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Nonconvex Lipschitz function in plane which

is locally convex outside a discontinuum

Dušan Pokorný

Abstract. We construct a Lipschitz function on R
2 which is locally convex on the

complement of some totally disconnected compact set but not convex. Existence
of such function disproves a theorem that appeared in a paper by L. Pasqualini
and was also cited by other authors.
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1. Introduction

In his work from 1938 L. Pasqualini presents a theorem (see [4, Theorem 51,
p. 43]) of which the following statement is a reformulation:

Let f : Rd → R be a continuous function and M ⊂ R
d a set not containing

any continuum of topological dimension (d− 1). Suppose that f is locally convex

on the complement of M . Then f is convex on R
d.

The proof however contains a gap. This result also appeared in the survey
paper [1], where the (incorrect) proof was shortly repeated. Also V.G. Dmitriev
mentions this result in [2], although he provides a wrong reference.

As a counterexample to the theorem of Pasqualini we present the following
theorem:

Theorem 1.1. There is a Lipschitz function f : R2 → R and M ⊂ R
2 such that

• f is locally convex on R
2 \M ,

• f is not convex on R
2,

• M is compact and totally disconnected,

• f has compact support.

Note that it is a simple observation that the set M from Theorem 1.1 cannot
be of one dimensional Hausdorff measure 0.
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2. Preliminaries

In the paper we will use the following more or less standard notation and
definitions. For a, b ∈ R

d and r > 0 we will denote by B(a, r) the closed ball with
center a and radius r and [a, b] will denote the closed line segment with endpoints
a and b. For A ⊂ R

d the symbol coA will mean the convex hull of A and Ac

will mean the complement of A. If l ⊂ R
2 is a line and ε > 0 then we define

l(ε) = {x ∈ R
2 : dist (x, l) < ε}.

A function f defined on a set A ⊂ R
2 is called L-Lipschitz, if for every x, y ∈ A,

x 6= y, we have |f(x) − f(y)| ≤ L|x− y|.
We will call f locally convex on A if for every x, y such that [x, y] ⊂ A and

α ∈ [0, 1] we have f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).
Finally, f will be called piecewise affine on A if there is a locally finite trian-

gulation ∆ of A such that f is affine on every triangle from ∆.

3. Construction of the function

Definition 3.1. Let Q be the system of all unions of finite systems of (closed)
polytopes in R

2. Let L > 0, f : R2 → R and P ∈ Q. We say that a pair (P, f) is
L-good if

(1) f is L-Lipschitz,
(2) f is piecewise affine on P c,
(3) f is locally convex on P c.

The key technical result is the following:

Lemma 3.2. Let δ, ε, L > 0 and let l be a line in R
2. Let (P, g) be an L-good

pair. Then there is an (L + ε)-good pair (Q, h) such that

(1) Q ⊂ P ,

(2) h = g on P c,

(3) if x, y ∈ Q belong to different components of R
2 \ l(δ) then they belong

to different components of Q.

We first prove Theorem 1.1 using Lemma 3.2

Proof of Theorem 1.1: Choose a sequence {xn}∞n=1 dense in the plane and
consider any sequence of lines {ln}∞n=1 with the property that for any i, j ∈ N

there is some k ∈ N such that xi, xj ∈ lk. Choose a sequence {εn}∞n=1 ⊂ (0,∞)
such that

∑∞
n=1 εn < ∞. Then the sequence {ln(εn)}∞n=1 has the property that

for every x, y ∈ R
2, x 6= y, there is some k ∈ N such that x and y belong to the

different component of R2 \ lk(εk).
In the proof we will proceed by induction and construct a sequence of functions

fi : R2 → R and a sequence {Pi} ⊂ Q, i = 0, 1, . . . , such that for every i the
following conditions hold:

(1) pair (Pi, fi) is (1 +
∑i

n=1 εn)-good,
(2) if i > 0 then Pi ⊂ Pi−1,
(3) if i > 0 then fi = fi−1 on (Pi−1)

c,
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(4) if i > 0 and if x, y ∈ Pi belong to the different component of R
2 \ li(εi)

then they belong to the different component of Pi.

