Q), is the set of all elements that commute with every element of Q. In symbols,

 $C(Q) = \{ a \in Q : x \cdot a = a \cdot x, \forall x \in Q \}.$

Definition 2.4. The *left, right, and middle nucleus* of a loop Q are defined, respectively, by

$$N_{\lambda}(Q) = \{ a \in Q : ax \cdot y = a \cdot xy, \forall x, y \in Q \},$$

$$N_{\rho}(Q) = \{ a \in Q : xy \cdot a = x \cdot ya, \forall x, y \in Q \},$$

$$N_{\mu}(Q) = \{ a \in Q : xa \cdot y = x \cdot ay, \forall x, y \in Q \}.$$

The nucleus of Q is defined as $N(Q) = N_{\lambda}(Q) \cap N_{\rho}(Q) \cap N_{\mu}(Q)$.

Each of the nuclei is a subloop. All nuclei are in fact groups.

Definition 2.5. The center Z(Q) of a loop Q is the set of all elements of Q that commute and associate with all other elements of Q. It can be characterized as

$$Z(Q) = C(Q) \cap N(Q).$$

Definition 2.6. Let S be a subloop of a loop Q. Then S is normal if for all $a, b \in Q$

$$aS = Sa, (aS)b = a(Sb), a(bS) = (ab)S.$$

The center is always a normal subloop of Q.

Proposition 2.7 ([3]). Let Q be an automorphic loop. Then:

(i)
$$N_{\lambda}(Q) = N_{\rho}(Q) \subset N_{\mu}(Q);$$

(i) $IV_{\lambda}(Q) = IV_{\rho}(Q) \subseteq IV_{\mu}(Q);$ (ii) each nucleus is normal in Q.

Definition 2.8. Let Q be a loop and $x, y, z \in Q$. The commutator [x, y] is the unique element of Q satisfying the equation

$$x \cdot y = (y \cdot x) \cdot [x, y].$$

The associator [x, y, z] is the unique element of Q satisfying the equation

$$(x \cdot y) \cdot z = (x \cdot (y \cdot z)) \cdot [x, y, z].$$

Definition 2.9. The associator subloop of a loop Q, denoted by A(Q), is the smallest normal subloop of Q containing all associators [x, y, z] of Q. Equivalently, A(Q) is the smallest normal subloop of Q such that Q/A(Q) is associative.

Definition 2.10. The *derived subloop* of a loop Q, denoted by Q', is the smallest normal subloop of Q containing all commutators [x, y] and all associators [x, y, z] of Q. Equivalently, Q' is the smallest normal subloop of Q such that Q/Q' is a commutative group.

3. Parameters that yield automorphic loops

For an abelian group (G, +) denote by 2G the subgroup $2G = \{u + u; u \in G\}$. Note that if $\alpha \in \operatorname{Aut}(G)$ then the restriction $\alpha \upharpoonright_{2G}$ of α to 2G is an automorphism of 2G.

Lemma 3.1. Let Q = Dih(m, G, 1). Then Q is a group iff m is even or 2G = 0.

PROOF: With $\alpha = 1$ the multiplication formula (1) becomes $(i, u)(j, v) = (i \oplus j, s_j u + v)$. We have

$$\begin{aligned} &(i,u)(j,v) \cdot (k,w) = (i \oplus j, s_j u + v)(k,w) = (i \oplus j \oplus k, s_k (s_j u + v) + w), \\ &(i,u) \cdot (j,v)(k,w) = (i,u)(j \oplus k, s_k v + w) = (i \oplus j \oplus k, s_{j \oplus k} u + s_k v + w), \end{aligned}$$

so Q is a group iff

$$(2) s_k s_j u = s_{j \oplus k} u$$

for every $j, k \in \mathbb{Z}_m$ and every $u \in G$.

If 2G = 0 then u = -u and (2) holds. If m is even then $s_k s_j = s_{j \oplus k}$ and (2) holds again. Conversely, suppose that (2) holds. If m is even, we are done, so suppose that m is odd. With k = 1, j = m - 1 the identity (2) yields -u = u, or 2G = 0.

3.1 Middle inner mappings. Recall that $yT_x = x \setminus (yx)$.

Lemma 3.2. Let $Q = \text{Dih}(m, G, \alpha)$ and $(i, u), (j, v) \in Q$. Then

(3)
$$(j, v)T_{(i,u)} = (j, s_i v + (1 - s_j)u).$$

PROOF: Note that $(j, v)T_{(i,u)} = (k, w)$ iff (j, v)(i, u) = (i, u)(k, w) iff $(j \oplus i, (s_iv + u)\alpha^{ij}) = (i \oplus k, (s_ku + w)\alpha^{ik})$. We deduce k = j, and extend the chain of equivalences with $(s_iv + u)\alpha^{ij} = (s_ju + w)\alpha^{ij}$ iff $s_iv + u = s_ju + w$ iff $w = s_iv + (1 - s_j)u$.

Lemma 3.3. Let $Q = \text{Dih}(m, G, \alpha)$ and $(i, u) \in Q$. Then $T_{(i,u)} \in \text{Aut}(Q)$ iff

(4)
$$(1 - s_{j \oplus k})u = (1 - s_j s_k)u\alpha^{jk}$$

for every $j, k \in \mathbb{Z}_m$.

PROOF: We will use (3) without reference. We have

$$((j,v)(k,w))T_{(i,u)} = (j \oplus k, (s_kv+w)\alpha^{jk})T_{(i,u)}$$
$$= (j \oplus k, s_i(s_kv+w)\alpha^{jk} + (1-s_{j\oplus k})u)$$
$$= (j \oplus k, s_is_kv\alpha^{jk} + s_iw\alpha^{jk} + (1-s_{j\oplus k})u),$$

while

$$(j,v)T_{(i,u)} \cdot (k,w)T_{(i,u)} = (j,s_iv + (1-s_j)u) \cdot (k,s_iw + (1-s_k)u)$$

272

Dihedral-like constructions of automorphic loops

$$= (j \oplus k, [s_k(s_iv + (1 - s_j)u) + s_iw + (1 - s_k)u]\alpha^{jk})$$

$$= (j \oplus k, s_ks_iv\alpha^{jk} + s_iw\alpha^{jk} + [(s_k - s_ks_j + 1 - s_k)u]\alpha^{jk})$$

$$= (j \oplus k, s_ks_iv\alpha^{jk} + s_iw\alpha^{jk} + (1 - s_ks_j)u\alpha^{jk}),$$

so $T_{(i,u)} \in \operatorname{Aut}(Q)$ iff (4) holds for every $j, k \in \mathbb{Z}_m$.

