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Odd order semidirect extensions

of commutative automorphic loops

Přemysl Jedlička

Abstract. We analyze semidirect extensions of middle nuclei of commutative au-

tomorphic loops. We find a less complicated conditions for the semidirect con-
struction when the middle nucleus is an odd order abelian group. We then use
the description to study extensions of orders 3 and 5.
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An automorphic loop is a loop where all inner mappings are automorphisms.
Most of the basic properties of commutative automorphic loops were described
in [3].

In [2], Jan Hora and the author described semidirect extensions of middle
nuclei of commutative automorphic loops by abelian groups. Furthermore a few
examples of specific loops were showed, mostly assuming that the middle nucleus
is a small group. In this paper, on the contrary, we assume that the factor over
the nucleus is a small cyclic group. The case of the middle nucleus of index 2 was
already resolved in [4] and therefore we decided to focus on small odd primes.

In Section 1 we recall the notion of the semidirect product. In Section 2 we
study the commutative automorphic loops with the middle nucleus of index 3
and, if the middle nucleus is not a complicated group, we count the number of
such loops up to isomorphism. In order to analyze extension by larger groups,
we investigate the general extensions by uniquely 2-divisible groups in Section 3,
deducing shorter conditions for the semidirect product. We use this conditions in
Section 4 to study extensions of order 5.

1. Preliminaries

We expect the reader to be already familiar with basic definitions in the loop
theory. If not, we refer to [6]. Unlike most loop theory papers, we shall use
the additive notation here rather than the multiplicative one; the reason is that
subgroups of our loops will appear as additive groups of rings.

In this section, we shall recall the semidirect construction presented in [2].
A semidirect product is a configuration of subloops in a loop (Q,+): we have
H < Q and K ⊳ Q such that K + H = Q and K ∩ H = 0. In [2] an external
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point of view was given, assuming additionally that K ≤ Nµ(Q) and K being an
abelian group. Such loops can be constructed given a special mapping ϕ.

Proposition 1 ([2]). Let H and K be abelian groups and let us have a mapping

ϕ : H2 → Aut(K). We define an operation ∗ on Q = K ×H as follows:

(a, i) ∗ (b, j) = (ϕi,j(a+ b), i+ j) .

This loop is denoted by K ⋊ϕ H . Let us denote ϕi,j,k = ϕi,j+k ◦ ϕj,k. Then Q is

a commutative A-loop if and only if the following properties hold:

ϕi,j = ϕj,i(1)

ϕ0,i = idK(2)

ϕi,j ◦ ϕk,n = ϕk,n ◦ ϕi,j(3)

ϕi,j,k = ϕj,k,i = ϕk,i,j(4)

ϕi,j+k + ϕj,i+k + ϕk,i+j = idK + 2 · ϕi,j,k(5)

Moreover, K × 0 is a normal subgroup of Q, 0 × H is a subgroup of Q and

(K × 0) ∩ (0 ×H) = 0× 0 and (K × 0) + (0×H) = Q.

Q is associative if and only if ϕi,j = idK , for all i, j ∈ H . The nuclei are

Nµ(Q) = K × {i ∈ H ; ∀j ∈ H : ϕi,j = idK} and Nλ = {a ∈ K; ∀j, k ∈ H :
ϕj,k(a) = a} × {i ∈ H ; ∀j ∈ H : ϕi,j = idK}.

The question of isomorphism classes was not tackled in [2] and hence we have
to show it here.

Proposition 2. Let Q1 = K⋊ϕH and Q2 = K⋊ψH be two semidirect products

such that, for each i ∈ H , there exists j ∈ H such that ϕij 6= idK . Then

Q1
∼= Q2 if and only if there exist α ∈ Aut(K) and β ∈ Aut(H) such that

αϕi,j = ψβ(i),β(j)α, for all i, j ∈ H .

