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Partitioning bases of topological spaces

Dániel T. Soukup, Lajos Soukup*

Abstract. We investigate whether an arbitrary base for a dense-in-itself topolo-
gical space can be partitioned into two bases. We prove that every base for a T3

Lindelöf topology can be partitioned into two bases while there exists a consis-

tent example of a first-countable, 0-dimensional, Hausdorff space of size 2ω and
weight ω1 which admits a point countable base without a partition to two bases.
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1. Introduction

At the Trends in Set Theory conference in Warsaw, Barnabás Farkas1 raised
the natural question whether one can partition any given base for a topological
space into two bases; we will call this property being base resolvable. Note that
every space with an isolated point is not base resolvable; hence, from now on
by space we mean a dense-in-itself topological space. The aim of this paper is
to present two streams of results: in the first part of the article, we will show
that certain natural classes of spaces are base resolvable. In the second part, we
present a method to construct non base resolvable spaces.

The paper is structured as follows: In Section 2, we will start with general
observations about bases and we prove that metric spaces and weakly separated
spaces are base resolvable. This section also serves as an introduction to the
methods that will be applied in Section 3 where we prove one of our main results
in Theorem 3.7 that every T3 (locally) Lindelöf space is base resolvable.

In Section 4, we investigate base resolvability from a purely combinatorial
viewpoint which leads to further results. We show that every hereditarily Lindelöf
space (without any separation axioms) is base resolvable and any base for a T1

topology which is closed under finite unions can be partitioned into two bases, see
Theorem 4.8 and 4.9 respectively.

Next in Theorem 5.5, we prove that every base B for a space X (resolvable or
not) contains a large negligible portion, i.e., there is U ∈ [B]|B| such that B \ U is
still a base for X .
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The second part of the paper starts with Section 6; here, we isolate a partition
property, denoted by P → (Iω)

1
2, of the partial order P = (B,⊇) associated to a

base B which is closely related to base resolvability. We will construct a partial
order P with this property in Theorem 6.6 and deduce the existence of a T0 non
base resolvable topology (in ZFC) in Corollary 6.15.

Next, in Section 7 we present a ccc forcing (of size ω1) which introduces a
first-countable, 0-dimensional, Hausdorff space X of size 2ω and weight ω1 such
that X is not base resolvable. The main ideas of the construction already appear
in Section 6, however the details here are much more subtle and the proofs are
more technical.

The paper finishes with a list of open problems in Section 8. We remark that
Section 7 was prepared by the second author and the rest of the paper is the work
of the first author.

The first author would like to thank his PhD advisor, William Weiss, for the
long hours of useful discussions. Both authors are grateful for the help of all the
people they discussed the problems at hand, especially Allan Dow, István Juhász,
Arnie Miller, Assaf Rinot, Santi Spadaro, Zoltán Szentmiklóssy and Zoltán Vid-
nyánszky. Finally, we thank Barnabás Farkas for the excellent question!

2. General results

In this section, we prove some basic results concerning partitions of families of
sets and partitions of bases; these proofs will introduce us to the more involved
techniques of the upcoming sections.

Definition 2.1. We say that a family of sets A is well-founded if the poset
〈A,⊃〉 is well-founded, i.e., there is no strictly decreasing infinite chain A0 )
A1 ) A2 ) . . . in A.

A is weakly increasing if there is a well order ≺ of A such that A ≺ B
implies that B \A 6= ∅.

Proposition 2.2. Every family of sets A contains a weakly increasing, and so

well-founded subfamily B with

⋃

A =
⋃

B.

Proof: Fix an arbitrary well-ordering ≺ of A and let

(2.1) B = {B ∈ A : B \A 6= ∅ for all A ≺ B}.

If C ≺ B for C,B ∈ B, then B\C 6= ∅, so ≺ witnesses that B is weakly increasing.
To verify

⋃

A =
⋃

B pick an arbitrary p ∈
⋃

A and let

(2.2) B = min
≺

{A ∈ A : p ∈ A}.

Then p ∈ B \A for all A ≺ B, so B ∈ B. Thus
⋃

A =
⋃

B. �
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Definition 2.3. A base B for a space X is resolvable if it can be decomposed
into two bases. A space X is base resolvable if every base of X is resolvable.

Recall that by space we will mean a dense-in-itself topological space throughout
the paper.

Partitioning sets with additional structure is a highly investigated theme in
mathematics; let us cite a classical result of A.H. Stone which is relevant to our
case:

Theorem 2.4 (A.H. Stone, [2]). Every partially ordered set (P,≤) without ma-

ximal elements can be partitioned into two cofinal subsets.

Proposition 2.5. Suppose that (X, τ) is a topological space and p ∈ X .

(1) Every neighborhood base at p can be partitioned into two neighborhood bases.

(2) Every π-base can be partitioned into two π-bases.

(3) If B is a neighborhood base at p and B = B0 ∪ B1 then either B0 or B1 is a

neighborhood base at p.
(4) If B is a base and U ⊂ B is well founded then B \ U is a base.

(5) Every base can be partitioned into a cover and a base.

Proof: (1) and (2) follow from Theorem 2.4.
Indeed, write τx = {U ∈ τ : x ∈ U} for x ∈ X and observe that B ⊂ τx is a

neighborhood base at x if and only if B is cofinal in 〈τx,⊃〉. By Theorem 2.4, every
neighborhood base at p can be partitioned into two cofinal subsets of 〈τp,⊃〉, i.e.,
into two neighborhood bases at p. So (1) holds.

To prove (2), observe that B ⊂ τ is a π-base if and only if U is cofinal in 〈τ,⊃〉.
By Theorem 2.4, every π-base can be partitioned into two cofinal subsets, i.e.,
into two π-bases.

(3) If B0 is not a neighborhood base at p then there is an element V ∈ τp
which does not contain any element of B. Thus B ∩ P(V ) = B1 ∩ P(V ), so B1 is
a neighborhood base at p.

(4) Let x ∈ X . Then τx ∩ B is a neighborhood base at x. Since τx ∩ U is
well-founded, τx ∩ U is not a neighborhood base at x. Thus, by (3), τx ∩ (B \ U)
is a neighborhood base at x.

Since x was arbitrary, we proved that B \ U is a base.
(5) Every base B contains a well-founded cover U by Proposition 2.2 while B\U

is still a base of X by (4). �

A family B of open subset of a space 〈X, τ〉 is a base if and only if every
nonempty open set is the union of some subfamily of B. This fact implies the
following:

Observation 2.6. Suppose that (X, τ) is a topological space, Bi ⊂ τ for i < 2
and B0 is a base.

(1) If for every U ∈ B0 there is U ⊂ B1 with U =
⋃

U then B1 is a base as

well.
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(2) If X is T3 and for every U, V ∈ B0 with Ū ⊂ V there is U ⊂ B1 with

Ū ⊂
⋃

U ⊂ V then B1 is a base as well.

Now we prove our first general result.

Proposition 2.7. Every space with a σ-disjoint base is base resolvable; in par-

ticular, every metrizable space is base resolvable.

Proof: Fix a space X with a base
⋃

{En : n ∈ ω} where En is a disjoint family
of open sets for each n ∈ ω; fix an arbitrary base B as well which we aim to
partition.

By induction on n ∈ ω, construct Bi,n ⊆ B for i < 2 such that

(1) Bi,n is well founded for i < 2, n ∈ ω,
(2) Bi,n ∩ Bj,m = ∅ if i, j < 2, n,m ∈ ω and (i, n) 6= (j,m),
(3) for every V ∈ En and i < 2 there is U ⊆ Bi,n such that

⋃

U = V .

Assume that {Bi,k : i < 2, k < n} was constructed. By Proposition 2.5(4)
property (1) assures that B \

⋃

{Bi,k : i < 2, k < n} is still a base of X . Thus,
by Proposition 2.2, for each E ∈ En we can choose a well-founded family UE ⊂
B \

⋃

{Bi,k : i < 2, k < n} such that E =
⋃

UE . Let

B0,n =
⋃

{UE : E ∈ En}.

Since the elements of En are pairwise disjoint, B0,n is well-founded as well.
To obtain B1,n repeat the construction of B0,n using B \ (

⋃

{Bi,k : i < 2, k <
n} ∪ B0,n) instead of B \

⋃

{Bi,k : i < 2, k < n}.
Let Bi =

⋃

{Bi,n : n ∈ ω} for i < 2. Then property (3) and Observation 2.6(1)
implies that Bi is a base for i < 2. �

Note that every σ-disjoint base is point countable. On the other hand our
example of an irresolvable base constructed in Section 7 is point countable.

A somewhat similar technique, which will be used later as well, gives the fol-
lowing result:

Proposition 2.8. Suppose that a regular space X satisfies L(X) < κ = w(X) =
min{χ(x,X) : x ∈ X}. Then X is base resolvable.

Recall that L(X), the Lindelöf number of X , is the minimal cardinality κ such
that every open cover of X contains a subcover of size κ. The weight of X is

w(X) = min{|B| : B is a base of X}

and the character of a point x ∈ X is

χ(x,X) = min{|U| : U is a neighbourhood base of x}.

Proof: It is well known that any base contains a base of size w(X); therefore it
suffices to show that any base B of size w(X) can be partitioned into two bases.
Let us fix an enumeration {(Uα, Vα) : α < κ} of all pairs of elements U, V ∈ B
such that U ⊆ V .
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By induction on α < κ construct pairwise disjoint families

{B0,α,B1,α : α < κ} ⊆
[

B
]≤L(X)

such that

(2.3) Uα ⊆
⋃

Bi,α ⊆ Vα for every i < 2.

Since the cardinality of the family B<α =
⋃

{Bi,β : β < α, i < 2} is at most
L(X) · |α| and L(X) · |α| < min{χ(x,X) : x ∈ X}, the family B<α cannot contain
a neighborhood base at any point x ∈ X .