Let us call a loop Q satisfying (A_m) a middle automorphic loop.

Proposition 3.4. Let $Q = \text{Dih}(m, G, \alpha)$.

- (i) If m = 2 then Q is a middle automorphic loop.
- (ii) If m > 2 is odd then Q is a middle automorphic loop iff 2G = 0.
- (iii) If m > 2 is even then Q is a middle automorphic loop iff $\alpha^2 |_{2G} = 1_{2G}$.

PROOF: Consider $T_{(i,u)}$. Suppose that m = 2. A quick inspection of all cases $j, k \in \{0, 1\}$ shows that (4) always holds.

Suppose that m > 2 is odd. With j = 2 and k = m - 1, condition (4) becomes $(1 - s_{2\oplus(m-1)})u = (1 - s_{2}s_{m-1})u\alpha^{2(m-1)}$, or 2u = 0, so we certainly must have 2G = 0 for every $T_{(i,u)}$ to be an automorphism. Conversely, when 2G = 0 then (4) reduces to 0 = 0.

Suppose that m > 2 is even. Then (4) becomes $(1 - s_{j \oplus k})u = (1 - s_{j \oplus k})u\alpha^{jk}$. When $j \oplus k$ is even then this becomes 0 = 0. Suppose that $j \oplus k$ is odd. Then one of j, k is odd and the other is even, so that jk is even, and (4) becomes $2u = (2u)\alpha^{2\ell}$ for some ℓ . With j = 2, k = 1 we obtain $2u = (2u)\alpha^2$, which is equivalent to $\alpha^2 \upharpoonright_{2G} = 1_{2G}$. Conversely, when $\alpha^2 \upharpoonright_{2G} = 1_{2G}$ then (4) holds. \Box

3.2 Left inner mappings. Recall that $zL_{x,y} = (yx) \setminus (y(xz))$.

Lemma 3.5. Let $Q = \text{Dih}(m, G, \alpha)$ and $(i, u), (j, v), (k, w) \in Q$. Then

(5)
$$(k,w)L_{(j,v),(i,u)} = (k, s_{j\oplus k}u\alpha^{i(j\oplus k) - (i\oplus j)k} + s_kv\alpha^{jk+i(j\oplus k) - (i\oplus j)k} + w\alpha^{jk+i(j\oplus k) - (i\oplus j)k} - s_ks_ju\alpha^{ij} - s_kv\alpha^{ij}).$$

PROOF: The following conditions are equivalent:

$$(k, w)L_{(j,v),(i,u)} = (\ell, x),$$

$$(i, u) \cdot (j, v)(k, w) = (i, u)(j, v) \cdot (\ell, x),$$

$$(i, u)(j \oplus k, (s_k v + w)\alpha^{jk}) = (i \oplus j, (s_j u + v)\alpha^{ij})(\ell, x),$$

$$(i \oplus i \oplus k, (s_k v + w)\alpha^{jk}) = (i \oplus i \oplus j, (s_j u + v)\alpha^{ij})(\ell, x),$$

 $(i \oplus j \oplus k, (s_{j \oplus k}u + (s_kv + w)\alpha^{jk})\alpha^{i(j \oplus k)}) = (i \oplus j \oplus \ell, (s_\ell(s_ju + v)\alpha^{ij} + x)\alpha^{(k \oplus j)\ell}).$

We deduce that $\ell = k$ and the result follows upon solving for x in the equation

$$(s_{j\oplus k}u + (s_kv + w)\alpha^{jk})\alpha^{i(j\oplus k)} = (s_k(s_ju + v)\alpha^{ij} + x)\alpha^{(i\oplus j)k}.$$

273

Lemma 3.6. Let $Q = \text{Dih}(m, G, \alpha)$ and $(i, u), (j, v) \in Q$. Then $L_{(j,v),(i,u)} \in \text{Aut}(Q)$ iff

$$s_{\ell}s_{j\oplus k}u\alpha^{i(j\oplus k)-(i\oplus j)k+k\ell} + s_{\ell}s_{k}v\alpha^{jk+i(j\oplus k)-(i\oplus j)k+k\ell} + s_{\ell}w\alpha^{jk+i(j\oplus k)-(i\oplus j)k+k\ell} - s_{\ell}s_{k}s_{j}u\alpha^{ij+k\ell} - s_{\ell}s_{k}v\alpha^{ij+k\ell} + s_{j\oplus\ell}u\alpha^{i(j\oplus\ell)-(i\oplus j)\ell+k\ell} + s_{\ell}v\alpha^{j\ell+i(j\oplus\ell)-(i\oplus j)\ell+k\ell} + x\alpha^{j\ell+i(j\oplus\ell)-(i\oplus j)\ell+k\ell} - s_{\ell}s_{j}u\alpha^{ij+k\ell} - s_{\ell}v\alpha^{ij+k\ell} = s_{j\oplus k\oplus \ell}u\alpha^{i(j\oplus k\oplus \ell)-(i\oplus j)(k\oplus \ell)} + s_{k\oplus \ell}v\alpha^{j(k\oplus \ell)+i(j\oplus k\oplus \ell)-(i\oplus j)(k\oplus \ell)} + s_{\ell}w\alpha^{k\ell+j(k\oplus \ell)+i(j\oplus k\oplus \ell)-(i\oplus j)(k\oplus \ell)} + x\alpha^{k\ell+j(k\oplus \ell)+i(j\oplus k\oplus \ell)-(i\oplus j)(k\oplus \ell)} - s_{k\oplus \ell}s_{j}u\alpha^{ij} - s_{k\oplus \ell}v\alpha^{ij}$$

for every $k, \ell \in \mathbb{Z}_m$ and every $w, x \in G$.

PROOF: This follows from Lemma 3.5, upon comparing $(k, w)L_{(j,v),(i,u)} \cdot (\ell, x)L_{(j,v),(i,u)}$ with $((k, u)(\ell, x))L_{(j,v),(i,u)}$.