Proof: “⇐”. An isomorphism is the mapping f : (a, i) 7→ (α(a), β(i)).

f((a, i)) ∗2 f((b, j)) = (α(a), β(j)) ∗2 (α(b), β(j)) = (ψβ(i),β(j)α(a+ b), β(i+ j))

f((a, i) ∗1 (b, j)) = f(ϕi,j(a+ b), i+ j) = (αϕi,j(a+ b), β(i + j)).

“⇒”. Since ϕi, is never trivial, the middle nucleus of Q1 is K × 0. Let f be
an isomorphism Q1 → Q2. Then f sends Nµ(Q1) to Nµ(Q2). We denote by α
the restriction of f on K × 0. Moreover, we define mappings β : H → H and
γ : H → K to satisfy f((0, i)) = (γ(i), β(i)). We have

(γ(i+ j), β(i + j)) = f((0, i+ j)) = f((0, i) ∗1 (0, j)) = f((0, i)) ∗2 f((0, j))
= (γ(i), β(i)) ∗2 ((γ(j), β(j))) = (ψβ(i),β(j)(γ(i) + γ(j)), β(i + j))

and therefore the mapping β is a homomorphism; it is a bijection too since f
is a bijection on the set of cosets of K × 0. Moreover, we see γ(i) + γ(j) =
ψ−1
β(i),β(j)γ(i+ j).
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Now we compute

f((a, i)) = f((a, 0) ∗1 (0, i)) = (α(a), 0) ∗2 (γ(i), β(i)) = (α(a) + γ(i), β(i)).

We finally compute

f((a, i)) ∗2 f((b, j)) = (α(a) + γ(i), β(i)) ∗2 (α(b) + γ(i), β(i))

= (ψβ(i),β(j)(α(a + b) + γ(i) + γ(j)), β(i + j)),

f((a, i) ∗1 (b, j)) = f(ϕi,j(a+ b), i+ j) = (α(ϕi,j(a+ b) + γ(i+ j)), β(i + j)).

If a+b = 0 then αγ(i+j) = ψβ(i),β(j)(γ(i)+γ(j)) = γ(i+j) and α fixes the image
of γ. Now f((a, i))∗2f((b, j)) = f((a, i)∗1(b, j)) if and only if ψβ(i),β(j)(α(a+b)) =
α(ϕi,j(a+ b)). �

It is worth noting that the condition demanding ϕi, to be non-trivial is suf-
ficient but not necessary for the existence of the automorphism; it was actually
not needed in the proof of the “only if” part.

A finite abelian group is a product of its prime components. Moreover, any
automorphism of the group splits on the prime components. It is hence useful to
know the impact of the splitting on the semidirect product.

Proposition 3. Let K = K1×K2 and suppose that ϕ splits on K, meaning that,

there exist ϕ̄ : H2 → Aut(K1) and ¯̄ϕ : H2 → Aut(K2) such that ϕi,j((a1, a2)) =
(ϕ̄i,j(a1), ¯̄ϕi,j(a2)), for each i, j ∈ H . Then K ⋊ϕ H is the pullback of K1 ⋊ϕ̄ H
and K2 ⋊ ¯̄ϕ H . In particular, if ϕ̄ is trivial then K ⋊ϕ H ∼= K1 × (K2 ⋊ ¯̄ϕ H).

Proof: We recall the definition of a pullback: suppose that A, B, C are two
groupoids with homomorphisms f : A → C and g : B → C. The pullback is the
groupoid A×C B = {(a, b); a ∈ A, b ∈ B, f(a) = g(b)}.

In our context, A = K1 ⋊ϕ̄H , B = K2 ⋊ ¯̄ϕH , C = H , and f, g are the natural
projections. Denote by Q = K ⋊ϕ H . The isomorphism A ×C B ∼= Q should
be h : ((a1, i), (a2, i)) 7→ ((a1, a2), i). The mapping is clearly a bijection, we only
prove that h is a homomorphism:

h(((a1, i), (a2, i))∗((b1, j), (b2, j))) = h((ϕ̄i,j(a1+b1), i+j), ( ¯̄ϕi,j(a2+b2), i+j))

= ((ϕ̄i,j(a1 + b1), ¯̄ϕi,j(a2 + b2)), i+ j)

= (ϕi,j((a1 + b1, a2 + b2)), i + j) = ((a1, a2), i) ∗ ((b1, b2), j)
= h((a1, i), (a2, i)) ∗ h((b1, j), (b2, j)).