Thus, by Proposition 2.5, B \ B<α is still a base for X for every α < κ. It
follows that the induction can be carried out as we can select disjoint Bα,0 and

Bα,1 from [B \ B<α]
≤L(X) so that

Uα ⊆
⋃

Bα,i ⊆ Vα

for i < 2.
Thus the disjoint families Bi =

⋃

{Bi,α : α < κ} form a base for X by property
(2.3) above and Observation 2.6(2); thus X is base resolvable. �

We end this section by a simple observation. Recall that a space X is weakly

separated if there is a neighborhood assignment {Ux : x ∈ X} (meaning that Ux

is a neighbourhood of x) so that x 6= y ∈ X implies that x /∈ Uy or y /∈ Ux. Note
that left or right separated spaces are weakly separated as well as the Sorgenfrey
line.

Observation 2.9. Every weakly separated space is base resolvable.

Proof: Recall that every neighborhood base at some point x can be partitioned
into two neighbourhood bases by Proposition 2.5(1). Thus, if B is a base of X
and there is a disjoint family {Bx : x ∈ X} of subsets of B such that Bx is a
neighbourhood base at x for any x ∈ X then by partitioning Bx for each x ∈ X
into two neighbourhood bases of x we get a partition of B into two bases of X .

Now, let us fix a base B we wish to partition and a neighbourhood assignment
{Ux : x ∈ X} witnessing that X is weakly separated. Define

Bx = {U ∈ B : x ∈ U ⊂ Ux}

for x ∈ X ; clearly, Bx is neighbourhood base at x. Furthermore, if x 6= y and say
x /∈ Uy then U ∈ Bx implies U /∈ By; that is, Bx ∩ By = ∅ if x 6= y ∈ X which
finishes the proof. �

We thank the referee for pointing out this last observation to us.
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3. Lindelöf spaces are base resolvable

Our aim in this section is to prove that T3 Lindelöf spaces are base resolvable.
We start with a definition and some observations while the most important part
of the work is done in the proof of Lemma 3.3.

Definition 3.1. Let A,B be families of open sets in a space X . We say that A
weakly fills B if for every U, V ∈ B such that U ⊂ V there is W ⊆ A such that

U ⊆
⋃

W ⊂ V.

(A,B) is called a weakly good pair if A, B are disjoint, A weakly fills B and B
weakly fills A.

We remark that in the next section we introduce stronger notions called filling

and good pairs . The first part of the following observation basically restates
Observation 2.6(2) with our new terminology:

Observation 3.2. Suppose that X is a regular space.

(1) If (A,B) is a weakly good pair in X then A contains a neighborhood base at

x if and only if B contains a neighborhood base at x, for any x ∈ X .

(2) If {Aα : α < κ} and {Bα : α < κ} are increasing chains and (Aα,Bα) is a

weakly good pair in X then (
⋃

α<κ Aα,
⋃

α<κ Bα) is a weakly good pair as

well.

We say that the weakly good pair (A′,B′) extends the weakly good pair (A,B)
if A ⊆ A′ and B ⊆ B′. A family of pairs {(Aξ,Bξ) : ξ < Θ} is pairwise disjoint

if Aξ ∩ Bζ = ∅ for each ξ, ζ < Θ.
Next, we prove that weakly good pairs can be nicely extended in Lindelöf

spaces.

Lemma 3.3. Suppose that X is a T3 Lindelöf space with a base B. Given a

weakly good pair (A,B) from elements of B and a single pair of open sets {U, V }
such that U ⊂ V there is a weakly good pair (A′,B′) formed by elements of B
extending (A,B) such that both A′ and B′ weakly fills {U, V }.

Proof: We will show this essentially by induction on the size of A and B, however
we need to prove something significantly stronger (and more technical) than the
statement of the lemma itself.

Let △κ stand for the following statement: For each pairwise disjoint family of
weakly good pairs {(Ai,Bi), (Cj ,Dj) : i < n, j < k}, each a subfamily from B
such that |Ai|, |Bi| ≤ κ and an arbitrary family of open sets E of size at most κ
there is a weakly good pair (A,B) from B of size at most κ such that

(1)
⋃

i<n Ai ⊂ A and
⋃

i<n Bi ⊂ B,
(2) A and B weakly fill E ,
(3) {(A,B), (Cj,Dj) : j < k} is still pairwise disjoint.

We prove that △κ holds for every infinite κ by induction on κ.
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Claim 3.4. △ω holds.

Proof: Fix {(Ai,Bi), (Cj ,Dj) : i < n, j < k} and E as above. By induction on
m ∈ ω we build increasing chains {Am : m ∈ ω} and {Bm : m ∈ ω} from subsets
of B such that

(1) A0 =
⋃

i<n Ai, B0 =
⋃

i<n Bi,

(2) Am+1 \ Am and Bm+1 \ Bm are countable well-founded families,
(3) the family of pairs {(Am,Bm), (Cj ,Dj) : j < k} is pairwise disjoint

for each m ∈ ω. Furthermore, we want to make sure that A =
⋃

m∈ω Am and
B =

⋃

m∈ω Bm form a weakly good pair and they both weakly fill E . Therefore,

we partition ω into infinite sets ω =
⋃

{Dm : m ∈ ω} and at the mth step

(4) we fix a surjective map

fm : Dm \ (m+ 1) → {(U, V ) ∈ (Am ∪ Bm ∪ E)2 : U ⊂ V };

(5) if m ∈ Dℓ \ (ℓ+1) and fℓ(m) = (U, V ) then both Am+1 and Bm+1 weakly fill
{U, V }.

In particular, it suffices to construct disjoint Am+1 and Bm+1 from Am and
Bm such that they satisfy (2), (3) and (5) above, especially they both weakly fill
a given (U, V ). We construct Am+1, the proof for Bm+1 is analogous.

Subclaim 3.4.1. B \ (Bm ∪
⋃

j<k Dj) is a base of X .

Proof of the Subclaim: Let x ∈ X be arbitrary.
If Bm ∪

⋃

j<k Dj does not contain a neighborhood base at x, then B \ (Bm ∪
⋃

j<k Dj) should contain a neighborhood base at x by Proposition 2.5(3).

Assume know that Bm ∪
⋃

j<k Dj contains a neighborhood base at x. Since

Bm ∪
⋃

j<k

Dj = (Bm \ B0) ∪
⋃

i<n

Bi ∪
⋃

j<k

Dj ,

applying Proposition 2.5(3) again, one of the sets

(3.1) Bm \ B0,B0, . . . ,Bn−1,D0, . . . ,Dk−1

contains a neighborhood base at x. Since Bm \ B0 is well-founded, it cannot
contain a neighborhood base. If Bi (or Dj , respectively) contains a neighborhood
base at x, then Ai (or Cj , respectively) also contains a neighborhood base at x by
Observation 3.2(1). In both cases, B \ (Bm ∪

⋃

j<k Dj) contains a neighborhood
base, which proves the Subclaim. �

Since X is Lindelöf, using the Subclaim above and Proposition 2.2 we can find
a countable well-founded cover Q ⊂ B\ (Bm∪

⋃

j<k Dj) of U with
⋃

Q ⊂ V . Now

define Am+1 = Am ∪Q. Since Q and (Bm ∪
⋃

j<k Dj) are disjoint, (3) holds. (2)

and (5) are clear from the construction. �

Claim 3.5. Suppose that △λ holds for every ω ≤ λ < κ. Then △κ holds.
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Proof: Fix {(Ai,Bi), (Cj ,Dj) : i < n, j < k} and E , let cf(κ) = µ and fix a
cofinal sequence of ordinals (κξ)ξ<µ in κ. Take a chain of elementary submodels
(Mξ)ξ<µ of H(θ) (where θ is large enough) such that everything relevant is in M0,
κξ ⊂ Mξ and |Mξ| = |κξ| for ξ < µ. The following is an easy consequence of Mξ

being elementary and X being Lindelöf:

Subclaim 3.5.1. (Ai ∩Mξ,Bi ∩Mξ) is a weakly good pair and |Ai ∩Mξ|, |Bi ∩
Mξ| ≤ |κξ| for all i < n.

Proof of the Subclaim: If U, V ∈ Ai ∩ Mξ, U ⊂ V then Ai,Bi, A ∈ Mξ

implies that

Mξ � ∃B ∈
[

Bi

]ω
U ⊂

⋃

B ⊂ V

because X is Lindelöf. So there is B ∈ Mξ ∩ [Bi]
ω such that U ⊂

⋃

B ⊂ U .
Since B is countable, B ∈ Mξ implies B ⊂ Mξ. So we have B ⊂ Bi ∩ Mξ with

U ⊂
⋃

B ⊂ V . This shows that Bi ∩Mξ fills Ai ∩Mξ and the other direction of
the proof is completely analogous. �

By induction on ξ < µ construct weakly good pairs {(Aξ,Bξ) : ξ < µ} so that
Aξ ⊂ Aζ , Bξ ⊂ Bζ for ξ < ζ < µ and

(i)
⋃

i<n(Ai ∩Mξ) ⊂ Aξ ⊂ B and
⋃

i<n(Bi ∩Mξ) ⊂ Bξ ⊂ B,

(ii) Aξ and Bξ has size ≤ |κξ|,
(iii) Aξ and Bξ weakly fills E ∩Mξ,
(iv) Aξ ∩ Bi = ∅,Aξ ∩ Dj = ∅ and Bξ ∩ Ai = ∅,Bξ ∩ Cj = ∅.

This can be done using △|κξ| at stage ξ. First note that A<ξ =
⋃

{Aζ : ζ < ξ}

and B<ξ =
⋃

{Bζ : ζ < ξ} are of size at most |κξ| and (A<ξ,B<ξ) is a weakly
good pair. Also, the family

{(A<ξ,B<ξ), (Ai ∩Mξ,Bi ∩Mξ); (Ai,Bi), (Cj ,Dj) : i < n, j < k}

is pairwise disjoint. Hence △|κξ| implies that there is a weakly good pair (Aξ,Bξ)
from B of size at most |κξ| which fills E ∩ Mξ and is pairwise disjoint from
{(Ai,Bi), (Cj ,Dj) : i < n, j < k} while

A<ξ ∪
⋃

i<n

(Ai ∩Mξ) ⊂ Aξ

and

B<ξ ∪
⋃

i<n

(Bi ∩Mξ) ⊂ Bξ.