Let us call a loop satisfying (A_{ℓ}) a *left automorphic loop*. We deduce that $Q = \text{Dih}(m, G, \alpha)$ is a left automorphic loop iff (6) holds for every $i, j, k, \ell \in \mathbb{Z}_m$ and every $u, v, w, x \in G$. We show that this very complicated condition is equivalent to two comparatively simple conditions, which we then analyze separately.

First, setting u = v = w = 0 and letting x range over G in (6) yields the condition

$$\alpha^{j\ell+i(j\oplus\ell)-(i\oplus j)\ell+k\ell} = \alpha^{k\ell+j(k\oplus\ell)+i(j\oplus k\oplus \ell)-(i\oplus j)(k\oplus \ell)}$$

With $\ell = 0$ this further simplifies to

$$\alpha^{ij} = \alpha^{jk+i(j\oplus k)-(i\oplus j)k}.$$

which is equivalent to

(7)
$$\alpha^{ij+(i\oplus j)k} = \alpha^{i(j\oplus k)+jk}.$$

Suppose that (7) holds for every i, j, k. Then the automorphisms at w in (6) agree since

$$\alpha^{jk+i(j\oplus k)-(i\oplus j)k} = \alpha^{ij+(i\oplus j)k-(i\oplus j)k} = \alpha^{ij} = \alpha^{ij+(i\oplus j)(k\oplus \ell)-(i\oplus j)(k\oplus \ell)}$$
$$= \alpha^{i(j\oplus k\oplus \ell)+j(k\oplus \ell)-(i\oplus j)(k\oplus \ell)}.$$

Focusing on x in (6), the following conditions are equivalent:

$$\begin{aligned} \alpha^{j\ell+i(j\oplus\ell)-(i\oplus j)\ell+k\ell} &= \alpha^{k\ell+j(k\oplus\ell)+i(j\oplus k\oplus\ell)-(i\oplus j)(k\oplus\ell)},\\ \alpha^{j\ell+i(j\oplus\ell)-(i\oplus j)\ell} &= \alpha^{j(k\oplus\ell)+i(j\oplus k\oplus\ell)-(i\oplus j)(k\oplus\ell)},\\ \alpha^{j\ell+i(j\oplus\ell)+(i\oplus j)(k\oplus\ell)} &= \alpha^{j(k\oplus\ell)+i(j\oplus k\oplus\ell)+(i\oplus j)\ell},\\ \alpha^{ij+(i\oplus j)\ell+(i\oplus j)(k\oplus\ell)} &= \alpha^{ij+(i\oplus j)(k\oplus\ell)+(i\oplus j)\ell} \end{aligned}$$

where we have used (7) twice in the last step. Since the last identity is trivially true, we see that (7) implies that the automorphisms at x in (6) agree, too. Let us now focus on v in (6). Using (7), the following conditions are equivalent:

$$\begin{split} s_{\ell}s_{k}v\alpha^{jk+i(j\oplus k)-(i\oplus j)k+k\ell} &- s_{\ell}s_{k}v\alpha^{ij+k\ell} + s_{\ell}v\alpha^{j\ell+i(j\oplus \ell)-(i\oplus j)\ell+k\ell} - s_{\ell}v\alpha^{ij+k\ell} \\ &= s_{k\oplus\ell}v\alpha^{j(k\oplus\ell)+i(j\oplus k\oplus\ell)-(i\oplus j)(k\oplus\ell)} - s_{k\oplus\ell}v\alpha^{ij}, \\ s_{\ell}s_{k}v\alpha^{ij+(i\oplus j)k-(i\oplus j)k+k\ell} - s_{\ell}s_{k}v\alpha^{ij+k\ell} + s_{\ell}v\alpha^{ij+(i\oplus j)\ell-(i\oplus j)\ell+k\ell} - s_{\ell}v\alpha^{ij+k\ell} \\ &= s_{k\oplus\ell}v\alpha^{ij+(i\oplus j)(k\oplus\ell)-(i\oplus j)(k\oplus\ell)} - s_{k\oplus\ell}v\alpha^{ij}. \end{split}$$

Upon canceling several α^{n-n} and the automorphism α^{ij} present in all summands, we see that the above is equivalent to

$$s_{\ell}s_{k}v\alpha^{k\ell} - s_{\ell}s_{k}v\alpha^{k\ell} + s_{\ell}v\alpha^{k\ell} - s_{\ell}v\alpha^{k\ell} = s_{k\oplus\ell}v - s_{k\oplus\ell}v,$$

which is trivially true. Hence (7) implies that the automorphisms at v in (6) agree, too. Finally, we focus on u in (6). Note that the equality

$$\alpha^{i(j\oplus\ell)-(i\oplus j)\ell} = \alpha^{ij-j\ell}$$

immediately follows from (7). Using this identity, the following conditions are equivalent:

$$\begin{split} s_{\ell}s_{j\oplus k}u\alpha^{i(j\oplus k)-(i\oplus j)k+k\ell} &- s_{\ell}s_ks_ju\alpha^{ij+kl} + s_{j\oplus \ell}u\alpha^{i(j\oplus \ell)-(i\oplus j)\ell+k\ell} - s_{\ell}s_ju\alpha^{ij+k\ell} \\ &= s_{j\oplus k\oplus \ell}u\alpha^{i(j\oplus (k\oplus \ell))-(i\oplus j)(k\oplus \ell)} - s_{k\oplus \ell}s_ju\alpha^{ij}, \\ s_{\ell}s_{j\oplus k}u\alpha^{ij-jk+k\ell} - s_{\ell}s_ks_ju\alpha^{ij+k\ell} + s_{j\oplus \ell}u\alpha^{ij-j\ell+k\ell} - s_{\ell}s_ju\alpha^{ij+k\ell} \\ &= s_{j\oplus k\oplus \ell}u\alpha^{ij-j(k\oplus \ell)} - s_{k\oplus \ell}s_ju\alpha^{ij}, \\ s_{\ell}s_{j\oplus k}u\alpha^{-jk+k\ell} - s_{\ell}s_ks_ju\alpha^{k\ell} + s_{j\oplus \ell}u\alpha^{-j\ell+k\ell} - s_{\ell}s_ju\alpha^{k\ell} \\ &= s_{j\oplus k\oplus \ell}u\alpha^{-j(k\oplus \ell)} - s_{k\oplus \ell}s_ju. \end{split}$$

Upon rearranging, we obtain the identity

(8)
$$s_{\ell}s_{j\oplus k}u\alpha^{-jk+k\ell} + s_{j\oplus \ell}u\alpha^{-j\ell+k\ell} + s_{k\oplus \ell}s_{j}u$$

= $s_{\ell}s_{k}s_{j}u\alpha^{k\ell} + s_{\ell}s_{j}u\alpha^{k\ell} + s_{j\oplus k\oplus \ell}u\alpha^{-j(k\oplus \ell)}$.