The particular case is clear. �

2. Extension of order 3

The goal of the article is to understand semidirect extensions by cyclic groups
of an odd order. In this section, we start with semidirect extensions by groups
of order 3. This case is rather simple and therefore it will be tackled directly,
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without a deeper theory. From now on, we expect K, H and ϕ to play the same
role as in Section 1. Moreover K will be understood to wear a ring structure and
we shall identify elements of K with their multiplication endomorphisms (and, in
particular, 1 with the identity mapping).

Proposition 4. Let H = Z3. Then φ satisfies conditions (1)–(5) if and only if

there exists an automorphism α of K such that 4α2−5α+1 = 0, φ1,2 = φ2,1 = α
and ϕ1,1 = ϕ2,2 = 2α− 1.

Proof: “⇒”. Setting i = j = 1 and k = 2 in (5), we get ϕ2,2+2 = 1+2 ·1 ·ϕ1,2,
which means ϕ2,2 = 2ϕ1,2 − 1. Setting i = j = 2 and k = 1, we get ϕ1,1 + 2 =
1 + 2 · 1 · ϕ1,2, which means ϕ1,1 = 2ϕ1,2 − 1. Hence ϕ1,1 = ϕ2,2.

Now, setting i = j = k = 1, we get 3ϕ1,2 = 1 + 2ϕ1,2ϕ1,1. Substituting ϕ1,1 =
2ϕ1,2−1, we get 3ϕ1,2 = 1+2ϕ1,2(2ϕ1,2−1) and this leads to 4ϕ2

1,2−5ϕ1,2+1 = 0.

“⇐”. Properties (1)–(3) are clear. For (4) we have ϕ2,2ϕ1,1 = (2α − 1)2 =
4α2 − 4α+ 1 = α = ϕ1,0ϕ1,2. The other non-trivial option is similar.

Property (5) is trivially fulfilled, if one of the indices is 0. Suppose now i =
j = k. Then 3ϕi,2i = 3α and 1 + 2ϕi,2iϕi,i = 1 + 2α(2α− 1) = 1 + 4α2 − 2α and
both sides are equal. If i = j = 2k then ϕ2i,2i + 2 = 2α+ 1 = 1 + 2ϕi,2i. �

Lemma 5. Let Q1 = K ⋊ϕ Z3 and Q2 = K ⋊ψ Z3 be two automorphic loops.

Then Q1
∼= Q2 if and only if ϕ1,2 and ψ1,2 are conjugate in Aut(K).

Proof: If ϕ1,2 = αψ1,2α
−1 then, according to Proposition 4, ϕi,j = αψj,iα

−1,
for any i, j ∈ Z3 and Q1 and Q2 are isomorphic due to Proposition 2.

On the other hand, if ϕ1,2 = 1 then ϕ is trivial, according to Proposition 4,
and the resulting loop is a direct product. But this means that ψ is trivial too
and ϕ1,2 = ψ1,2.

Suppose hence ϕ1,2 = ϕ2,1 6= 1. Proposition 4 states, that ψi,j = ψβ(i),β(j), for
both the possible automorphisms β and any i, j ∈ Z3. Now, if αϕ1,2 = ψ1,2α then
αϕ1,1 = ψ1,1α since ϕ1,1 and ψ1,1 are already determined. �

If K is a ring with a transparent structure, we can easily count the number of
loops so obtained.

Proposition 6. Let K be a vector space over a field F of dimension n. If

char(F ) = 2 then every semidirect product K ⋊Z3 yielding an automorphic loop

is direct. If char(F ) = 3 then there exist, up to isomorphism, ⌈n2 ⌉ semidirect

products K ⋊ Z3 that are automorphic loops. Otherwise, there are n + 1 such

loops, up to isomorphism.