Note that △|κξ| was used to find the common extension of n + 1 weakly good
pairs such that this extension is disjoint from n+k given weakly good pairs. Now
define A =

⋃

{Aξ : ξ < ζ} and B =
⋃

{Bξ : ξ < ζ}. Then (A,B) is the desired
extension. �

This finishes the proof the lemma. �
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Recall that a space is locally Lindelöf if every point has a neighbourhood with
Lindelöf closure.

Proposition 3.6. Suppose that X is a T3 locally Lindelöf space. Then X embeds

into a T3 Lindelöf space X∗ with |X∗ \X | = 1.

Proof: Construct X∗ on the set X ∪ {x∗} where neighborhoods of the point x∗

are of the form {x∗} ∪X \ U with U ⊂ X being open and such that there is an
open V ⊂ X with U ⊂ V and V is Lindelöf. It is clear that X∗ is Hausdorff and
Lindelöf.

Note that if U, V are open in X , U ⊂ V and V is Lindelöf, then V is normal
as well, so there is an open W ⊂ V so that U ⊂ W ⊂ W ⊂ V . So X∗ is regular
at the point x∗, so X∗ is regular. �

Corollary 3.7. Every T3 locally Lindelöf space is base resolvable. In particular,

every T3 locally countable or locally compact space is base resolvable.

Proof: Fix a base B for a T3 Lindelöf space X and consider the set P of all
weakly good pairs (A,B) from B partially ordered by extension. Note that we
can apply Zorn’s lemma to P by Observation 3.2 part (2); pick a maximal weakly
good pair (A,B) ∈ P. Lemma 3.3 implies that a maximal weakly good pair must
weakly fill every pair of open sets {U, V } with U ⊂ V , hence both A and B are
bases of X .

Given a T3 locally Lindelöf space X with a base B consider it’s one-point
Lindelöfization X∗ = X ∪ {x∗} with the base

B∗ = B ∪ {U ⊆ X∗ : U is an open neighbourhood of x∗ in X∗}.

X∗ is T3 Lindelöf hence base resolvable; thus B∗ can be partitioned into two bases,
B∗
0 and B∗

1, which clearly gives a partition of B namely, B∗
0 ∩ B and B∗

1 ∩ B. �

4. Combinatorics of resolvability

In this section, we will prove a combinatorial lemma which will be our next
tool in showing that further classes of space are base resolvable.

Definition 4.1. Let A,B ⊆ P(X). We say that A fills B if

U =
⋃

{V ∈ A : V ( U}

for every U ∈ B. A,B is called a good pair if A,B are disjoint, A fills B and B
fills A. A is self-filling if A fills A.

Note that if A ⊆ P(X) fills {∩B : B ∈ [A]<ω} and A covers X then A is a base
for a topology on X .

Definition 4.2. A self-filling family A is resolvable if there is a partition A0,A1

of A such that Ai fills A for i < 2.
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The importance of the following lemma is that it shows that resolvability is a
local property:

Theorem 4.3. Suppose that B ⊆ P(X) is self-filling. Then the following are

equivalent:

(1) for every U ∈ B there is a good pair (BU
0 ,B

U
1 ) from B such that

U =
⋃

BU
0 =

⋃

BU
1 ,

(2) B is resolvable.

Proof: (2) implies (1) is trivial.
To see that (1) implies (2), let P be the set of all good pairs (B0,B1) formed

by elements of B. Then P is partially ordered by (B0,B1) ≤ (B′
0,B

′
1) if and only

if Bi ⊆ B′
i for i < 2. It is clear that every chain in (P ,≤) has an upper bound

hence, by Zorn’s lemma, we can pick a ≤-maximal element (B0,B1) ∈ P .
We claim that Bi fills B for i < 2. Pick any U ∈ B and consider the good pair

BU
0 ,B

U
1 with U =

⋃

BU
0 =

⋃

BU
1 . Define

B′
i = Bi ∪ (BU

i \ B1−i)

for i < 2.
The second statement of the following lemma yields immediately that (B′

0,B
′
1)

forms a good pair which fills {U}.

Lemma 4.4. (1) If a family of sets A fills a family of sets B and A′ fills B′

then A ∪ (A′ \ B) fills B′.

(2) If (A,B) and (A′,B′) are good pairs then (A ∪ (A′ \ B),B ∪ (B′ \ A)) is

also a good pair which fills
⋃

B′.

Proof of the Lemma: (1) Pick U ∈ B′. Since A′ fills B′, there is A+ ⊂ A′\{U}
with U =

⋃

A+. For each B ∈ A+ ∩ B choose AB ⊂ A with B =
⋃

AB . Finally
let

A∗ = (A+ \ B) ∪
⋃

{AB : B ∈ A+ ∩ B}.

Then A∗ ⊂ A ∪ (A′ \ B) \ {U} and

⋃

A∗ =
⋃

(

(A+ \ B) ∪
⋃

{AB : B ∈ A+ ∩ B}
)

=
⋃

(

(A+ \ B) ∪ {B : B ∈ A+ ∩ B}
)

=
⋃

A+ = U.

(2) The families A∪ (A′ \ B) and B ∪ (B′ \A) are clearly disjoint, A∪ (A′ \ B)
fills B ∪ (B′ \A) ∪ {

⋃

A} and B ∪ (B′ \A) fills A∪ (A′ \ B)∪ {
⋃

B} by (1) which
was to be proved. �

Also, (B0,B1) ≤ (B′
0,B

′
1) and thus by the maximality of (B0,B1) we have that

B′
i = Bi. This finishes the proof. �
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The first corollary is a direct application and shows that resolvability is pre-
served by unions.

Corollary 4.5. Suppose that Bα is a resolvable self-filling family for each α < κ.

Then
⋃

{Bα : α < κ} is a resolvable self-filling family as well.

Corollary 4.6. Suppose that a self-filling family B has the property that

(†) for every U ∈ B there is U ∈ [B \ {U}]≤ω such that U =
⋃

U .

Then B is resolvable.

Proof: We need the following Claim.

Claim 4.7. If A ⊂ B is well-founded then for every W ∈ B there is a countable

well-founded family B(W,A) ⊂ B \ A with
⋃

B(W,A) = W .

Proof: We can assume that W ∈ A. By (†) there is a countable self-filling family
C ⊂ B with W ∈ C. Let

V = {V ∈ C \ A : V ( W}.

Since A is well-founded, for each x ∈ W the family {Z ∈ A ∩ C : x ∈ Z} has
a ⊂-minimal element Z. Since C is self-filling, there is V ∈ C with x ∈ V ( Z.
Then V ∈ V .

Thus
⋃

V = W . Now, by Proposition 2.2, there is a well-founded family
B(W,A) ⊂ V with

⋃

V =
⋃

B(W,A). �

By Theorem 4.3, it suffices to prove that for every U ∈ B there is a good pair
(B0,B1) from B such that U =

⋃

B0 =
⋃

B1.
Fix a U ∈ B. Partition ω into infinite sets ω =

⋃

{Dm : m ∈ ω}. By induction
on m ∈ ω we build increasing chains {Bm

0 : m ∈ ω} and {Bm
1 : m ∈ ω} from

subsets of B such that

(1) B0
0 = B0

1 = ∅,
(2) Bm

0 and Bm
1 are disjoint, well founded and countable families,

(3) fix a surjective map

fm : Dm \ (m+ 1) ։ {U} ∪Bm
0 ∪Bm

1 ,

(4) if m ∈ Dℓ and fℓ(m) = V then

(4.1) Bm+1
0 = Bm

0 ∪ B(V,Bm
1 )

and

(4.2) Bm+1
1 = Bm

1 ∪ B(V,Bm+1
0 ).

Let Bi =
⋃

{Bm
i : m ∈ ω} for i < 2. The (B0,B1) is a good pair and U =

⋃

B0 =
⋃

B1. Indeed, if V ∈ Bi ∪ {U} then V ∈ Bm
i ∪ {U} for some m ∈ ω and

so fm(ℓ) = V for some ℓ ∈ Dm \ (m+1). Thus there is a family B ⊂ Bℓ+1
1−i ⊂ B1−i

with
⋃

U = V . �
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Corollary 4.8. Locally countable or hereditarily Lindelöf spaces are base resolv-

able without assuming any separation axioms.

Our next corollary establishes that every reasonable space admits a resolvable
base.

Corollary 4.9. Suppose that B is a base closed under finite unions in a T1

topological space. Then B is resolvable.

Proof: We apply Theorem 4.3 again. Fix U ∈ B and we construct a good pair
covering U . Fix an arbitrary strictly decreasing sequence {Un : n ∈ ω} ⊆ B such
that U0 ⊆ U and fix yn ∈ Un−1 \ Un for n ∈ ω \ {0}. Let

BU
i = {V ∈ B ∩ P(U) : ∃k ∈ ω \ {0} : U2k+i ⊆ V but U2k−1+i 6⊆ V }

for i < 2. It should be clear that BU
0 ∩ BU

1 = ∅.
Next we prove that U =

⋃

BU
i for i < 2. Fix i < 2 and note that {U2k+i :

k ∈ ω \ {0}} ⊂ BU
i . Now fix x ∈ U and we prove that x ∈

⋃

BU
i ; without loss of

generality we can suppose that x /∈ U2+i. Find any k ∈ ω so that y2k+i 6= x and
take W ∈ B so that x ∈ W ⊂ U \ {y2k+i}; here we used that B is a base of a T1

topology. Note that V = U2k+i ∪ W ∈ B as B is closed under finite unions and
that x ∈ V ∈ BU

i .
Finally we show that (BU

0 ,B
U
1 ) is a good pair; we will show that BU

0 fills BU
1 ,

the other direction is completely analogous. Fix V ∈ BU
1 and fix a point z ∈ V .