To do this let f0 be an arbitrary 1-Lipschitz function on R
2 which is equal to 0

on ((−3, 3)2)c and equal to 1 on [−1, 1]2 and put P0 := [−3, 3]2\(−1, 1)2. Validity
of conditions (1)–(4) is obvious.

Now, if we have constructed fi−1 and Pi−1 we obtain fi and Pi simply by

applying Lemma 3.2 with ε = δ = εi, L = (1 +
∑i−1

n=1 εn), l = li, P = Pi−1

and g = fi−1. The function fi will be then equal to h from the statement of
Lemma 3.2 and Pi will be equal to the corresponding Q. Validity of conditions
(1)–(4) follows directly from Lemma 3.2.

Put M :=
⋂

Pi. Due to property (2) M is compact and nonempty. To prove
that M is totally disconnected consider x, y ∈ M , x 6= y. By the choice of the
sequences {ln}

∞
n=1 and {εn}

∞
n=1 ⊂ R

+ there is some i such that x and y belong
to the different component of R2 \ li(εi). By property (3) we have that x and y
belong to the different component of Pi. Using property (2) again we then obtain
that x and y belong to the different component of M as well.

Define f̃ : M c → R in such a way that f̃(x) = fi(x) whenever x ∈ (Pi)
c. It is

easy to see that the definition of f̃ is correct due to properties (2) and (3) and the

definition of M , and also that by property (1) the function f̃ is (1 +
∑∞

n=1 εn)-
Lipschitz and locally convex on M c. By Kirszbraun’s theorem (see [3]) there is a

(1 +
∑∞

n=1 εn)-Lipschitz function f : R2 → R such that f = f̃ on M c. Therefore
f is locally convex on M c as well. Also, f has compact support due to properties
(2) and (3), the fact that P0 is compact and that f0 is supported in P0.

It remains to show that f is not convex on R
2, but this is easy since

f(−3, 0) + f(3, 0)

2
= 0 < 1 = f(0, 0). �

The proof of Lemma 3.2 is divided into several lemmas.

Lemma 3.3. Let H ⊂ R
2 be a closed halfplane, x ∈ R

2 \H , w ∈ ∂H and L > 0.
If f : H ∪ {x} → R is L-Lipschitz and affine on H , then the function

gw(u) =

{

f(u), if u ∈ H,
αf(x) + (1− α)f(w), for u = αx+ (1 − α)w,α ∈ [0, 1],

is L-Lipschitz as well.

Proof: Without any loss of generality we can suppose that f(w) = 0 and w =
(0, 0). This means that gw is in fact linear on both H and [x,w]. Choose a ∈ H
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and b = αx for some α ∈ [0, 1]. Now,

|gw (a)− gw (b)| = α

∣

∣

∣

∣
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∣

∣

∣
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1

α
a

)

− gw (x)

∣

∣

∣

∣

≤ αL

∣

∣

∣

∣

1

α
a− x

∣

∣

∣

∣

= αL

∣

∣

∣

∣

1

α
a−

1

α
αx

∣

∣

∣

∣

= L|a− αx| = L|a− b|.

Similarly, if a = αx and b = βx for some α, β ∈ [0, 1], α 6= β we have

|gw(a)− gw(b)| = |αf(x) − βf(x)| = |f(x)| · |α− β| ≤ L|x| · |α− β| = L|a− b|.

�

Lemma 3.4. Let ε, L,K > 0. Let f be an L-Lipschitz function on [−K,K]2,
which is equal to an affine function f1 on [−K, 0] × [−K,K], and z ∈ (0,K) ×
(−K,K). Then there is an x ∈ [(0, 0), z] and γ > 0 such that for every y ∈ B(x, γ)
and every w ∈ B((0, 0), γ) ∩ ({0} × (−K,K)) the function

gy,w(u) =

{

f(u), if u ∈ [−K, 0]× [−K,K],
αf(w) + (1 − α)f(x), for u = αw + (1− α)y, α ∈ [0, 1],

is (L+ ε)-Lipschitz and |gy,w − f | < ε on [−K, 0]× [−K,K] ∪ [w, y].