Proof: The case of characteristic 2 is trivial since the equation 4α2− 5α+1 = 0
reduces to α = 1. We shall hence suppose different characteristic.

Let α now be a solution of the quadratic equation 4x2 − 5x + 1 = 0. The
minimal polynomial of α divides 4x2 − 5x+ 1 and therefore, if the characteristic
differs from 3, α is similar to a diagonal matrix with entries in {1, 14}. There are
n + 1 such matrices, up to similarity, which is, according to Lemma 5, the only
criterion for an isomorphism.
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In characteristic 3, the roots are not distinct since 1
4 = 1. On the other hand,

we can use the Jordan blocks ( 1 1
0 1 ). �

It is useful to note that, in the previous case, the fundamental loop construc-
tion is the semidirect product K ⋊ϕ Z3 with dimK = 2 and ϕ1,2 = ( 1 1

0 1 ) in
characteristic 3 and dimK = 1 and ϕ1,2 = 1

4 in different characteristic. The
other constructions can be obtained using pullbacks and direct products as stated
in Proposition 3.

Next we shall focus on rings Z
k
p. A standard tool for computing roots of

polynomials modulo pk is Hensel’s lemma:

Lemma 7 (Hensel). Let f be a polynomial in Z[x], let p be a prime, let m, k ∈ N

and let r ∈ Z such that

f(r) ≡ 0 (mod pk) and f ′(r) 6≡ 0 (mod pk).

Then there exists s ∈ Z such that

f(s) ≡ 0 (mod pk+m) and r ≡ s (mod pk).

Moreover, such s is unique modulo pk+m.

Proposition 8. Let K = Zpk , for some odd prime k. Then there exist two

non-isomorphic automorphic loops Zpk ⋊ϕ Z3 for p > 3, one for pk = 3, three for

pk = 9 and six such loops if p = 3 and k > 2.

Proof: Every automorphism is equivalent to multiplication by an invertible ele-
ment and all the automorphisms commute. Hence distinct automorphisms never
conjugate and different constructions give rise to different loops, according to
Lemma 5. If p > 5 then the polynomial 4x2 − 5x+ 1 from Proposition 4 has two
distinct roots, according to Hensel’s lemma.

In Z3 there is only one root. In Z9 we have three roots, namely 1, 4 and 7.
Suppose now p = 3 and k > 2. We compute first all the roots x of the form
x = 9y + 1, where y ∈ [0, 3k−2 − 1].

4 · (9y + 1)2 − 5 · (9y + 1) + 1 = 324y2 + 27y = 27y · (12y + 1).

This expression is congruent to 0 modulo pk if and only if y · (12y + 1) ≡ 0
(mod 3k−3), that means if and only if y ≡ 0 (mod 3k−3) and there are exactly 3
such options, namely 0, 3k−3 and 2 · 3k−3.

Now comes x = 9y + 4, where y ∈ [0, 3k−2).

4 · (9y + 4)2 − 5 · (9y + 4) + 1 = 324y2 + 243y + 25 = 27 · (12y2 + 9y + 1) + 9

and we see that these numbers are not congruent to 0 modulo 27.
Let us take finally x = 9y + 7, where y ∈ [0, 3k−2).

4 · (9y + 7)2 − 5 · (9y + 7) + 1 = 324y2 + 459y + 162 = 27 · (12y2 + 17y + 6).
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This expression is congruent to 0 modulo 3k if and only if 12y2 + 17y + 6 ≡ 0
(mod 3k−3). The polynomial 12y2 + 17y + 6 is linear modulo 3 and its only root
can be lifted using Hensel’s lemma giving a unique root in [0, 3k−3). Hence we
obtain three solutions in [0, 3k−2) again. �

It was already observed in Proposition 3 that the decomposition of K gives
the decomposition of K ⋊ϕ H as a pullback. This means that the only case left
to count the number of different K ⋊ϕ Z3, for an arbitrary finite K, is the case
K ∼=

∏
Zpei . However this would need the description of conjugacy classes of

isomorphisms in such groups and this is out of the scope of this article.