We have proved:

Lemma 3.7. Let $Q = \text{Dih}(m, G, \alpha)$. Then Q is left automorphic iff (7) and (8) hold for every $i, j, k, \ell \in \mathbb{Z}_m$ and every $u \in G$.

Let us now analyze the two conditions (7) and (8).

Lemma 3.8. Let $Q = \text{Dih}(m, G, \alpha)$. If m = 2 then (7) holds. If m > 2 then (7) holds iff $\alpha^m = 1$.

PROOF: Consider the condition

(9)
$$ij + (i \oplus j)k = i(j \oplus k) + jk$$

When m = 2 then (9) holds by a quick inspection of the cases, and thus (7) holds as well. Suppose that m > 2. With i = j = 1, k = m - 1 the condition (9) reduces to $1 + 2(m - 1) = 1 \cdot 0 + m - 1$, or m = 0, thus if (7) holds then $\alpha^m = 1$. Conversely, if $\alpha^m = 1$, then (7) holds because (9) is valid modulo m.

Lemma 3.9. Let $Q = Dih(m, G, \alpha)$. If (7) and (8) hold then $\alpha^{m-2} = 1$.

PROOF: When m = 2 the conclusion is trivially true. Let us therefore assume that m > 2 and, using Lemma 3.8, that $\alpha^m = 1$. Let $k = 1, j = \ell = m - 1$. Then (8) becomes

$$s_{m-1}u\alpha^{-(m-1)+(m-1)} + s_{m-2}u\alpha^{-(m-1)^2+(m-1)} + s_{m-1}u$$

= $-u\alpha^{m-1} + u\alpha^{m-1} + s_{m-1}u$,

or, equivalently,

$$s_{m-1}u = -s_{m-2}u\alpha^{-(m-1)^2 + (m-1)}.$$

Since $s_{m-1} = -s_{m-2}$ and $(m-1)^2 \equiv 1 \pmod{m}$, the last identity is equivalent to $u = u\alpha^{-1+m-1} = u\alpha^{m-2}$, or to $\alpha^{m-2} = 1$.

Lemma 3.10. Let $Q = \text{Dih}(m, G, \alpha)$ be a left automorphic loop.

- (i) If m > 2 is even then $\alpha^2 = 1$.
- (ii) If m > 2 is odd then $\alpha = 1$.

PROOF: By Lemma 3.7, Q satisfies (7) and (8). Suppose that m > 2. Then Lemma 3.8 implies $\alpha^m = 1$ and Lemma 3.9 implies $\alpha^{m-2} = 1$. Thus $\alpha^2 = 1$. If m is also odd then $\alpha^2 = 1$ and $\alpha^m = 1$ imply $\alpha = 1$.

Lemma 3.11. Let $Q = \text{Dih}(m, G, \alpha)$.

- (i) If m = 2 then (8) holds.
- (ii) If m is even and $\alpha^2 = 1$ then (8) holds.
- (iii) If m > 2 is odd and $\alpha = 1$ then (8) implies 2G = 0.

PROOF: Suppose that m = 2. We can then reduce all subscripts modulo 2 in (8) and use $s_i s_j = s_{i+j}$. Hence (8) becomes

(10)
$$s_{\ell+j+k}u\alpha^{-jk+k\ell} + s_{j+\ell}u\alpha^{-j\ell+k\ell} + s_{k+\ell+j}u$$
$$= s_{\ell+k+j}u\alpha^{k\ell} + s_{\ell+j}u\alpha^{k\ell} + s_{j+k+\ell}u\alpha^{-j(k\oplus\ell)}$$

where all subscripts are reduced modulo 2. When j is even (that is, j = 0), (10) becomes

$$s_{k+\ell}u\alpha^{k\ell} + s_{\ell}u\alpha^{k\ell} + s_{k+\ell}u = s_{k+\ell}u\alpha^{k\ell} + s_{\ell}u\alpha^{k\ell} + s_{k+\ell}u,$$

a valid identity. If j is odd and k is even, (10) becomes

$$-s_{\ell}u - s_{\ell}u\alpha^{-\ell} - s_{\ell}u = -s_{\ell}u - s_{\ell}u\alpha^{-\ell},$$

clearly true. If j, k are odd and ℓ is even, (10) becomes

$$u\alpha^{-1} - u + u = u - u + u\alpha^{-1},$$

again true. Finally, if j, k, ℓ are odd, (10) becomes

 $-u + u - u = -u\alpha + u\alpha - u,$

which holds trivially.

Suppose that m is even and $\alpha^2 = 1$. Then we can reduce all subscripts and superscripts in (8) modulo 2, and we proceed as in case (i).

For the rest of the proof let m > 2 be odd and suppose that $\alpha = 1$. Then (8) becomes

$$s_{\ell}s_{j\oplus k}u + s_{j\oplus \ell}u + s_{k\oplus \ell}s_ju = s_{\ell}s_ks_ju + s_{\ell}s_ju + s_{j\oplus k\oplus \ell}u.$$

With j = m - 1 and $k = \ell = 1$ we obtain -u + u + u = u - u - u, or 2u = 0. \Box

Proposition 3.12. Let $Q = Dih(m, G, \alpha)$.

- (i) If m = 2 then Q is left automorphic.
- (ii) If m > 2 is even then Q is left automorphic iff $\alpha^2 = 1$.
- (iii) If m > 2 is odd then Q is left automorphic iff $\alpha = 1$ and 2G = 0, in which case Q is a group.

PROOF: We will use Lemma 3.7 without reference.

Suppose that m = 2. Then (7) holds by Lemma 3.8 and (8) holds by Lemma 3.11.