Proof: Without any loss of generality we can suppose that ε < 1, L = 1 and
that f(0, 0) = 0. Indeed, if f(0, 0) 6= 0 we can just consider the function u 7→
f(u)−f(0, 0) in the place of f and then add f(0, 0) to the resulting function gy,w.

If L 6= 1 then we can just consider the function u 7→ f(u)
L

in the place of f and ε
L

in the place of ε and multiply the resulting function gy,w by L.
Since f is 1-Lipschitz we can find a sequence {xi}∞i=1 ⊂ [(0, 0), z] converging to

(0, 0) such that for some s ∈ [−1, 1]

(3.1) si :=
f(xi)

|xi|
→ s as i → ∞.

Denote z̃ := z
|z| . Consider now the sequence of functions hi : [−

K
|xi|

, 0]×[− K
|xi|

, K
|xi|

]

∪ {z̃} → R defined as

hi(u) :=
1

|xi|
f (|xi| · u) .

Then hi is 1-Lipschitz for every i. Since f is equal to an affine function f1 on
[−K, 0]× [−K,K] and f(0, 0) = 0 we have hi = f1 on [− K

|xi|
, 0]× [− K

|xi|
, K
|xi|

]. Also

hi(z̃) = si, because z̃ = z
|z| =

xi

|xi|
. Therefore by (3.1) the function h := limhi :

H ∪ {z̃} → R which is equal to f1 on H := (−∞, 0] × (−∞,∞) and such that
h(z̃) = s, is also 1-Lipschitz.
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Consider γ̃ > 0 such that γ̃ < εz̃1
4 (here by z̃1 we mean the first coordinate

of z̃). This choice then implies

|v − z̃|

|v − z̃| − γ̃
= 1 +

γ̃

|v − z̃| − γ̃
< 1 +

εz̃1
4

z̃1 −
εz̃1
4

= 1 +
ε

4− ε

for v ∈ H , which gives us inequality

|v − z̃|

|v − z̃| − γ̃
< 1 +

ε

2
,

as ε < 1. Now, for every s̃ ∈ [s− γ̃, s+ γ̃], v ∈ H and t ∈ B(z̃, γ̃)

f1(v)− s̃

|v − t|
≤

|f1(v) − s|

|v − t|
+

|s− s̃|

|v − t|
≤

|f1(v)− s|

|v − z̃| − γ̃
+

γ̃

|v − z̃| − γ̃

≤
|f1(v) − s|

|v − z̃|
·

|v − z̃|

|v − z̃| − γ̃
+

2γ̃

z̃1
≤
(

1 +
ε

2

)

+
ε

2
= 1 + ε.

Therefore, by Lemma 3.3 for every s̃ ∈ [s − γ̃, s + γ̃], w ∈ {0} × (−∞,∞) and
t ∈ B(z̃, γ̃) the function

h̃w,t,s̃(u) =

{

f1(u), if u ∈ H,
(1− α)s̃+ αf1(w), for u = (1− α)t+ αw, α ∈ [0, 1],

is (1 + ε)-Lipschitz as well.

Choose i such that si ∈ [s−γ̃, s+γ̃] and put x = xi and γ = |x|γ̃
2 . Now, consider

some y ∈ B(x, γ) and some w ∈ B((0, 0), γ) ∩ {0} × (−K,K) and let gy,w be as
in the statement of the lemma. First we will prove that gy,w is (1 + ε)-Lipschitz.

To do this we first observe that 1
|x|gy,w(|x| ·ξ) is equal to h̃ w

|x|
,

y

|x|
,
f(x)
|x|

(ξ), whenever

the first function (as a function of ξ) is defined. Now, we have w
|x| ∈ {0}×(−∞,∞),

∣

∣

∣

∣

y

|x|
− z̃

∣

∣

∣

∣

=

∣

∣

∣

∣

y

|x|
−

x

|x|

∣

∣

∣

∣

=
|y − x|

|x|
≤

|x|γ̃

2|x|
≤ γ̃,

which means y
|x| ∈ B(z̃, γ̃) and finally f(x)

|x| = si ∈ [s − γ̃, s+ γ̃] and we are done

since 1
|x|gy,w(|x| ·ξ) (as a function of ξ) and gy,w have the same Lipschitz constant.