3. Extension of 2-divisible groups

It was shown in [3] that a finite commutative automorphic loop always splits as
a direct product of a 2-loop and a uniquely 2-divisible loop (a loop is uniquely 2-
divisible, if the mapping x 7→ x+x is a bijection). In this paper, we are interested
in extensions of finite commutative automorphic loops by odd order abelian loops
and the only way how to extend a 2-loop with an odd order group is then the
trivial one. We can thus assume that every abelian group, taking place here from
now on, is uniquely 2-divisible.

In this section we analyze the semidirect extensions by uniquely 2-divisible
loops and we present simpler conditions to replace conditions (1)–(5).

Lemma 9. Let ϕ satisfy (1)–(5). Then

(6) ϕi,j = ϕ−i,−j =
ϕi+j,−i−j + ϕi,−i + ϕj,−j − 1

2ϕi+j,−i−j
,

for any i, j ∈ H .

Proof: Putting j = i and k = −i−j in (5) we obtain ϕi+j,−i−j+ϕi,−i+ϕj,−j =

1+ 2ϕi+j,−i−jϕi,j and hence ϕi,j = (ϕi+j,−i−j + ϕi,−i + ϕj,−j − 1) ◦ ϕ−1
i+j,−i−j/2.

Substituting i→ −i and j → −j gives the same expression due to symmetry. �

Lemma 9 states that, for a uniquely 2-divisible group K, any ϕi,j can be
expressed in terms of mappings ϕk,−k; for the sake of brevity, we shall write ϕk
as an abbreviation for ϕk,−k. Note that ϕi = ϕ−i.

It is now necessary to express conditions (1)–(5) in terms of mappings ϕk;
there are much less automorphisms to check and it is possible that new induced
conditions may be simpler. For this, we need to find alternative expressions for
products and for ϕi,j,k.

Lemma 10. Let i, j, k ∈ H and let ϕ satisfy (1)–(5). Then

4ϕiϕj = 2ϕi + 2ϕj + ϕi+j + ϕi−j − 2,(7)

ϕi,j,k =
ϕi + ϕj + ϕk + ϕi+j + ϕi+k + ϕj+k + ϕi+j+k − 3

4ϕi+j+k
.(8)

Moreover, (1), (2), (3), (6) and (7) are only needed to prove (8).
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Proof: We set k = −j in (5) to obtain

ϕi+j,−j + ϕi,0 + ϕj,i−j = 1 + 2ϕj,−j ◦ ϕi,0
ϕi + ϕi+j + ϕj − 1

2ϕi
+ 1 +

ϕi + ϕj + ϕi−j − 1

2ϕi
= 1 + 2ϕj

ϕi + ϕi+j + ϕj − 1 + ϕi + ϕj + ϕi−j − 1 = 4ϕiϕj

which is (7). For (8) we compute

4ϕi+j+kϕi,j,k = 4ϕi+j+kϕi,jϕi+j,k

= 4ϕi+j+k ·
ϕi+j + ϕi + ϕj − 1

2ϕi+j
· ϕi+j+k + ϕi+j + ϕk − 1

2ϕi+j+k

= 4(ϕi+jϕi+j+k + ϕ2
i+j + ϕi+jϕk − ϕi+j + ϕiϕi+j+k + ϕiϕi+j

+ ϕiϕk − ϕi + ϕjϕi+j+k + ϕjϕi+j

+ ϕjϕk − ϕj − ϕi+j+k − ϕi+j − ϕk + 1)/(4ϕi+j)

= ϕi+j+k + ϕi+j + ϕk − 1 + ϕi + ϕj − 1 + 4(ϕiϕi+j+k + ϕiϕk

− ϕi + ϕjϕi+j+k + ϕjϕk − ϕj − ϕi+j+k − ϕk + 1)/(4ϕi+j)