Find an l ∈ ω so that U2l−1 ⊂ V and z 6= y2l. As B is a base, there is W ∈ B so
that z ∈ W ⊂ V \ {y2l}. Let V ′ = U2l ∪W . As B is closed under finite unions
we have V ′ ∈ B. Moreover V ′ ∈ BU

0 as witnessed by U2l ⊂ V ′ but U2l−1 6⊆ V ′.
Finally, z ∈ V ′ ⊂ V as we wanted. �

Corollary 4.10. The set of all open sets in a T1 topological space is resolvable.

Let MA(Cohen) denote Martin’s axiom restricted to the partial orderings of
the form Fn(κ, 2, ω) for some κ where, Fn(κ, 2, ω) is the poset of functions from
some finite subset of κ to 2 ordered by reverse inclusion.

Corollary 4.11. Under MA(Cohen) every space X of local size < 2ω is base

resolvable without assuming any separation axioms.

Proof: Fix a base B of X ; we may assume that |U | < 2ω for all U ∈ B. We
apply Theorem 4.3 to prove that B is resolvable as a self-filling family which
in turn will imply that B is a resolvable base. Fix U ∈ B and we construct a
good pair covering U . Let κ = |U | and select BU ∈ [B]κ which fills itself and
⋃

BU = U . Now consider the ccc partial order P = Fn(BU , 2, ω), i.e., the set of
all finite partial functions from BU to 2. Now consider

Dx,V,i = {f ∈ P : there is W ∈ f−1(i) : x ∈ W ⊂ V }

for i < 2 and x ∈ V ∈ BU ; note that each Dx,V,i is dense in P. Hence there is a
filter G ⊆ P which intersects Dx,V,i for i < 2 and x ∈ V ∈ BU . Let Bi = {V ∈
BU : (

⋃

G)(V ) = i} for i < 2 and note that (B0,B1) is the desired good pair. �
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5. Thinning self-filling families

Let B be a self-filling family. Note that B is redundant in the sense that B \ U
still fills B for a finite or more generally, a well founded family U .

Definition 5.1. We say that U ⊆ B is negligible if B \ U still fills B.

Our aim in this section is to show that every self-filling family B contains a
negligible subfamily of size |B|. Note that a base B for a space X is resolvable if
and only if it contains a negligible subfamily U ⊆ B such that U is a base of X as
well. We will make use of the following definitions:

Definition 5.2. If B fills itself then let

L(U,B) = min{|V| : V ⊆ B \ {U}, U =
⋃

V}

for U ∈ B.

Observation 5.3. Suppose that B fills itself and U ⊆ B.

(1) If B \ U fills U then U is negligible.

(2) If U is well founded then B \ U fills U and so U is negligible; in particular, if

U is weakly increasing, then U is negligible.

Our first proposition establishes the main result for self-filling families B with
cf |B| = |B|.

Proposition 5.4. Suppose that B fills itself and κ = |B| is regular. Then B
contains a negligible family of size κ.

Proof: We can suppose that L(U,B) < κ for every U ∈ B; otherwise we can
find a weakly increasing subfamily of size κ which is negligible by (1) and (2) of
Observation 5.3.

It suffices to define a sequence Uξ,Vξ ∈ [B]<κ for ξ < κ such that

(1) Uξ ∩ Vξ = ∅,
(2) Uξ ⊂ Uζ and Vξ ⊂ Vζ for ξ < ζ < κ,
(3) Vξ fills Uξ, and
(4) Uξ+1 \ Uξ 6= ∅.

Clearly, U =
⋃

{Uξ : ξ < κ} will be a negligible set of size κ in B by (3) of
Observation 5.3. Suppose we have Uξ,Vξ ∈ [B]<κ for ξ < ζ as above for some
ζ < κ; then B \

⋃

{Uξ,Vξ : ξ < ζ} 6= ∅ by κ being regular. Hence we can select
Uζ ∈ B \

⋃

{Uξ,Vξ : ξ < ζ} and define

Uζ =
⋃

{Uξ : ξ < ζ} ∪ {Uζ}.

Find W ⊆ B \ {Uζ} of size < κ such
⋃

W = Uζ ; define

Vζ =
⋃

{Vξ : ξ < ζ} ∪ (W \ Uζ).

Since
⋃

{Vξ : ξ < ζ} fills
⋃

{Uξ : ξ < ζ} by the inductive hypothesis (3) above,
Lemma 4.4(1) implies that Vζ fills Uζ . �
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Theorem 5.5. Suppose that B fills itself. Then B contains a negligible family of

size |B|.

Proof: We can suppose that µ = cf(κ) < κ = |B| and that every weakly increas-
ing sequence in B is of size less than κ by Observation 5.3(2). Fix a cofinal strictly
increasing sequence of regular cardinals (κξ)ξ<µ in κ such that µ < κ0 and define

Bξ = {U ∈ B : L(U,B) ≤ κξ}

for every ξ < µ. So we have

(5.1) B =
⋃

ξ<µ

Bξ.

If there is a ξ < µ such that every weakly increasing sequence in B is of size less

than κξ then B = Bξ. Let us define a set mapping F : B → [B]<κ
+

ξ such that
U =

⋃

F (U) where F (U) ⊆ B \ {U}. As κ+
ξ < κ we can apply Hajnal’s Set

Mapping theorem (see Theorem 19.2 in [1]) and so there is an F -free set U of
size κ in B, i.e., F (U) ∩ U = ∅ for all U ∈ U . Observe that U is negligible as
⋃

{F (U) : U ∈ U} ⊆ B \ U fills U .
Now we suppose that B 6= Bξ for ξ < µ, that is, there is a weakly increasing

sequence in B of size κξ for all ξ < µ. It suffices to define sequences Uξ,Vξ ∈ [B]<κ

for ξ < µ such that

(i) Uξ ⊂ Uζ and Vξ ⊂ Vζ for ξ < ζ < κ,
(ii) Uξ,Vξ are disjoint and κξ ≤ |Uξ|,
(iii) Vξ fills Uξ.

Indeed, the union
⋃

{Uξ : ξ < µ} is negligible in B of size κ by Observation 5.3(1)
because

⋃

{Vξ : ξ < µ} fills
⋃

{Uξ : ξ < µ}.
Suppose we defined Uξ,Vξ ∈ [B]<κ for ξ < ζ and let

λ =
(

|
⋃

{Uξ ∪ Vξ : ξ < ζ}| · κζ

)+
.

Note that λ < κ thus we can pick a weakly increasing family W ∈ [B]λ. Without
loss of generality, we can suppose that W is disjoint from

⋃

{Uξ ∪ Vξ : ξ < ζ}.
Note that

W =
⋃

{Bδ ∩W : δ < µ}

by (5.1), and that µ < cf(λ) = λ, hence there is δ < µ such that W ′ = W ∩ Bδ

has size λ. Define

Uζ =
⋃

{Uξ : ξ < ζ} ∪W ′.

Now, for every U ∈ W ′ select F (U) ∈ [B \ {U}]≤κδ such that U =
⋃

F (U).
Define

Vζ =
⋃

{Vξ : ξ < ζ} ∪
⋃

{F (U) : U ∈ W ′} \ Uζ .
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Note that κζ ≤ |Uζ | = λ and |Vζ | ≤ λ · κδ < κ. It is only left to prove that
Vζ fills Uζ ; in fact, it suffices to show that Vζ fills W ′. Suppose that ≺ is the
well ordering witnessing that W ′ is weakly increasing and suppose that there is a
U ∈ W ′ which is not filled by Vξ; we can suppose that U is ≺-minimal. Fix an
x ∈ U witnessing that Vζ does not fill U . Pick V ∈ F (U) such that x ∈ V ⊂ U ;
then V /∈ Vζ , so V ∈ W ′ or V ∈

⋃

{Uξ : ξ < ζ}. If V ∈ W ′ then V ≺ U , thus
V is filled by Vζ by the minimality of U . This contradicts the choice of x, hence
V /∈ W ′. Thus V ∈

⋃

{Uξ : ξ < ζ} which is filled by
⋃

{Vξ : ξ < ζ} ⊂ Vζ by the
inductional hypothesis. This again contradicts the choice of x, which finishes the
proof. �

6. Irresolvable self-filling families

The aim of this section is to construct an irresolvable self-filling family and
deduce the existence of a non base resolvable T0 topological space.

Given a partial order (P,≤) and p, q ∈ P let

[p, q] = {r ∈ P : p ≤ r ≤ q}.

The key to our construction is the following special partition relation:

Definition 6.1. We say that a poset P without maximal elements satisfies

P → (Iω)
1
2

if for every partition P = D0 ∪D1 there is i < 2 and strictly increasing {pn : n ∈
ω} ⊆ Di such that [p0, pn] ⊆ Di for every n ∈ ω. The negation is denoted by
P 9 (Iω)

1
2.

The above definition is motivated by the following:

Observation 6.2. For any irresolvable self-filling family B ⊆ P(X) the partial

order P = (B,⊇) satisfies P → (Iω)
1
2.

Proof: Consider a partition of P = (B,⊇) into sets D0, D1. As B is irresolvable,
there is i < 2, x ∈ X and U ∈ Di such that V ∈ Di for every V ∈ B with
x ∈ V ⊆ U . Pick a strictly decreasing sequence {Vn : n ∈ ω} ⊆ B such that
x ∈ Vn ⊆ U for every n ∈ ω; clearly, [V0, Vn] ⊆ Di for every n ∈ ω. �

Our next aim is to find a partial order P first with P → (Iω)
1
2; note that trees

or Fn(κ, 2) cannot satisfy P → (Iω)
1
2. Moreover:

Proposition 6.3. P 9 (Iω)
1
2 for every countable poset P without maximal ele-

ments.