To finish the proof it is now sufficient to observe that if we additionally choose
xi small enough we obtain also |gy,w − f | < ε on [−K, 0]× [−K,K] ∪ [w, y]. �

Lemma 3.5. Let L, ε, δ > 0, a < b and c < d be given. Let

P = co{(−1, a), (−1, b), (1, c), (1, d)}

and

P ε = co{(−1, a− ε), (−1, b+ ε), (1, c− ε), (1, d+ ε)}.
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Suppose that f is an L-Lipschitz function defined on R
2 which is locally affine on

P ε \ P . Then there are

a+ c

2
=: a0 < a1 < · · · < an−1 < an :=

b+ d

2

and 1
2 > κ > 0 such that, using the notation introduced below, the function

gκ : P ε \ (P \ [−κ, κ]× R) → R defined as gκ(z
±
i ) = f(z±i ) for i = 0, n, gκ(z

±
i ) =

f(zi) for i = 1, . . . , n− 1 and

gκ(u) =























f(u), if u ∈ P ε \ P,
αg(z+i ) + βg(z−i ) + γg(z+i+1), for u = αz+i + βz−i + γz+i+1,

α, β, γ ≥ 0, α+ β + γ = 1,
αg(z−i ) + βg(z−i+1) + γg(z+i+1), for u = αz−i + βz−i+1 + γz+i+1,

α, β, γ ≥ 0, α+ β + γ = 1

is (L + δ)-Lipschitz and such that |f − gκ| < δ on R
2. Here we denoted z±0 :=

(

±κ, a+c
2 ± κ(c−a)

2

)

, z±n :=
(

±κ, b+d
2 ± κ(d−b)

2

)

, z±i := (±κ, ai) for i = 1, . . . , n−1
and zi := (0, ai) for i = 0, . . . , n.

Proof: Without any loss of generality we can suppose L = 1. Denote P ε
i the

connectivity component of P ε \ P containing zi, i = 0, n. When we have found
ai we denote Pi = co{z±i , z

±
i+1} for i = 0, . . . , n − 1. Put S = co{z±1 , z

±
n−1} and

α = dist (S, P ε \ P ). We always assume κ to be small enough that 1 > α > 0.

First, we will use Lemma 3.4 twice to find points a1 ∈ B(a0,
min(|a0−an|,1)

2 ),

an−1 ∈ B(an,
min(|a0−an|,1)

2 ) and κ1 > 0 such that for every κ1 > κ > 0 the func-
tions gκ|P ε

0 ∪P0 and gκ|P ε
n∪Pn−1 are both (1 + δ)-Lipschitz and such that

|f − gκ| < δ on P ε
0 ∪ P ε

n ∪ P0 ∪ Pn−1. Here, in the notation of the points zi,
the point z1 corresponds to the point x guaranteed by Lemma 3.4 (when we iden-
tify z0 with the origin) and similarly the point zn−1 corresponds to x in the case
when we apply Lemma 3.4 centred in zn. Note that although Lemma 3.4 guar-
antees (1 + δ)-Lipschitzness on P0 (or on Pn−1) only on line segments with one
endpoint in P ε

0 (or in P ε
n), this is enough for our purposes. Indeed, if for instance

a, b ∈ co{z−0 , z
+
0 , z

+
1 }, we can always find ã, b̃ with ã ∈ P ε

0 and such that the vector

a− b is parallel to the vector ã− b̃. In such situation of course

|gκ(a)− gκ(b)|

|a− b|
=

|gκ(ã)− gκ(b̃)|

|ã− b̃|
.

Also, if a, b ∈ co{z−0 , z
−
1 , z

+
1 } one can always consider ã = z−1 or ã = z+1 such that

|gκ(a)− gκ(b)|

|a− b|
≤

|gκ(ã)− gκ(z
−
0 )|

|ã− z−0 |
.