Suppose that m > 2 is even. If Q is left automorphic then $\alpha^2 = 1$ by Lemma 3.10. Conversely, suppose that $\alpha^2 = 1$. Then (8) holds by Lemma 3.11. Since also $\alpha^m = 1$, (7) holds by Lemma 3.8.

Finally, suppose that m > 2 is odd. If Q is left automorphic then $\alpha = 1$ by Lemma 3.10. By Lemma 3.11, 2G = 0. Conversely, suppose that $\alpha = 1$ and 2G = 0. Then Q is a group by Lemma 3.1, so certainly also a left automorphic loop.

3.3 Main result.

Theorem 3.13. Let m > 1 be an integer, G an abelian group and α an automorphism of G. Let $Q = \text{Dih}(m, G, \alpha)$ be defined by (1).

- (i) If m = 2 then Q is automorphic.
- (ii) If m > 2 is even then Q is automorphic iff $\alpha^2 = 1$.
- (iii) If m > 2 is odd then Q is automorphic iff $\alpha = 1$ and 2G = 0, in which case Q is a group.

M. Aboras

PROOF: The claim follows from Propositions 2.2, 3.4 and 3.12.

From now on we will refer to loops $Q = \text{Dih}(m, G, \alpha)$ that are automorphic (equivalently, that satisfy the conditions of Theorem 3.13) as *dihedral automorphic loops*. Since nonassociative examples of dihedral automorphic loops are obtained only when m = 2 or when m > 2 is even and $\alpha^2 = 1$, we will from now on safely write $s_i s_j = s_{i+j} = s_{i \oplus j}$, and we do not have to reduce exponents of α modulo m.

Remark 3.14. If in the multiplication formula (1) we also reduce the exponent of α (that is, we have $(i, u) \cdot (j, v) = (i \oplus j, (s_j u + v)\alpha^{ij \pmod{m}}))$), then the resulting loop $\operatorname{Dih}_{red}(m, G, \alpha)$ is not necessarily isomorphic to $\operatorname{Dih}(m, G, \alpha)$. However, it can be shown that $\operatorname{Dih}_{red}(m, G, \alpha) = \operatorname{Dih}(m, G, \alpha)$ whenever one of the loops is automorphic. See [7] for details.

4. Nuclei, commutant and center

In this section we calculate the nuclei, the commutant and the center of dihedral automorphic loops satisfying $\alpha^2 = 1$. (So we do not always cover the case m = 2, $\alpha^2 \neq 1$.)

Lemma 4.1. Let $Q = \text{Dih}(m, G, \alpha)$ be a dihedral automorphic loop such that $\alpha^2 = 1$. If $\alpha = 1$ then $N_{\mu}(Q) = Q$, else $N_{\mu}(Q) = \langle 2 \rangle \times G$.

PROOF: If $\alpha = 1$ then Q is a group and thus $N_{\mu}(Q) = Q$. Suppose that $\alpha \neq 1$. Note that in automorphic loops (that satisfy (7) by Lemma 3.7) the formula of Lemma 3.5 simplifies to

(11)
$$(k,w)L_{(j,v),(i,u)} = (k, s_{j+k}u\alpha^{ij-jk} + s_kv\alpha^{ij} + w\alpha^{ij} - s_ks_ju\alpha^{ij} - s_kv\alpha^{ij})$$
$$= (k, s_{j+k}u\alpha^{ij-jk} - s_ks_ju\alpha^{ij} + w\alpha^{ij}).$$

Since $(j, v) \in N_{\mu}(Q)$ iff $(k, w) = (k, w)L_{(j,v),(i,u)}$ for all (i, u), (k, w), we conclude that $(j, v) \in N_{\mu}(Q)$ iff

(12)
$$s_{j+k}u\alpha^{ij-jk} - s_ks_ju\alpha^{ij} + w\alpha^{ij} = w$$

for all (i, u), $(k, w) \in Q$. With u = 0, i = 1 this reduces to $w\alpha^j = w$, so $\alpha^j = 1$ is necessary. Because $\alpha \neq 1 = \alpha^2$, we obtain $j \in \langle 2 \rangle$. Conversely, if $j \in \langle 2 \rangle$ then (12) holds thanks to $s_{j+k} = s_k s_j$ (since *m* is even).

For an abelian group G and $\alpha \in \operatorname{Aut}(G)$, let $G_2 = \{u \in G : |u| \leq 2\}$, $\operatorname{Fix}(\alpha) = \{u \in G : u = u\alpha\}$ and $\operatorname{Fix}(\alpha)_2 = G_2 \cap \operatorname{Fix}(\alpha)$.

Lemma 4.2. Let $Q = \text{Dih}(m, G, \alpha)$ be a dihedral automorphic loop with $\alpha^2 = 1$. If $\alpha = 1$ then $N(Q) = N_{\lambda}(Q) = N_{\rho}(Q) = Q$, else $N(Q) = N_{\lambda}(Q) = N_{\rho}(Q) = \langle 2 \rangle \times \text{Fix}(\alpha)$.

PROOF: Recall that $N(Q) = N_{\lambda}(Q) = N_{\rho}(Q) \leq N_{\mu}(Q)$ in all automorphic loops. We are again done if $\alpha = 1$, so suppose that $\alpha \neq 1$. Note that $(i, u) \in N_{\lambda}(Q)$ iff $(k, w)L_{(j,v),(i,u)} = (k, w)$ for all (j, v), $(k, w) \in Q$. We deduce from (11) that $(i, u) \in N_{\lambda}(Q)$ iff (12) holds for all (j, v), (k, w).

If $(i, u) \in N_{\lambda}(Q)$ then $i \in \langle 2 \rangle$ by Lemma 4.1, so (12) reduces to $s_{j+k}u\alpha^{-jk} - s_{j+k}u = 0$, i.e., $u\alpha^{-jk} = u$ for all j, k. With j = k = 1 we see that $u \in \text{Fix}(\alpha)$. Conversely, if $u \in \text{Fix}(\alpha)$ and $i \in \langle 2 \rangle$ then (12) clearly holds.

Recall that the commutant C(Q) is not necessarily a (normal) subloop of a loop Q.

Lemma 4.3. Let $Q = \text{Dih}(m, G, \alpha)$ be a dihedral automorphic loop such that $\alpha^2 = 1$. Then:

(i) if $\exp(G) \leq 2$ then C(Q) = Q;

(ii) if $\exp(G) > 2$ then $C(Q) = \langle 2 \rangle \times G_2$.