Proof: Fix a countable poset P without maximal elements. We construct a
partition P = P0 ∪ P1 witnessing P 9 (Iω)

1
2 as follows: First, fix an enumeration

{In : n ∈ ω} of all intervals I = [p′, p] in P which contain an infinite chain and let
P = {pn : n ∈ ω} denote a 1-1 enumeration. Construct disjoint P0,n, P1,n ⊆ P by
induction on n ∈ ω such that
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(i) Pi,n is a finite union of antichains for i < 2,
(ii) pn ∈ P0,n ∪ P1,n,
(iii) In ∩ Pi,n 6= ∅ for i < 2,
(iv) whenever C = {ck : k ∈ ω} ⊆ P is a strictly increasing chain, pn ∈ C and

[ci, cj ] is well-founded (i.e., [ci, cj ] /∈ I) for all i < j < ω then

⋃

k∈ω

[c0, ck] ∩ Pi,n 6= ∅

for each i < 2.

Provided we can carry out this induction, we have that

Claim 6.4. P 9 (Iω)
1
2.

Proof: Let Pi =
⋃

{Pi,n : n ∈ ω} for i < 2 and note that this is a partition of
P by (ii). Consider an arbitrary strictly increasing chain C = {ck : k ∈ ω} ⊆ P.
If there is k ∈ ω such that [c0, ck] contains an infinite chain in P then there is an
n ∈ ω such that In = [c0, ck]; property (iii) from above ensures that Pi∩[c0, ck] 6= ∅
for i < 2. Otherwise, the intervals [ci, cj ] are all well-founded intervals; in this
case, property (iv) ensures that

⋃

k∈ω [c0, ck] ∩ Pi 6= ∅ for i < 2. �

Now suppose we constructed Pi,n−1 satisfying the above conditions for i < 2.
Note that finitely many elements can be added to both P0,n−1 and P1,n−1 without
violating (i), thus (ii) and (iii) are easy to satisfy (note that In \ (P0,n−1∪P1,n−1)
is infinite since In contains an infinite chain).

It suffices to show the following to finish our proof:

Claim 6.5. Fix p ∈ P and A ⊆ P which is covered by finitely many antichains.

Then there is an antichain B ⊆ P \ A such that whenever C = {ck : k ∈ ω} ⊆ P
is a strictly increasing chain, p ∈ C and the intervals [ci, cj ] are all well-founded

then
⋃

k∈ω

[c0, ck] ∩B 6= ∅.

Proof: Let

R = {q ∈ P : p ≤ q and [p, q] does not contain infinite chains}.

Then 〈R,≤〉 is well founded, so we can define, by well-founded recursion, a rank
function rk from R into the ordinals such that

(6.1)
rk(p) = 0,

rk(t) = sup{rk(s) + 1 : s ∈ [p, t)} if t ∈ R, p < t.

Let Q = R \A and define q− to be the element minimizing rk on [p, q] \A for
q ∈ Q. Let

B = {q− : q ∈ Q}.
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First note that B is an antichain by (6.1). Now fix a strictly increasing chain
C = {ck : k ∈ ω} ⊆ P such that the intervals [ci, cj] are all well-founded and
p ∈ C. Since A is covered by finitely many antichains there is q ∈ C \A such that
p < q; also, q ∈ Q by [p, q] being well founded. Thus q− ∈

⋃

k∈ω[c0, ck] ∩B. �

Indeed, to finish the inductive construction, apply the claim twice to find an-
tichain B0 ⊆ P\A and B1 ⊆ P\(A∪B0) such that

⋃

k∈ω[c0, ck]∩Bi 6= ∅ whenever
C = {ck : k ∈ ω} ⊆ P is a strictly increasing chain, p ∈ C and the intervals [ci, cj ]
are all well-founded.

Then P0,n = P0,n−1 ∪ B0 and P1,n = P1,n−1 ∪ B1 are appropriate extensions
satisfying (iv). �

We will call a countable strictly increasing sequence of elements of a poset P a
branch; we say that a branch x = (xn)n∈ω goes above an element p ∈ P if p ≤ xn

for some n ∈ ω.

Theorem 6.6. There is a partial order P of size ω1 without maximal elements

such that P → (Iω)
1
2. Furthermore,

(1) every p ∈ P has finitely many predecessors,

(2) if p � q in P then there is a branch x in P which goes above q but not p.

Proof: Let us fix a function c : [ω1]
2 → ω such that c(·, ζ) : ζ → ω is 1-1 for

every ζ ∈ ω1. It is easy to see that such functions satisfy the following:

Fact 6.7. If c(·, ζ) : ζ → ω is 1-1 for every ζ ∈ ω1 for some c : [ω1]
2 → ω then

for every uncountable, disjoint family A ⊆ [ω1]
<ω and N ∈ ω there are a < b 1 in

A such that c(ξ, ζ) > N for every ξ ∈ a, ζ ∈ b.

Also, fix an enumeration {(yα, wα) : ω ≤ α < ω1} of all pairs of elements of
ω1 × ω such that yα, wα ∈ α× ω.

We define P = (ω1×ω,≤) as follows: By induction on α ∈ L1 (where L1 stands
for the limit ordinals in ω1) we construct a poset Pα = ((α + ω) × ω,≤α) with
properties:

(i) Pα has no maximal elements and every p ∈ Pα has finitely many predeces-
sors,

(ii) ≤α↾ β =≤β for all β < α,
(iii) (ξ, n) <α (ζ,m) implies that ξ < ζ and max(n, c(ξ, ζ)) < m,
(iv) there is a tα ∈ Pα such that t <α tα if and only if t ≤α yα or t ≤α wα for

any t ∈ Pα,
(v) if p � q in Pα then there is a branch x in Pα which goes above q but not p.

We only sketch the inductive step. Suppose that yα = (ξ, n) and wα = (ζ,m).
Let Γ = {ν < ω1 : there is s ≤ yα or s ≤ wα with s = (ν, l) for some l ∈ ω} and
note that |Γ| < ω by (i). Let

k = max{n,m, c(ν, α) : ν ∈ Γ}+ 1.

1a < b iff ξ < ζ for all ξ ∈ a, ζ ∈ b.



554 D.T. Soukup, L. Soukup

Now define tα = (α, k) and ≤α so that t <α tα implies that t ≤α yα or t ≤α wα.
Extend ≤α further so that Pα has no maximal elements and satisfies (v); this can
be done by “placing” copies of 2<ω above elements of Pα \

⋃

{Pβ : β < α}.
Let us define P =

⋃

{Pα : α < ω1} and ≤=
⋃

{≤α: α < ω1}; observe that
(P,≤) is well defined and trivially satisfies (1) and (2). In what follows, πω1

and πω denote the projections from ω1 × ω to the first and second coordinates
respectively.

Claim 6.8. P → (Iω)
1
2.

Proof: Suppose that P = D0 ∪ D1; we can assume that D0 and D1 are both
cofinal in P. Now suppose that there is no increasing chain with each interval in
one of the Di and reach a contradiction as follows. We will say that an interval [s, t]
in P is i-maximal for some i < 2 if [s, t] ⊆ Di but [s, t′] * Di for every t < t′ ∈ P.
Observe that for every s ∈ Di there is t ∈ Di such that [s, t] is i-maximal;
otherwise, we can construct an increasing chain starting from s with each interval
in Di. Now construct increasing 4-element sequences Rα = {x̃α, ỹα, z̃α, w̃α} ⊆ P
for α < ω1 such that x̃α ≤ ỹα ≤ z̃α ≤ w̃α and

(a) [x̃α, ỹα] ⊆ P0 is a 0-maximal interval,
(b) [z̃α, w̃α] ⊆ P1 is a 1-maximal interval,
(c) π′′

ω1
Rα < π′′

ω1
Rβ if α < β.

By passing to a subsequence of {Rα : α < ω1} we can suppose that the image of
(x̃α, ỹα, z̃α, w̃α) under πω is independent of α < ω1 and we let N = max π′′

ωRα.
Find α < β, using Fact 6.7, such that

c ↾ [π′′
ω1
Rα, π

′′
ω1
Rβ ] > N.

Observe that x̃α � w̃β by π′′
ωwβ = N < c(π′′

ω1
x̃α, π

′′
ω1
w̃β) and (iii). Now find

γ < ω1 such that (yγ , wγ) = (ỹα, w̃β) and consider tγ ∈ Pγ . We claim that tγ is a
minimal extension of ỹα and w̃β in the following sense:

(1) [x̃α, tγ ] = [x̃α, ỹα] ∪ {tγ},
(2) [z̃β, tγ ] = [z̃β , w̃β ] ∪ {tγ}.

Indeed, if x̃α ≤ t′ < tγ then t′ ≤ ỹα or t′ ≤ w̃β ; x̃α � w̃β implies that t′ � wβ

hence t′ ∈ [x̃α, ỹα]. Similarly, if z̃β ≤ t′ < tγ then t′ ≤ ỹα or t′ ≤ w̃β ; however,
t′ � ỹα by π′′

ωt
′ > π′′

ω ỹα so t′ ∈ [z̃β , w̃β ].
Note that t ∈ P0 contradicts the 0-maximality of [x̃α, ỹα] and (1) while t ∈ P1

contradicts the 1-maximality of [z̃β, w̃β ] and (2). �

The above claim finishes the proof. �

Using the previous theorem, we construct an irresolvable self-filling family;
we can actually realize this family as a system of open sets in a first countable
compact space. We remark that this space is base resolvable, as every compact
space, by Corollary 3.7.

Theorem 6.9. There is a first countable Corson compact space (X, τ) and U ⊆ τ
such that U fills {

⋂

V : V ∈ [U ]<ω} and U is irresolvable.
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Proof: Consider the poset P in Theorem 6.6. We say that x ∈ [P]ω is a maximal

chain if and only if {x(n)}n∈ω is a branch in P, x(0) is a minimal element of P
and [x(n), x(n + 1)] = {x(n), x(n+ 1)}. Note that there are no increasing chains
of order type ω + 1 in P. Furthermore, since the intervals are finite we have

Observation 6.10. (1) Any branch y ∈ [P]ω can be extended to a maximal

chain ȳ ∈ [P]ω.

(2) There is an n0 ∈ ω such that
⋃

n0≤n[ȳ(n0), ȳ(n)] ⊆
⋃

n∈ω[y(0), y(n)].