Similarly for Pn−1.
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Observe that for every u0 ∈ P ε
0 ∪ P0 and every un ∈ P ε

n ∪ Pn−1 we have

|gκ(u0)− gκ(un)|

|u0 − un|
≤

|gκ(u0)− gκ(z0)|

|u0 − un|
+

|gκ(z0)− gκ(zn)|

|u0 − un|
+

|gκ(zn)− gκ(un)|

|u0 − un|

≤
|u0 − z0|

|u0 − un|
+

|z0 − zn|

|u0 − un|
+

|zn − un|

|u0 − un|
.

and since the last expression can be smaller than 1+ δ when we assume |a0 − a1|
and |an−1−an| to be small enough, we can additionally assume that g|P ε∪P0∪Pn−1

is (1 + δ)-Lipschitz.
Next, note that the function gκ|[z1,zn−1] is actually independent on κ and that it

is 1-Lipschitz for any choice of a2, . . . , an−2 (this is true because in one dimension
the affine extension never increases the Lipschitz constant). This also means that
for S = co{z±1 , z

±
n−1} we have gκ|S is 1-Lipschitz for any choice of a2, . . . , an−2 as

well. Put α = dist (S, P ε\P ), we can assume κ2 to be small enough that 1 > α > 0
(here we used the fact that |a0 − a1|, |an−1 − an| ≤

1
2 ). Consider n big enough

such that |a1−an−1|
n−1 ≤ αδ

4 , put ai = a1 +
i|a1−an−1|

n−1 and pick κ3 < min(κ2,
αδ
4 ).

Then for κ < κ3 and a ∈ S

(3.2)

|gκ(a)− f(a)| ≤ |gκ(a)− gκ(zi)|+ |gκ(zi)− f(zi)|+ |f(zi)− f(a)|

≤ |a− zi|+ 0 + |a− zi| ≤
δ

2
< δ,

where i is chosen such that a ∈ Pi.
To finish the proof we need to observe that for κ < κ3 the function gκ is (1+δ)-

Lipschitz. Since S ∪ P0 ∪ Pn−1 is convex, the remaining case we have to consider
is a ∈ S and b ∈ P ε \ P . Find i such that a ∈ Pi. With this choice we have
|a− zi| ≤

αδ
2 and therefore

|b− zi| ≤ |a− b|+ |a− zi| ≤ |a− b|+
αδ

2
≤ (1 + δ) |a− b|.

Now, we have

|gκ(a)− gκ(b)| ≤ |gκ(a)− gκ(zi)|+ |gκ(zi)− gκ(b)|

≤
δα

2
+ |f(zi)− f(b)| ≤

δ

2
|a− b|+ |b− zi|

≤
δ

2
|a− b|+

(

1 +
δ

2

)

· |a− b| ≤ (1 + δ)|a− b|.

�

Lemma 3.6. Let 1 > ε > 0 and α,L > 0. Let f be a L-Lipschitz function on

[−1, 1]2 which is affine on both [−1, 1]× [−1, 0] and [−1, 1]× [0, 1] (and equal to

affine functions f1 and f2, respectively). Put

A1 = [−1,−1/2]× [−1, 0], A2 = [1/2, 1]× [0, 1],



516 D. Pokorný

Bε
1 = [−1, ε]× [0, ε], Bε

2 = [−ε, 1]× [−ε, 0]

and

A = A1 ∪ A2 ∪Bε
1 ∪Bε

2.

Then either f is convex on [−1, 1]2 or the function gε : A → R defined as

g(u) =

{

f1(u), if u ∈ A1 ∪Bε
1 ,

f2(u), if u ∈ A2 ∪Bε
2 .

is locally convex on A. Moreover, if ε is small enough, gε is (L+α)-Lipschitz and
|gε − f | < α on A.

Proof: It follows from a direct computation. �

Lemma 3.7. Let L, α > 0 and 1 > γ > ε > 0. Let f be a L-Lipschitz function

on [−4, 4]2 ∪ [1, 2] × [4, 5] which is affine on both [−4, 4] × [−4, 0] and [−4, 4] ×
[0, 4] ∪ [1, 2]× [4, 5] (and equal to affine functions f1 and f2, respectively). Put

A1 = [−3,−2]× [0, γ], A2 = [−3, 0]× [γ, γ + ε], A3 = [−1, 2]× [γ − ε, γ],

A4 = [1, 2]× [γ, 4], B1 = [−4, 4]× [−4, 0], B2 = [1, 2]× [4, 5],

and

A = A1 ∪ A2 ∪A3 ∪ A4 ∪B1 ∪B2.