In either case, $C(Q) \trianglelefteq Q$.

PROOF: By Lemma 3.2, $(i, u) \in C(Q)$ iff

(13)
$$s_i v + (1 - s_j)u = v$$

holds for all $(j, v) \in Q$. If $\exp(G) = 2$ then (13) holds. If $\exp(G) > 2$ then (13) holds for all (j, v) iff $i \in \langle 2 \rangle$ and $u \in G_2$. Hence if $\exp(G) > 2$ then $C(Q) = \langle 2 \rangle \times G_2$.

Note that $\langle 2 \rangle \times G$ is a group. Thus, to show $C(Q) \leq Q$, we only need to check that C(Q) is closed under multiplication and inverses, and this is clear from the multiplication formula.

If $(j,v) \in C(Q)$ then, by Lemma 3.2, $(j,v)T_{(i,u)} \in \{(j,\pm v)\} \in C(Q)$. If $(k,w) \in C(Q)$ then, by (11), $(k,w)L_{(j,v),(i,u)} = (k,s_ju\alpha^{ij} - s_ju\alpha^{ij} + w\alpha^{ij}) \in \{(k,w),(k,w\alpha)\} \in C(Q)$. The proof is similar for right inner mappings. Hence $C(Q) \trianglelefteq Q$.

Lemma 4.4. Let $Q = \text{Dih}(m, G, \alpha)$ be a dihedral automorphic loop such that m is even and $\alpha^2 = 1$. Then:

- (i) if $\exp(G) \leq 2$ and $\alpha = 1$ then Z(Q) = Q;
- (ii) if $(\exp(G) \le 2 \text{ and } \alpha \ne 1)$ or $\exp(G) > 2$ then $Z(Q) = \langle 2 \rangle \times \operatorname{Fix}(\alpha)_2$.

PROOF: Suppose that $\alpha = 1$. Then Q is a group and Z(Q) = C(Q). If $\exp(G) \leq 2$ then Z(Q) = Q by Lemma 4.3. If $\exp(G) > 2$ then $C(Q) = \langle 2 \rangle \times G_2 = \langle 2 \rangle \times Fix(\alpha)_2$, by Lemma 4.3.

Now suppose that $\alpha \neq 1 = \alpha^2$. If $\exp(G) \leq 2$ then C(Q) = Q and $Z(Q) = N(Q) = \langle 2 \rangle \times \operatorname{Fix}(\alpha)_2 = \langle 2 \rangle \times \operatorname{Fix}(\alpha)$ by Lemma 4.2. If $\exp(G) > 2$ then $Z(Q) = N(Q) \cap C(Q) = \langle 2 \rangle \times \operatorname{Fix}(\alpha)_2$, by Lemmas 4.2 and 4.3.

Proposition 4.5. Let Q be a dihedral automorphic loop with $\alpha \neq 1 = \alpha^2$. Then $Q/Z(Q) \cong \text{Dih}(2, G/H, \beta)$, where $H = \text{Fix}(\alpha)_2$ and $\beta \in \text{Aut}(G/H)$ is defined by $(u+H)\beta = u\alpha + H$. Moreover, $\beta^2 = 1$.

PROOF: By Lemma 4.4, $Z(Q) = \langle 2 \rangle \times \text{Fix}(\alpha)_2$. The mapping β is well-defined (if u + H = v + H then $u - v \in H \subseteq \text{Fix}(\alpha)$, $u\alpha - v\alpha = (u - v)\alpha = u - v \in H$, $u\alpha + H = v\alpha + H$) and obviously a surjective homomorphism. Since α fixes elements of H pointwise, we have $u + H \in \ker \beta$ iff $u \in H$, so $\beta \in \operatorname{Aut}(G/H)$.

Consider $f: Q \to \text{Dih}(2, G/H, \beta)$ defined by $(i, u)f = (i \mod 2, u + H)$. Since

$$(i, u)f(j, v)f = (i \mod 2, u + H)(j \mod 2, v + H)$$

= $((i + j) \mod 2, (s_j(u + H) + (v + H))\beta^{ij})$
= $((i + j) \mod 2, (s_ju + v)\alpha^{ij} + H)$
= $(i + j, (s_ju + v)\alpha^{ij})f = ((i, u)(j, v))f,$

f is a homomorphism, obviously onto $\text{Dih}(2, G/H, \beta)$. Finally, $\ker(f) = \langle 2 \rangle \times H = Z(Q)$.

Corollary 4.6. Every dihedral automorphic loop $Dih(m, G, \alpha)$ with $\alpha \neq 1 = \alpha^2$ is a central extension of an elementary abelian 2-group by a dihedral automorphic loop of the form $Dih(2, K, \beta)$ with $\beta^2 = 1$ and K isomorphic to a factor of G.

As an application of the results in this section, let us have a look at central nilpotency of dihedral automorphic loops. Let $Q = \text{Dih}(m, G, \alpha)$ be a dihedral automorphic loop with $\alpha^2 = 1$ and m even.

If $\alpha = 1$ and $\exp(G) \leq 2$ then Z(Q) = Q by Lemma 4.4. If $\alpha = 1$ and $\exp(G) > 2$ then Q is a group and $Z(Q) = \langle 2 \rangle \times \operatorname{Fix}(\alpha)_2 = \langle 2 \rangle \times G_2$, and since $(i, u)Z(Q) \cdot (j, v)Z(Q) = (i \oplus j, s_j u + v)(\langle 2 \rangle \times G_2) = ((i+j) \mod 2, s_j u + v)Z(Q)$, we see that Q/Z(Q) is isomorphic to the generalized dihedral group $\operatorname{Dih}(2, G/G_2, 1)$.

Now suppose that $\alpha \neq 1 = \alpha^2$. Then $Q/Z(Q) \cong \text{Dih}(2, G/H, \beta)$, where $H = \text{Fix}(\alpha)_2$ and $\beta^2 = 1$. If $H \neq 1$, we proceed by induction, else G/H = G, $\beta = \alpha$ and Z(Q/Z(Q)) = 1.

Example 4.7. If G is an abelian group of odd order and $\alpha \in \operatorname{Aut}(G)$ such that $\alpha \neq 1 = \alpha^2$ then $Z(\operatorname{Dih}(2, G, \alpha)) = 1$.