Note that (2) implies that if y ∈ [P]ω has homogeneous intervals with respect
to some coloring of P then the end-segment of the maximal extension ȳ has the
same property.

Now consider X = {x ∈ [P]ω : x is a maximal chain} as a subspace of 2P; here
2P is equipped with the usual product topology.

Claim 6.11. X is a compact subspace of Σ(2P) = Σ(2ω1).

Proof: Σ(2P) = Σ(2ω1) follows from |P| = ω1 and clearly every chain is countable
so X ⊆ Σ(2P).

We prove that X is a closed subset of 2P. Suppose that y ∈ 2P \ X ; clearly,
if y is not a chain then y can be separated from X . Suppose that y is a chain,
then either y(0) is not minimal in P or there is n ∈ ω such that [y(n), y(n+1)] 6=
{y(n), y(n+ 1)}. In the first case let ε ∈ Fn(P, 2) be defined to be 1 on y(0) and
ε(p) = 0 for p < y(0), p ∈ P (note that each element in P has only finitely many
predecessors); then y ∈ [ε] and [ε] ∩ X = ∅. In the second case let ε ∈ Fn(P, 2)
such that 1 = ε(y(n)) = ε(y(n+1)) and ε ↾ [y(n), y(n+1)] \ {y(n), y(n+1)} = 0;
then y ∈ [ε] and [ε] ∩X = ∅. �

Claim 6.12. {x} =
⋂

{[χx(n)] ∩X : n ∈ ω} for every x ∈ X . Hence every point

in X has countable pseudocharacter; in particular, X is first countable.

Proof: Suppose that y ∈ ∩{[χx(n)] ∩ X : n ∈ ω}, that is, {x(n) : n ∈ ω} ⊂
{y(n) : n ∈ ω}. We prove that x(n) = y(n) by induction on n ∈ ω. First,
we have y(0) = x(0) as they are comparable minimal elements in P. Suppose
that x(i) = y(i) for i < n; if x(n) 6= y(n) then x(n) = y(k) for some n < k,
thus y(n) ∈ [x(n − 1), x(n)] = [y(n − 1), y(k)] which contradicts the maximality
of x. �

Now define

Vp = {x ∈ X : ∃n ∈ ω : x(n) ≥ p} for p ∈ P,

and note that Vp is open since Vp =
⋃

{[χ{q}] ∩X : p ≤ q}. We define

U = {Vp : p ∈ P}.

Claim 6.13. U fills {
⋂

V : V ∈ [U ]<ω} and U is irresolvable.

Proof: Note that p < q in P if and only if Vq ( Vp; the nontrivial direction
is implied by property (2) of P in Theorem 6.6. To see that U fills the finite
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intersections from U let V ∈ [U ]<ω be arbitrary. If A = {p ∈ P : Vp ∈ V} ∈ [P]<ω

then
⋂

V =
⋃

{Vq : p < q for all p ∈ A}.

We show that U is irresolvable. Suppose that we partitioned U , equivalently P
into two parts P0,P1. Applying P → (Iω)

1
2 we have that there is a chain y ∈ Pω

and i < 2 such that [y(0), y(n)] ⊆ Pi for every n ∈ ω. By Observation 6.10 there
is maximal chain ȳ ∈ X such that [ȳ(n0), ȳ(n)] ⊆ Pi for some n0 ∈ ω and every
n ≥ n0. We claim that there is no V ∈ {Vp : p ∈ P1−i} such that ȳ ∈ V ⊆ Vȳ(n0).
Indeed, if ȳ ∈ Vp ⊆ Vȳ(n0) for some p ∈ P then ȳ(n0) ≤ p and there is n ∈ ω \ n0

such that p ≤ ȳ(n); that is, p ∈ [ȳ(n0), ȳ(n)] ⊆ Pi. �

The last claim finishes the proof of the theorem. �

Let us finish this section with the following:

Lemma 6.14. If U fills {
⋂

V : V ∈ [U ]<ω} and U is irresolvable then there is a

non base resolvable, T0 topological space.

Proof: Suppose that U ⊂ P(X) is as above. Define a relation ∼ on X by
x ∼ y if and only if {U ∈ U : x ∈ U} = {U ∈ U : y ∈ U}; clearly, ∼ is an
equivalence relation on X . Let [x] = {x′ ∈ X : x ∼ x′} for x ∈ X and let
[U ] = {[x] : x ∈ U} for any U ⊂ X . It is clear that [U ] =

⋃

{[V ] : V ∈ V} if
U =

⋃

V and [U ] =
⋂

{[V ] : V ∈ V} if U =
⋂

V . Thus B = {[U ] : U ∈ U} is a
base for a T0 topology on [X ]; sometimes this is referred to as the Kolmogorov
quotient of the original (not necessarily T0) topology generated by U .

It remains to show that B is an irresolvable base. Take a partition B = B0∪B1.
Note that

(1) [x] ∈ [U ] if and only if x ∈ U ,
(2) [U ] = [V ] if and only if U = V ,
(3) [U ] ⊂ [V ] if and only if U ⊂ V

for any U, V ∈ U ; thus the partition B0 ∪B1 gives a partition Ui = {U ∈ U : [U ] ∈
Bi} of U . Now there is an i < 2 so that Ui does not fill U i.e., there is x ∈ X
and V ∈ U so that x ∈ U implies U \ V 6= ∅ for all U ∈ Ui. This gives that
[x] ∈ [U ] implies [U ] \ [V ] 6= ∅ for all [U ] ∈ Bi; in particular, Bi is not a base for
the topology generated by B. �

In particular, we have the following

Corollary 6.15. There is a non base resolvable, T0 topological space.

7. A 0-dimensional, Hausdorff space with an irresolvable base

In this section, we partially strengthen Corollary 6.15 by showing

Theorem 7.1. It is consistent that there is a first countable, 0-dimensional, T2

space which has a point countable, irresolvable base. Furthermore, the space has

size c and weight ω1.
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Proof: For 〈α, n〉, 〈β,m〉 ∈ ω1×ω write 〈α, n〉⊳〈β,m〉 ∈ ω1×ω if 〈α, n〉 = 〈β,m〉
or (α < β and n < m).

Definition 7.2. If �1,�2⊂ ⊳, then let �1 ∪ �2 be the partial order generated
by �1 ∪ �2.

Definition 7.3. If A = 〈ω1 × ω,�〉 is a poset with �⊂ ⊳, and for each α ∈ L1

we have a set Tα ⊂ α× ω such that

(C) 〈Tα,�〉 is an everywhere ω-branching tree,

then we say that the pair 〈A, 〈Tα : α ∈ L1〉〉 is a candidate.

Denote by Tα(n) the nth level of the tree 〈Tα,�〉.

Definition 7.4. Fix a candidate A = 〈A, 〈Tα : α ∈ L1〉〉. We will define a
topological space X(A) as follows.

For α ∈ L1 let B(Tα) be the collection of the cofinal branches of Tα, and let

B(A) =
⋃

{B(Tα) : α ∈ L1}.

The underlying set of the space X(A) is B(A).
For x ∈ ω1 × ω let U(x) = {y ∈ ω1 × ω : x � y} and

V (x) = {b ∈ B(A) : ∃y ∈ b (x � y)}.

Clearly V (x) = {b ∈ B(A) : b ⊆∗ U(x)} where ⊆∗ denotes containment modulo
finite.

We declare that the family

V = {V (x) : x ∈ ω1 × ω}

is the base of X(A).

Lemma 7.5. V is a base and so X(A) is a topological space. Moreover, V is

point countable.

Proof: Assume that b ∈ V (x) ∩ V (y). Then there is z ∈ b such that x � z and
y � z. Then b ∈ V (z) ⊂ V (x) ∩ V (y).

To see that V is point countable, note that b /∈ V (x) if b ∈ B(Tα) and x ∈
(ω1 \ α)× ω. �

For x, y ∈ ω1 × ω with x � y let

[x, y] = {t ∈ ω1 × ω : x � t � y}.

Definition 7.6. We say that a candidate A = 〈A, 〈Tα : α ∈ L1〉〉 is good if

(G1) V (u) ⊃ V (v) if and only if u � v.
(G2) ∀α ∈ L1 ∀ζ < α (Tα \ (ζ × ω)) 6= ∅.
(G3) (a) ∀α ∈ L1 (∀x, y ∈ Tα) U(x) ∩ U(y) 6= ∅ if and only if x and y are

�-comparable.
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(b) for each {α, β} ∈ [L1]
2 there is f(α, β) ∈ ω such that

∀x ∈ Tα(f(α, β)) ∀y ∈ Tβ(f(α, β)) U(x) ∩ U(y) = ∅.

(G4) For each x ∈ ω1 × ω and α ∈ L1 there is g(x, α) ∈ ω such that for each
y ∈ Tα(g(x, α))

U(y) ⊂ U(x) or U(y) ∩ U(x) = ∅.

(G5) If for all α ∈ L1 and ζ < α we choose a four element �-increasing sequence

〈

xα
ζ , y

α
ζ , z

α
ζ , w

α
ζ

〉

⊂ Tα \ (ζ × ω)

then there are {α, β} ∈ [L1]
2, ζ < α, ξ < β, and t ∈ Tα ∩ Tβ such that

(i) yαζ ≺ t and [xα
ζ , t] = [xα

ζ , y
α
ζ ] ∪ {t},

(ii) wβ
ξ ≺ t and [zβξ , t] = [zβξ , w

β
ξ ] ∪ {t}.

Basically (G3) will force the space to be Hausdorff, (G4) ensures that each
V (x) is clopen and (G5) will be used in proving irresolvability. Indeed, we have

Lemma 7.7. If A is a good candidate, then X(A) is a dense-in-itself, first count-

able, 0-dimensional T2 space such that the base {V (x) : x ∈ ω1 × ω} is point

countable and irresolvable.

Proof: We prove this lemma in several steps.

Claim 7.8. X(A) is dense-in-itself.