Then either f is locally convex on [−4, 4]2 ∪ [1, 2]× [4, 5] or the function

g(u) =







f1(u), if u ∈ A1 ∪A2 ∪B1,

f2(u) +
f1(0,γ)−f2(0,γ)

γ−4 (u · (0, 1)− 4), if u ∈ A3 ∪A4,

f2(u), if u ∈ B2,

is (L + α)-Lipschitz, locally convex on A and |f − g| < α on A, if ε and γ are

small enough.

Proof: Without any loss of generality we can suppose L = 1. First we prove
that g is continuous on A. To do this we need to prove that

(3.3) f1(a, γ) = f2(a, γ) +
f1(0, γ)− f2(0, γ)

γ − 4
((a, γ) · (0, 1)− 4)

whenever (γ, a) ∈ A2 ∩ A3 and that

(3.4) f2(a, 4) = f2(a, 4) +
f1(0, γ)− f2(0, γ)

γ − 4
((a, 4) · (0, 1)− 4)

whenever (a, 4) ∈ A. Define an affine function f3 on R
2 as

f3(u, v) =
f1(0, γ)− f2(0, γ)

γ − 4
((u, v) · (0, 1)− 4).
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To prove (3.3) we can write

g(a, γ) = f2(a, γ) + f3(a, γ)

= f2(a, γ) +
f1(0, γ)− f2(0, γ)

γ − 4
· (γ − 4)

= f2(a, γ) + f1(0, γ)− f1(0, 0)− f2(0, γ) + f2(0, 0)

= f2(a, γ) + f1(a, γ)− f1(a, 0)− f2(a, γ) + f2(a, 0)

= f2(a, γ) + f1(a, γ)− f1(a, 0)− f2(a, γ) + f1(a, 0) = f1(a, γ).

To prove (3.4) we can write

g(a, 4) = f2(a, 4) + f3(a, 4)

= f2(a, 4) +
f1(0, γ)− f1(0, 0)− f2(0, γ) + f1(0, 0)

γ − 4
(4− 4) = f2(a, 4).

Next note that since both f1 and f2 are 1-Lipschitz we have

(3.5) g is 1-Lipschitz on B1 ∪ A1 ∪ A2,

and

(3.6) g is 1-Lipschitz on B2.

Since additionally f3 is constant on all lines parallel to x-axis and since

f3(0, γ)− f3(0, 4)

4− γ
≤

f1(0, γ)− f1(0, 0)− f2(0, γ) + f2(0, 0)

3
≤

2γ

3
≤ γ.

we have

(3.7) g is (1 + γ)-Lipschitz on A4 ∪ A3

and

(3.8) |g − f2| ≤ 4γ on A4 ∪ A3.

Now, if x ∈ B1 and y ∈ A3 then g(x) = f1(x), |g(y)−f1(y)| ≤ 3ε and |x−y| ≥ γ−ε
and therefore

|g(x)− g(y)| ≤ |g(x) − f1(y)|+ |f1(y)− g(y)| ≤ |x− y|+ 3ε ≤
γ + 2ε

γ − ε
.

So we have

(3.9) g is
γ + 2ε

γ − ε
-Lipschitz on B1 ∪ A3.

If x ∈ B1 and y ∈ A4 then g(x) = f1(x), f(y) ≤ g(y) ≤ f1(y) and therefore

(3.10) g is 1-Lipschitz on B1 ∪ A4.
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Using (3.6) and (3.7) and continuity of g we obtain that

(3.11) g is (1 + γ)-Lipschitz on A2 ∪A3 and on B2 ∪ A4.