Suppose that $|G| = 2^n$ and $\alpha \in \operatorname{Aut}(G)$ is such that $\alpha \neq 1 = \alpha^2$. Since the involution α fixes the neutral element of G and permutes the subgroup G_2 of even order (a divisor of |G|), we have $H = \operatorname{Fix}(\alpha)_2 \neq 1$. Thus Q/Z(Q) = $\operatorname{Dih}(2, G/H, \beta)$ and $2^{\ell} = |G/H| < |G|$. By induction, Q is centrally nilpotent of class $\leq n$.

Finally suppose that $G = \mathbb{Z}_{2^n}$, $\alpha \in \operatorname{Aut}(G)$ and $1 = \alpha^2$. Whether $\alpha = 1$ or not, we have $Q/Z(Q) = \operatorname{Dih}(2, G/H, \beta)$ for $H = \operatorname{Fix}(\alpha)_2 = \{0, 2^{n-1}\}$ and some $\beta \in \operatorname{Aut}(G/H)$ satisfying $\beta^2 = 1$, because 2^{n-1} is the unique element of order 2 in G. By induction, Q has nilpotence class n.

5. Commutators and associators

Recall that in a loop Q, the commutator [x, y] is defined as $(yx) \setminus (xy)$, and the associator [x, y, z] as $(x \cdot yz) \setminus (xy \cdot z)$.

Lemma 5.1. In a loop $Q = \text{Dih}(m, G, \alpha)$ we have

(14)
$$[(i, u), (j, v)] = (0, ((s_j - 1)u + (1 - s_i)v)\alpha^{ij})$$

for $(i, u), (j, v) \in Q$.

PROOF: Let (k, w) = [(i, u), (j, v)], so $(i, u)(j, v) = (j, v)(i, u) \cdot (k, w)$, hence,

$$(i \oplus j, (s_j u + v)\alpha^{ij}) = (j \oplus i, (s_i v + u)\alpha^{ij}) \cdot (k, w) \iff$$
$$(i \oplus j, s_j u\alpha^{ij} + v\alpha^{ij}) = (i \oplus j \oplus k, (s_k s_i v\alpha^{ij} + s_k u\alpha^{ij} + w)\alpha^{(i \oplus j)k}).$$

We deduce k = 0, and can rewrite the above expression as $w = (s_j - 1)u\alpha^{ij} + (1 - s_i)v\alpha^{ij}$.

Proposition 5.2. Let $Q = \text{Dih}(m, G, \alpha)$ be a dihedral automorphic loop with $\alpha^2 = 1$. Then

$$\langle [x,y]: x, y \in Q \rangle = \{ [x,y]: x, y \in Q \} = 0 \times 2G$$

is a normal subloop of Q.

PROOF: First, using Lemma 5.1 and looking at all cases $i, j \pmod{2}$, it is easy to see that $[(i, u), (j, v)] \in 0 \times 2G$. Second, [(1, 0), (0, v)] = (0, 2v). This shows that $\{[x, y] : x, y \in Q\} = 0 \times 2G$. It is easy to see from (1) that $0 \times 2G$ is a subloop of Q. Finally, to show that $0 \times 2G$ is normal in Q, we calculate, using Lemmas 3.2, 3.5 and an analog of Lemma 3.5:

$$(0, 2w)L_{(j,v),(i,u)} = (0, 2w\alpha^{1+ij}),$$

$$(0, 2w)T_{(i,u)} = (0, 2s_iw),$$

$$(0, 2w)R_{(j,v),(i,u)} = (0, 2w\alpha^{ij}).$$

Lemma 5.3. In a dihedral automorphic loop $Q = \text{Dih}(m, G, \alpha)$ with $\alpha^2 = 1$ we have

(15)
$$[(i,u),(j,v),(k,w)] = (0,(s_{j+k}u(1-\alpha^{-jk})\alpha^{ij}+w(1-\alpha^{ij}))\alpha^{(i\oplus j)k})$$

for $(i, u), (j, v), (k, w) \in Q$.

PROOF: When *m* is odd and $\alpha = 1$ then *Q* is a group and (15) yields [(i, u), (j, v), (k, w)] = 1. The case when *m* is even and $\alpha^2 = 1$ follows by straightforward calculation, but since the identity (7) is involved, we give all the details: let $(\ell, x) = [(i, u), (j, v), (k, w)]$ so

$$\begin{aligned} &(i,u)(j,v)\cdot(k,w) = ((i,u)\cdot(j,v)(k,w))(\ell,x),\\ &(i\oplus j,(s_ju+v)\alpha^{ij})\cdot(k,w) = ((i,u)\cdot(j\oplus k,(s_kv+w)\alpha^{jk}))(\ell,x),\\ &(i\oplus j\oplus k,[(s_{k+j}u+s_kv)\alpha^{ij}+w]\alpha^{(i\oplus j)k})\\ &= (i\oplus j\oplus k,[s_{j+k}u+s_kv\alpha^{jk}+w\alpha^{jk}]\alpha^{i(j\oplus k)})(\ell,x),\end{aligned}$$

 \square

M. Aboras

$$\begin{aligned} &(i \oplus j \oplus k, s_{k+j}u\alpha^{ij+(i\oplus j)k} + s_kv\alpha^{ij+(i\oplus j)k} + w\alpha^{(i\oplus j)k}) \\ &= (i \oplus j \oplus k, s_{j+k}u\alpha^{i(j\oplus k)} + s_kv\alpha^{jk+i(j\oplus k)} + w\alpha^{jk+i(j\oplus k)})(\ell, x), \\ &(i \oplus j \oplus k, s_{k+j}u\alpha^{ij+(i\oplus j)k} + s_kv\alpha^{ij+(i\oplus j)k} + w\alpha^{(i\oplus j)k}) \\ &= (i \oplus j \oplus k, s_{j+k}u\alpha^{ij+(i\oplus j)k-jk} + s_kv\alpha^{jk+i(j\oplus k)} + w\alpha^{jk+i(j\oplus k)})(\ell, x). \end{aligned}$$

Here we have used identity (7) in the last step. We obtain

$$(i \oplus j \oplus k, s_{k+j}u\alpha^{ij+(i\oplus j)k} + s_kv\alpha^{ij+(i\oplus j)k} + w\alpha^{(i\oplus j)k})$$