= ϕi+j+k + ϕi+j + ϕk + ϕi + ϕj − 2 + (2ϕi + 2ϕi+j+k + ϕ2i+j+k

+ ϕj+k − 2 + 2ϕi + 2ϕk + ϕi+k + ϕi−k − 2− 4ϕi + 2ϕj

+ 2ϕi+j+k + ϕi+2j+k + ϕi+k − 2 + 2ϕj + 2ϕk + ϕj+k

+ ϕj−k − 2− 4ϕj − 4ϕi+j+k − 4ϕk + 4)/(4ϕi+j)

= ϕi+j+k + ϕi+j + ϕk + ϕi + ϕj − 2 + (ϕ2i+j+k

+ 2ϕj+k + 2ϕi+k + ϕi−k + ϕi+2j+k + ϕj−k − 4)/(4ϕi+j)

= ϕi+j+k + ϕi+j + ϕk + ϕi + ϕj − 3 + (2ϕi+j + 2ϕi+k + ϕ2i+j+k

+ ϕj−k − 2 + 2ϕi+j + 2ϕj+k + ϕi+2j+k + ϕi−k − 2)/(4ϕi+j)

= ϕi+j+k + ϕi+j + ϕk + ϕi + ϕj − 3 + (4ϕi+jϕi+k + 4ϕi+jϕj+k)/(4ϕi+j)

= ϕi+j+k + ϕi+j + ϕk + ϕi + ϕj − 3 + ϕi+k + ϕj+k �

Theorem 11. Let K and H be uniquely 2-divisible abelian groups and let ϕ :
H2 → Aut(K). Then ϕ satisfies condition (1) to (5) if and only if

ϕi,j =
ϕi+j + ϕi + ϕj − 1

2ϕi+j
,(6)

4ϕiϕj = 2ϕi + 2ϕj + ϕi+j + ϕi−j − 2,(7)

ϕ0 = 1,(9)

for each i, j ∈ H , where ϕi = ϕi,−i.
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Proof: The necessity of the conditions was already proved in Lemmas 9 and 10
and hence we prove the sufficiency only. Conditions (1) and (2) follow immediately
from (6) and (9). Condition (7) shows that the subring generated by all the ϕi, i ∈
H is commutative, thus giving (3). In Lemma 10 we proved (1), (2), (3), (6), (7) ⇒
(8) and we clearly see (8) ⇒ (4). The only remaining condition is thus (5):

ϕi+j,k + ϕi+k,j + ϕj+k,i =

ϕi+j+k + ϕi+j + ϕk − 1

2ϕi+j+k
+
ϕi+j+k + ϕi+k + ϕj − 1

2ϕi+j+k
+
ϕi+j+k + ϕj+k + ϕi − 1

2ϕi+j+k

= 1 +
ϕi + ϕj + ϕk + ϕi+j + ϕi+k + ϕj+k + ϕi+j+k − 3

2ϕi+j+k
= 1 + 2ϕi,j,k �

4. Extension of order 5

In this section we use the result of the previous section to study semidirect
extensions by the cyclic group of order 5. We keep the notation of Section 3.

Proposition 12. Let Q = K ⋊ϕ Z5 be a semidirect product. Then Q is au-

tomorphic if and only if there exists α ∈ AutK such that ϕ1 = ϕ4 = α,
ϕ2 = ϕ3 = 4α2 − 4α+ 1 and 16α3 − 28α+ 13α− 1 = 0.

Proof: “⇒”. Setting i = j = 1 in (7) we get 4ϕ2
1 = 4ϕ1 + ϕ2 − 1 and therefore

ϕ2 = 4ϕ2
1−4ϕ1+1. Setting i = 2 and j = 1 in (7) we get 4ϕ2ϕ1 = 2ϕ2+3ϕ1+ϕ3−

2. We know that ϕ3 = ϕ2 = 4ϕ2
1− 4ϕ1+1 and this leads to 4(4ϕ2

1− 4ϕ1+1)ϕ1 =
3(4ϕ2

1−4ϕ1+1)+3ϕ1−2 which is eventually simplified to 16ϕ3
1−28ϕ2

1+13ϕ1−1 =
0.