Finally, if x ∈ A1 ∪A2 and y ∈ A4 ∪B2 or x ∈ A1 and y ∈ A3 ∪A4 ∪B2 we have

(3.12) |g(x)− f2(x)| ≤ 2(γ + ε) ≤ 4γ, |g(y)− f2(y)| ≤ 4γ

and |x− y| ≥ 1. This implies

(3.13)
|g(x)− g(y)| ≤ |g(x)− f2(x)| + |f2(x)− f2(y)|+ |f2(y)− g(y)|

≤ 4γ + |x− y|+ 4γ ≤ (1 + 8γ)|x− y|.

Now, according to (3.5)–(3.12) it is sufficient to choose α
4 > γ > ε > 0 small

enough such that

max

(

1 + 8γ,
γ + 2ε

γ − ε

)

< 1 + α

to obtain that g is (1 + α)-Lipschitz on A and |f − g| < α on A. �

Lemma 3.8. Under the assumptions of Lemma 3.5 there is 1
2 > κ > 0, R ⊂

P ∩ (−κ, κ)× R and a function h : P ε \ P ∪R → R such that:

(a) R ∈ Q,

(b) h = f on P ε \ P ,

(c) h is locally convex on P ε \ P ∪R,

(d) P ε \ P ∪R is connected,

(e) h is piecewise affine on P ε \ P ∪R,

(f) h is (L+ δ)-Lipschitz.

Proof: Without any loss of generality we can suppose L = 1. Let κ, zi and gκ
be as in Lemma 3.5, but with δ

2 in the place of δ. Consider the sets

X = [−4, 4]2 ∪ [1, 2]× [4, 5] and Y = [−1, 1]2.

Find homotheties Ψi : x 7→ ρix + vi, ρi > 0, vi ∈ R
2, i = 1, . . . , n − 1 and

orientation preserving similarities Ψ0 and Ψn, with scaling ratios ρ0 and ρn, such
that if we put Mi = Ψi(X), i = 0, n and Mi = Ψi(Y ), i = 1, . . . , n− 1 we have

(A) Mi ∩Mj = ∅ if i 6= j,

(B) Ψ0([−4, 4]× [−4, 0]) ⊂ P ε \ P ,

(C) Ψn([−4, 4]× [−4, 0]) ⊂ P ε \ P ,
(D) Mi ⊂ (−κ, κ)× R,
(E) [z−i , z

+
i ] ⊂ Ψi(R× {0}),

Put Ω = mini6=j dist (Mi,Mj) and note that Ω > 0 due to property (A). Define

Ti := co{Ψi(
1

2
, 1),Ψi(1, 1),Ψi+1(−

1

2
,−1),Ψi+1(−1,−1)},
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for i = 1, . . . , n− 2,

T0 := co{Ψ0(1, 5),Ψ0(2, 5),Ψ1(−
1

2
,−1),Ψ1(−1,−1)}

and

Tn−1 := co{Ψn(1, 5),Ψn(2, 5),Ψn−1(
1

2
, 1),Ψn−1(1, 1)}.

Put

(3.14) R :=

(

n−1
⋃

i=0

Ti

)

∪

(

n
⋃

i=0

Mi

)

.

Let gi, i = 1, . . . , n− 1 be the function g from Lemma 3.6 with α = Ωδρi

4 (and
corresponding ε) and with f1(x) = ρigκ ◦ Ψi and f2(x) = ρigκ ◦ Ψi (with the
exception when gκ is already convex on Mi, in which case we put gi = gκ|Mi

).

Let g0 be the function g from Lemma 3.7 with γ = Ωδρi

4 (and corresponding ε
and γ) and with f1 = ρ0gκ ◦ Ψ0 and f2 = ρ0gκ ◦ Ψ0 and finally, let gn be the

function g from Lemma 3.7 with γ = Ωδρi

4 (and corresponding ε and γ) and with
f1 = ρngκ ◦Ψn and f2 = ρngκ ◦Ψn.

Consider now the function h defined by the formula

h =

{

1
ρi
gi ◦Ψ

−1
i on Mi

gκ otherwise.

Property (a) follows from (3.14) and the fact that every Mi and every Ti is
a polygon. Properties (b), (c) and (e) follow directly from the construction and
corresponding properties of the functions gi and property (d) is obvious. We will
now finish the proof by proving property (f).