= $(i \oplus j \oplus k \oplus \ell, [s_{j+k+\ell}u\alpha^{ij+(i\oplus j)k-jk} + s_{k+\ell}v\alpha^{jk+i(j\oplus k)} + s_\ell w\alpha^{jk+i(j\oplus k)} + x]\alpha^{(i\oplus j\oplus k)\ell}).$

We deduce $\ell = 0$, and can rewrite the above expression as

$$s_{k+j}u\alpha^{ij+(i\oplus j)k} + s_kv\alpha^{ij+(i\oplus j)k} + w\alpha^{(i\oplus j)k}$$

= $s_{j+k}u\alpha^{ij+(i\oplus j)k-jk} + s_kv\alpha^{ij+(i\oplus j)k} + w\alpha^{ij+(i\oplus j)k} + x,$
$$x = (s_{j+k}u(1-\alpha^{-jk})\alpha^{ij} + w(1-\alpha^{ij}))\alpha^{(i\oplus j)k}.$$

Proposition 5.4. Let $Q = \text{Dih}(m, G, \alpha)$ be a dihedral automorphic loop with $\alpha^2 = 1$. Then

$$A(Q) = \langle [x, y, z] : x, y, z \in Q \rangle = \{ [x, y, z] : x, y, z \in Q \} = 0 \times G(1 - \alpha).$$

PROOF: Here we check all choices of $i, j, k \pmod{2}$, using Lemma 5.3.

$$\begin{split} [(0,u),(0,v),(0,w)] &= (0,u(1-1)+w(1-1)) = (0,0),\\ [(0,u),(1,v),(0,w)] &= (0,-u(1-1)+w(1-1)) = (0,0),\\ [(0,u),(0,v),(1,w)] &= (0,-u(1-1)+w(1-1)) = (0,0),\\ [(0,u),(1,v),(1,w)] &= (0,(u(1-\alpha^{-1})+w(1-1))\alpha) \\ &= (0,u(1-\alpha^{-1})\alpha) = (0,-u(1-\alpha)),\\ [(1,u),(0,v),(0,w)] &= (0,u(1-1)+w(1-1)) = (0,0),\\ [(1,u),(1,v),(0,w)] &= (0,(-u(1-1)\alpha+w(1-\alpha))) = (0,w(1-\alpha)),\\ [(1,u),(1,v),(1,w)] &= (0,(-u(1-1)+w(1-1))\alpha) = (0,0),\\ [(1,u),(1,v),(1,w)] &= (0,u(1-\alpha)\alpha+w(1-\alpha)),\\ &= (0,u(1-\alpha^{-1})\alpha+w(1-\alpha)),\\ &= (0,(-u+w)(1-\alpha)). \end{split}$$

We can see that $[(i, u), (j, v), (k, w)] \in 0 \times G(1 - \alpha)$. Second, $[(1, u), (1, v), (0, w)] = (0, w(1 - \alpha))$. This shows that $\{[x, y, z] : x, y, z \in Q\} = 0 \times G(1 - \alpha)$.

Next, we need to show $0 \times G(1 - \alpha)$ is subloop of Q. Let $(0, u(1 - \alpha))$ and $(0, v(1 - \alpha))$ be two elements of $0 \times G(1 - \alpha)$. Then

$$(0, u(1 - \alpha)) \cdot (0, v(1 - \alpha)) = (0, (u + v)(1 - \alpha)), (0, u(1 - \alpha)) \setminus (0, v(1 - \alpha)) = (0, (v - u)(1 - \alpha)), (0, u(1 - \alpha))/(0, v(1 - \alpha)) = (0, (u - v)(1 - \alpha)).$$

Finally, to show $0 \times G(1-\alpha)$ is normal in Q we use Lemmas 3.2 and 3.5 to obtain:

$$\begin{aligned} (0, w(1-\alpha))L_{(j,v),(i,u)} &= (0, s_j u \alpha^{ij} + v \alpha^{ij} + w(1-\alpha)\alpha^{ij} - s_j u \alpha^{ij} - v \alpha^{ij}) \\ &= (0, w(1-\alpha)\alpha^{ij}), \\ (0, w(1-\alpha))T_{(i,u)} &= (0, s_i w(1-\alpha) + (1-1)u) \\ &= (0, s_i w(1-\alpha)), \\ (0, w(1-\alpha))R_{(j,v),(i,u)} &= (0, (w(1-\alpha) + s_{-(i+j)}u(1-1))\alpha^{ij}) \\ &= (0, w(1-\alpha)\alpha^{ij}). \end{aligned}$$

Proposition 5.5. Let $Q = \text{Dih}(m, G, \alpha)$ be a dihedral automorphic loop with $\alpha^2 = 1$. Then

$$Q' = 0 \times (G(1 - \alpha) + 2G).$$

PROOF: The proof is immediate from Propositions 5.2 and 5.4, since $Q' = 0 \times (G(1-\alpha) + 2G)$ is a normal subloop of Q.

Acknowledgments. I would like to express my great appreciation to Dr. Vojtěchovský for many helpful discussions about constructions of automorphic loops and I thank him for his valuable and constructive suggestions during the planning and development of this paper.

References

- Kinyon M.K., Kunen K., Phillips J.D., Vojtěchovský P., The structure of automorphic loops, to appear in Transactions of the American Mathematical Society.
- [2] Bruck R.H., A Survey of Binary Systems, Springer, 1971.
- [3] Bruck R.H., Paige L.J., Loops whose inner mappings are automorphisms, Ann. of Math. 2 63 (1956), 308–323.
- [4] Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P., Searching for small simple automorphic loops, LMS J. Comut. Math. 14 (2011), 200–213.
- [5] Jedlička P., Kinyon M.K., Vojtěchovský P., The structure of commutative automorphic loops, Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384.

M. Aboras

- [6] Jedlička P., Kinyon M.K., Vojtěchovský P., Constructions of commutative automorphic loops, Comm. Algebra 38 (2010), no. 9, 3243–3267.
- [7] Aboras M., Dihedral-like constructions of automorphic loops, Thesis, in preparation.

UNIVERSITY OF DENVER, DEPARTMENT OF MATHEMATICS, DENVER, CO 80208, USA *E-mail:* maboras@du.edu

(Received November 7, 2013)