“⇐”. We check (7) for all combinations of i, j. If i = 0 or j = 0 then (7) holds
trivially. If i = 1 and j ∈ {1, 4} then (7) leads to 4α2 = 4α+ (4α2 − 4α+ 1)− 1.
If i = 1 and j ∈ {2, 3} then (7) is 4α(4α2 − 4α + 1) = 3α+ 3(3α2 − 4α+ 1) − 2
and this holds. The case i = 4 is similar to i = 1.

If i = 2 and j ∈ {2, 3} then (7) gives

4(4α2 − 4α+ 1)2 = 4(4α2 − 4α+ 1) + α− 1

64α4 − 128α3 + 96α2 − 32α+ 4 = 16α2 − 15α+ 3

64α4 − 128α3 + 80α2 − 17α+ 1 = 0

(4α− 1) · (16α3 − 28α+ 13α− 1) = 0

and this holds. The remaining case i = 3 is similar. �

In the general odd cyclic case, that means when H is a cyclic group of an
odd order k, it seems that there always exists a polynomial, let us say fk, such
that ϕ1 is a root of the polynomial. Moreover, further calculations suggest that

fk ≡ (x − 1)
k+1

2 (mod k).
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Open problem. Characterize the necessary and sufficient conditions for exis-
tence of an extension with a cyclic group.

We finish the section with enumeration of the loops of type Zp ⋊ϕ Z5.

Proposition 13. Let K = Zp, for some odd prime p. Then there exist two non-

isomorphic automorphic loops Zp ⋊ϕ Z5 if and only if 5 is a quadratic residue in

Zp. Otherwise there exists only one.

Proof: The polynomial f = 16x3 − 28x2 + 13x − 1 can be factored as f =

(x − 1) · (16x2 − 12x+ 1). The quadratic factor has roots 3±
√
5

8 . If
√
5 does not

exist in Zp then f has only one root. Moreover, in Z5 we have f ≡ (x − 1)3

(mod 5) and hence there exists only one root too.
Suppose now that 5 is a quadratic residue. There are 3 possible choices of ϕ,

according to Proposition 12, namely

• ϕ1 = ϕ2 = ϕ3 = ϕ4 = 1,

• ϕ1 = ϕ4 = 3+
√
5

8 , ϕ2 = ϕ3 = 4 · (3+
√
5

8 )2 − 4 · 3+
√
5

8 + 1 = 9+6
√
5+5

16 −
12+4

√
5

8 + 8
8 = 3−

√
5

8 ,

• ϕ1 = ϕ4 = 3−
√
5

8 , ϕ2 = ϕ3 = 3+
√
5

8 .

The latter two choices give isomorphic loops due to Proposition 2; we can set
α = 1 and β = 2. Hence we have two isomorphism classes, one associative and
one non-associative. �

Remark. It was proved in [5] that a non-associative commutative automorphic
loop of order 5p with a p-element middle nucleus, for an odd prime p, exists if
and only if there exists a non-trivial solution of x5 = 1 in GF(p2). This condition
is equivalent to the condition presented here: it is well known that x5 − 1 can be

factored using the golden ratio φ = 1+
√
5

2 as x5 − 1 = (x − 1) · (x2 + φx + 1) ·
(x2 − φ−1x + 1). A non-trivial solution of x5 = 1 in GF(p2) thus exists if and
only if 5 is a quadratic residue in Z5. It is also worth mentioning that the roots of

16x3 − 28x2 +13x− 1 can be nicely expressed using the golden ratio: 3+
√
5

8 = φ2

4

and 3−
√
5

8 = φ−2

4 .

Open problem. Find the connection between the existence of an extension by
Zp and the roots of xp − 1.
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