Indeed, assume that b ∈ B(Tα) and V (x) is an open neighbourhood of b. Then
there is y ∈ b with x � y and so b ∈ V (y) ⊂ V (x). Thus V (x) ⊃ V (y) ⊃ {b′ ∈
B(Tα) : y ∈ b′}, and so V (x) has 2ω many elements. So b is not isolated.

Claim 7.9. X(A) is T2.

Indeed, let b ∈ B(Tα) and c ∈ B(Tβ) so that b 6= c.
If α = β then pick n ∈ ω such that x, the nth element of b, and y, the nth

element of c, are different. Then b ∈ V (x), c ∈ V (y) and V (x) ∩ V (y) = ∅ by
(G3)(a).

If α 6= β then write n = f(α, β) (see (G3)(b)), let x be the nth element of b,
and let y be the nth element of c. Then b ∈ V (x), c ∈ V (y) and V (x) ∩ V (y) = ∅
by (G3)(b).

Claim 7.10. Each set in {V (x) : x ∈ ω1 × ω} is clopen, thus X(A) is 0-
dimensional.

Indeed, assume that x ∈ ω1 × ω, b ∈ B(Tα) and b /∈ V (x). Let {y} = b ∩
Tα(g(α, x)). Then y /∈ U(x) because b /∈ V (x), so U(x)∩U(y) = ∅ by (G4). Thus
V (x) ∩ V (y) = ∅ as well.

Claim 7.11. The base {V (x) : x ∈ ω1 × ω} is irresolvable.
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Assume on the contrary that there is a partition (K0,K1) of ω1 × ω such that
both V0 = {V (x) : x ∈ K0} and V1 = {V (x) : x ∈ K1} are bases.

Assume that α ∈ L1, x, y ∈ Tα with x � y and i ∈ 2. We say that interval
[x, y] is i-maximal in Tα if

(i) [x, y] ⊂ Ki, but [x, z] 6⊂ Ki for any z with y ≺ z ∈ Tα.

Subclaim 7.11.1. If α ∈ L1 and x ∈ Tα ∩ Ki, then there is x � y ∈ Tα such

that the interval [x, y] is i-maximal in Tα.

Proof of the Claim: Assume on the contrary that there is no such y. Then
we can construct a strictly increasing sequence 〈x, y0, y1, . . . 〉 in Tα such that
[x, yn] ⊂ Ki for all n < ω.

Then b = {y ∈ Tα : ∃n ∈ ω y � yn} ∈ B(Tα).
Since b ∈ V (x), and we assumed that {V (z) : z ∈ K1−i} is a base, there is

z ∈ K1−i with b ∈ V (z) ⊂ V (x). Then x � z by (G1). Moreover, there is
y ∈ b with z ≺ y because b ∈ V (z). Thus z ∈ [x, y] ∩ K1−i, so [x, y] 6⊂ Ki.
Contradiction, the subclaim is proved. �

Using the subclaim, for all α ∈ L1 and for all ζ < α we will construct a four
element �-increasing sequence

〈

xα
ζ , y

α
ζ , z

α
ζ , w

α
ζ

〉

⊂ Tα \ (ζ × ω)

as follows.
First, using (G2) pick sαζ ∈ Tα \ (ζ × ω).

If K0 ∩ U(sαζ ) ∩ Tα = ∅, then let xα
ζ = yαζ = sαζ .

Otherwise pick

xα
ζ ∈ K0 ∩ U(sαζ ) ∩ Tα,

and then, using the Subclaim above, pick

yαζ ∈ U(xα
ζ ) ∩ Tα

such that

[xα
ζ , y

α
ζ ] is 0-maximal in Tα.

If K1 ∩ U(yαζ ) ∩ Tα = ∅, then let zαζ = wα
ζ = yαζ .

Otherwise pick

zαζ ∈ K1 ∩ U(yαζ ) ∩ Tα,

and then, using the Subclaim above, pick

wα
ζ ∈ U(zαζ ) ∩ Tα

such that

[zαζ , w
α
ζ ] is 1-maximal in Tα.

By (G5), there are {α, β} ∈ [L1]
2, ζ < α, ξ < β, and t ∈ Tα ∩ Tβ such that

(i) yαζ ≺ t and [xα
ζ , t] = [xα

ζ , y
α
ζ ] ∪ {t},
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(ii) wβ
ξ ≺ t and [zβξ , t] = [zβξ , w

β
ξ ] ∪ {t}.

Assume first that t ∈ K0. Then t ∈ K0 ∩ Tα, and [xα
ζ , t] = [xα

ζ , y
α
ζ ] ∪ {t}, so

[xα
ζ , t] ⊂ K0, i.e., [xα

ζ , y
α
ζ ] was not 0-maximal in Tα. Contradiction. If t ∈ K1,

then a similar argument works using the interval [zβξ , w
β
ξ ] and K1.

So in both cases we obtained a contradiction, so the base {V (x) : x ∈ ω1 × ω}
is irresolvable, which proves the lemma. �

Next we show that some c.c.c. forcing introduces a good candidate which fin-
ishes the proof the theorem.

Define the poset P = 〈P,≤〉 as follows. The underlying set consists of 6-tuples

〈A,�, I, {Tα : α ∈ I}, f, g〉 ,

where

(P1) A ∈ [ω1 × ω]<ω, 〈A,�〉 is a poset, �⊂ ⊳, I ∈ [ω1]
<ω,

(P2) Tα ⊂ (A ∩ α)× ω and 〈Tα,�〉 is a tree for α ∈ I,
(P3) f and g are functions, dom(f) ⊂ [I]2, dom(g) ⊂ A× I, ran(f)∪ ran(g) ⊂ ω.
(P4) To simplify our notation write U(x) = {y ∈ A : x � x} for x ∈ A.

(a) If α ∈ I and x, y ∈ Tα then U(x) ∩ U(y) 6= ∅ if and only if x and y are
�-comparable.

(b) If {α, β} ∈ [dom(f)]2 and n = f(α, β), then

U [Tα(n)] ∩ U [Tβ(n)] = ∅ and U [Tα(n)] ∩ Tβ(< n) = ∅.

(P5) If 〈x, α〉 ∈ dom(g) then for all y ∈ Tα(g(x, α)) we have U(y) ⊂ U(x) or
U(y) ∩ U(x) = ∅.

For p ∈ P write p = 〈Ap,�p, Ip, {T p
α : α ∈ Ip}, fp, gp〉, and for x ∈ Ap let

Up(x) = {y ∈ Ap : x �p y}.
For p, q ∈ P let p ≤ q if and only if

(O1) Ap ⊃ Aq, and �q=�p↾ Aq,
(O2) Ip ⊃ Iq and T q

α = T p
α ∩ Aq for α ∈ Iq,

(O3) if x ∈ Ap \Aq, then Up(x) ∩Aq = ∅,
(O4) fp ⊃ f q and gp ⊃ gq,
(O5) if U q(x) ∩ U q(y) = ∅ then Up(x) ∩ Up(y) = ∅.

Clearly ≤ is a partial order on P .
For p ∈ P write supp(p) = Ip ∪ {α : 〈α, n〉 ∈ Ap for some n ∈ ω}.
If G is a P-generic filter, then let

A =
⋃

{Ap : p ∈ G},

�=
⋃

{�p: p ∈ G},

I =
⋃

{Ip : p ∈ G},

Tα =
⋃

{T p
α : α ∈ p ∈ G} for α ∈ L1,
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f =
⋃

{fp : p ∈ G},

g =
⋃

{gp : p ∈ G}.

We show that P satisfies c.c.c. and A = 〈〈ω1 × ω,�〉, {Tα : α ∈ L1}〉 is a good
candidate.

Definition 7.12. We say that the conditions p and q are twins if conditions
(T1)–(T7) below are satisfied:

(T1) | supp(p)| = | supp(q)|, moreover max(supp(p) ∩ supp(q)) < min(supp(p)△
supp(q)).

Denote by ρ the unique order preserving bijection between supp(p) and supp(q),
and define the function ρ : supp(p)×ω → supp(q)×ω by the formula ρ(〈α, n〉) =
〈ρ(α), n〉.

(T2) ρ′′Ap = Aq.
(T3) x �p y iff ρ(x) �q ρ(y).
(T4) ρ′′Ip = Iq.
(T5) T q

ρ(α) = ρ′′Tα.

(T6) fp(x, y) = m iff f q(ρ(x), ρ(y)) = m.

(T7) gp(x, α) = m iff gq(ρ(x), ρ(α)) = m.

Lemma 7.13. If p and q are twins then

p⊕ q = 〈Ap ∪ Aq,�p ∪ �q, Ip ∪ Iq, {T p
α ∪ T q

α : α ∈ Ip ∪ Iq}, fp ∪ f q, gp ∪ gq〉

is a common extension of p and q, where T p
α = ∅ for α ∈ Iq \ Ip and T q

α = ∅ for

α ∈ Ip \ Iq.

Proof: Straightforward. �

Lemma 7.14. There is a function ϕ from P into some countable set such that if

ϕ(p) = ϕ(q) and supp(p) ∩ supp(q) < supp(p)△ supp(q), then p and q are twins.

Proof: Let ϕ(p) be the type of the first order structure

〈supp(p)× ω,Ap,�p, Ip, {T p
α : α ∈ Ip}, fp, gp〉 . �

Lemmas 7.13 and 7.14 yield that P satisfies c.c.c

Lemma 7.15. A = ω1 × ω, I = L1 and Tγ(0) \ (ζ × ω) is infinite for all γ ∈ L1

and ζ < γ, and so (G2) holds.

Proof: For p ∈ P , γ ∈ L1 and y ∈ (γ × ω) \Ap define p ⊎ {y}γ as follows:

p ⊎ {y}γ =
〈

Ap ∪ {y},�p, Ip ∪ {γ}, {T p
γ ∪ {y}, T p

α : α ∈ Ip \ {γ}}, fp, gp
〉

.