So suppose that a, b ∈ (P ε \ P ) ∪ R. We need to prove that |h(a) − h(b)| ≤
(1 + δ)|a− b|. We can additionally suppose that either a or b belongs to some Mi

since otherwise there is nothing to prove. We will prove only the case a ∈ Mi,
b ∈ Mj , i 6= j, the other cases can be proved following the same lines. By
Lemma 3.6 (for i = 1, . . . , n− 1) and Lemma 3.7 (for i = 0, n) we can now write

|h(a)− h(b)| ≤ |h(a)− gκ(a)|+ |gκ(a)− gκ(b)|+ |gκ(b)− h(b)|

<
1

ρi
·
Ωδρi
4

+

(

1 +
δ

2

)

· |a− b|+
1

ρj
·
Ωδρj
4

≤
δ

2
|a− b|+

(

1 +
δ

2

)

· |a− b| = (1 + δ)|a− b|,

which is what we need. �

Proof of Lemma 3.2: Without any loss of generality we can suppose L = 1.
Let V be the set of all points v ∈ ∂P with the property that there is some εv > 0
such that P ∩B(v, εv) is similar to {(x, y) : x ≥ 0} ∩B(0, 1) and that g is affine
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on P ∩ B(v, εv). Since P ∈ Q, the set ∂P \ V is finite and without any loss of
generality we can assume that l(δ) ∩ (∂P \ V ) = ∅. We can also assume that
l = {0} × R and that δ = 1.

This means that the closure of every component Pi of P ∩ l(δ) is of the form

co{(−1, ai), (−1, bi), (1, ci), (1, di)}

for some ai < bi, ci < di and such that, for some εi > 0, g is locally affine on
P εi
i \ Pi, where

P εi
i := co{(−1, ai − εi), (−1, bi + εi), (1, ci − εi), (1, di + εi)}.

Then we have

α = min
i6=j

dist (Pi, Pj) > 0.

Let κi, Ri and hi be equal to κ, R and h obtained from Lemma 3.8 for εi in the

place of ε, Pi in the place of P , g in the place of f and min(α,εi,1)ε
4 in the place

of δ.
Put Q = P \ (

⋃

Ri) and define h̃ : Qc → R by

h̃(u) =

{

hi(u) on Ri

g(u) otherwise.

Let K be the Lipschitz constant of h̃. Using the Kirszbraun theorem we can
find a K-Lipschitz function h on R

2 such that h = h̃ on P c.
Now, property (1) follows directly from the definition of Q and (a) in Lem-

ma 3.8, property (2) from the definition of h and (b) in Lemma 3.8 and property
(3) from (d) in Lemma 3.8.

It remains to prove that the pair (Q, h) is (1 + ε)-good. The local convexity
and piecewise affinity of h on Qc follow from (c) and (e) in Lemma 3.8 and the
corresponding properties of g, so the proof will be finished, if we verify that
K ≤ (1 + ε).

To do this pick a, b ∈ R
2, we need to prove that |h(a)− h(b)| ≤ (1 + ε)|a− b|.

We can additionally suppose that either a or b belongs to some Ri since otherwise
there is nothing to prove. We will prove only the case a ∈ Ri, b ∈ Rj , i 6= j, the
other cases can be proved following the same lines.

Using the definition of h, namely property (f) from Lemma 3.8 we can now
write

|h(a)− h(b)| = |hi(a)− hj(b)| ≤ |hi(a)− f(a)|+ |f(a)− f(b)|+ |f(b)− hj(b)|

≤
min(α, εi, 1)ε

4
+
(

1 +
ε

4

)

· |a− b|+
min(α, εj , 1)ε

4

≤
2ε

4
|a− b|+

(

1 +
ε

2

)

· |a− b| < (1 + ε)|a− b|.

�
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[3] Kirszbraun M.D., Über die zusammenziehende und Lipschitzsche Transformationen, Fund.
Math. 22 (1934), 77–108.

[4] Pasqualini L., Sur les conditions de convexité d’une variété, Ann. Fac. Sci. Toulouse Sci.
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