Then q = p ⊎ {y}γ ∈ P and p ⊎ {y}γ ≤ p. If y /∈ ζ × ω then q  y ∈ Tγ \ (ζ × ω)
so we are done. �
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Lemma 7.16. (a) Assume that p ∈ P , a ∈ T p
γ and b ∈ (γ × ω) \ Ap with a ⊳ b.

Let

p ⊎a {b}γ =
〈

Ap ∪ {b},�p ∪{〈a, b〉}, {T p
γ ∪ {b}, T p

α : α ∈ Ip \ {γ}}, fp, gp
〉

.

Then p ⊎a {b}γ ∈ P and p ⊎a {b}γ ≤ p.

(b) The structure A is a candidate.

Proof: First we check q = p ⊎a {b}γ ∈ P .

(P1)-(P3) are straightforward.

(P4)(a) Since U q(b) = {b}, we can assume that x, y 6= b. If Up(x) ∩ Up(y) 6= ∅
then x and y are �p-comparable. So we can assume that b ∈ U q(x) ∩U q(y). But
then a ∈ Up(x) ∩ Up(y), so we are done.

(P4)(b) Assume that x ∈ T q
α(n), y ∈ T q

β(n) with n = fp(α, β) = f q(α, β) and

z ∈ U q(x) ∩ U q(y). If z 6= b then z ∈ Up(x) ∩ Up(y) which is not possible. So
z = b.

If x, y 6= b, then a ∈ Up(x)∩Up(y) which is not possible. So we can assume that
x = b and α = γ. So b ∈ T q

α(n) and so a ∈ T p
α(n− 1). Thus T p

α(n− 1)∩Up(y) 6= ∅
which is not possible because (P4)(b) holds for p.

Assume that x ∈ T q
α(n), y ∈ T q

β (< n) and y ∈ U q(x). If y 6= b then y ∈ Up(x)∩

T p
β (< n) which is not possible. So y = b and β = γ. Thus a ∈ T p

β (< n) ∩ Up
α(x)

which is not possible because (P4)(b) holds for p.

(P5) Since U(b) = {b}, we can assume that y ∈ Ap. Since b ∈ U q(z) if and
only if a ∈ U q(z) for z ∈ Ap, if Up(y) ⊂ Up(x) then U q(y) ⊂ U q(x), and if
Up(y) ∩ Up(x) = ∅ then U q(y) ∩ U q(x) = ∅.

Thus we proved q ∈ P . Since q ≤ p is straightforward, we are done.

(b) is clear from (a) by standard density arguments. �

Now our aim is to prove that A is a good candidate.

Lemma 7.17. A has property (G1).

Proof: Assume that p ∈ P , u, v ∈ Ap, v /∈ Up(u). Pick γ ∈ L1 \ Ip with
supp(p) ⊂ γ, and pick b ∈ γ × ω with v ⊳ b.

Consider the condition q = p ⊎v {b}γ ≤ p.
Since b ∈ T q

γ , we have V (b)∩B(Tγ) 6= ∅, so V (b) 6= ∅. Since U q(u)∩U q(b) = ∅ we
have U(u)∩U(b) = ∅, and so V (u)∩V (b) = ∅, and so ∅ 6= V (b) ⊂ V (v)\V (u). �

Lemma 7.18. dom(f) = [L1]
2 and dom(g) = (ω1 × ω) × L1. Hence (G3) and

(G4) hold.

Proof: Assume that {γ, δ} ∈ [Ip]2 \ dom(fp). Pick m such that T p
α(m) = ∅

for all α ∈ Ip. Extend fp to f q as follows: dom(f q) = dom(fp) ∪
{

{γ, δ}
}

and
f q(γ, δ) = m. Let

q = 〈Ap,�p, Ip, {T p
α : α ∈ Ip}, f q, gp〉 .
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Then q ∈ P and q ≤ p.
Similar argument works for g. �

Finally we verify that (G5) also holds. Assume that

V P |= ∀α ∈ L1 ∀ζ < α
〈

xα
ζ , y

α
ζ , z

α
ζ , w

α
ζ

〉

⊂ Tα \ (ζ × ω) is �-increasing.

For all α ∈ L1 and ζ < α pick a condition pαζ = 〈Aα
ζ ,�

α
ζ , . . . 〉 which decides the

sequence 〈xα
ζ , y

α
ζ , z

α
ζ , w

α
ζ 〉 and {xα

ζ , y
α
ζ , z

α
ζ , w

α
ζ } ⊂ Tα

ζ .

Let us say that a ∆-system A ⊂ [ω]<ω is nice if A ∩ B < A △ B for all
A 6= B ∈ A.

Using the Fodor lemma, for each ζ ∈ ω1 find mζ < ω and Iζ ∈ [L1]
ω1 such that

(i) ϕ(pαζ ) = mζ for all α ∈ Iζ , where ϕ is from Lemma 7.14.

(ii) {supp(pαζ ) : α ∈ Iζ} forms a nice ∆-system with kernel Sζ , moreover α ∈
supp(pαζ ) \ Sζ .

(iii) 〈xα
ζ , y

α
ζ , z

α
ζ , w

α
ζ 〉 = 〈xζ , yζ , zζ , wζ〉 for α ∈ Iζ .

Then {xα
ζ , y

α
ζ , z

α
ζ , w

α
ζ } = {xζ , yζ, zζ , wζ} ⊂ Sζ × ω.

Find m ∈ ω and I ∈ [ω1]
ω1 such that

(iv) mζ = m for all ζ ∈ I, and so

∀ζ ∈ I ∀α ∈ Iζ ϕ(pαζ ) = m.

(v) {Sζ : ζ ∈ I} forms a nice ∆-system with kernel S.

Pick {ξ, ζ} ∈ [I]2. Then pick α ∈ Iζ such that Sξ ∪ Sζ < supp(pαζ ) \ Sζ . So

S < (Sξ ∪ Sζ) \ S < supp(pαζ ) \ Sζ .

Now pick β ∈ Iξ such that supp(pαζ ) < supp(pβξ ) \ Sξ. So

S < (Sξ ∪ Sζ) \ S < supp(pαζ ) \ Sζ < supp(pβξ ) \ Sξ.

Thus supp(pαζ ) ∩ supp(pβξ ) = S, α ∈ supp(pαζ ) \ Sζ and β ∈ supp(pβξ ) \ Sξ.

Since ϕ(pαζ ) = ϕ(pβξ ), the conditions ϕ(pαζ ) and ϕ(pβξ ) are twins, and

q = pαζ ⊕ pβξ

is a common extension. Pick t ∈ (α× ω) \ (Aα
ζ ∪ Aβ

ζ ) with yζ ⊳ t and wξ ⊳ t.
Define r as follows:

r =
〈

Aq,�q ∪ 〈yζ , t〉 ∪ 〈wξ, t〉 , I
q,

{T q
α ∪ {t}, T q

β ∪ {t}, T γ : γ ∈ Iq \ {α, β}}, f q, gq
〉

.
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ω

ω1

S Sζ \ S Sξ \ S supp pαζ \ Sζ supp p
β
ξ

\ Sξ

t

pαζ ↾ S pαζ ↾ (Sζ \ S) p
β
ξ

↾ (Sξ \ S)pαζ ↾ S pαζ p
β
ξ

xζ

yζ

zζ

wζ

xξ

yξ

zξ

wξ

α β

To check r ∈ P we will use the following observation:

(7.1) r ↾ (supp(pαζ ) ∪ {t}) = pαζ ⊎yα
ζ
{t}α

and

(7.2) r ↾ (supp(pβξ ) ∪ {t}) = pβξ ⊎
w

β

ξ

{t}β.

Now let us check (P1)–(P5).

(P1) is trivial for r.

(P2) Let γ ∈ Iq. If γ 6= α, β, then T q
γ = T p

γ , so we are done.
Moreover, T r

α = T q
α ∪ {t}, t ∈ α× ω, and 〈T r

α,�〉 is a tree by (7.1) and (7.2).
The same argument works for T r

β .

(P3) is trivial.

(P4)(a) Assume that γ ∈ Ir, x, y ∈ T r
γ with U r(x)∩U r(y) 6= ∅. Since U r(t) = {t}

we can assume x, y ∈ Aq.
Assume that γ ∈ Iαζ . Then T q

γ ⊂ Aα
ζ , and so x, y ∈ Aα

ζ . Thus t ∈ U r(x)∩U r(y)

implies yαζ ∈ U r(x) ∩U r(y). So U q(x) ∩U q(y) 6= ∅, which yields that x and y are
�q comparable because q ∈ P .

Similar argument works when γ ∈ Ip
β

ξ .

(P4)(b) Assume that {α′, β′} ∈ dom(f r) = dom(f q) = dom(pαζ ) ∪ dom(pβξ ). We

can assume that {α′, β′} ∈ dom(pβξ ).

Write n = f r({α′, β′}).
(i) Assume on the contrary that there are a ∈ T r

α′(n) and b ∈ T r
β′(n) with

U r(a) ∩ U r(b) 6= ∅.
First assume that {a, b} ∈ [Aq]2. Since q ∈ P , we have U q(a) ∩ U q(b) = ∅. So

t ∈ U r(a) ∩ U r(b) should hold.
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If c ∈ Aα
ζ , then t ∈ U(c) implies yζ ∈ U(c) by 7.1. Similarly, if c ∈ Aβ

ξ , then

t ∈ U(c) implies wξ ∈ U(c) by 7.2.

Since U q(a) ∩ U q(b) = ∅, we can assume that a ∈ Aα
ζ \Aβ

ξ and b ∈ Aβ
ξ \Aα

ζ .

But then α′ ∈ supp(pαζ ) \ S and β′ ∈ supp(pβξ ) \ S, so f r(α′, β′) is undefined.
Contradiction.

So we can assume that, e.g., t = a and b ∈ Aq. Assume first that b ∈ Apα
ζ .

Then α′ = α and yζ ∈ Aα
ζ by (7.1). Thus yζ ∈ T

pα
ζ

α (< n) ∩ Upα
ζ (b), and so

T
pα
ζ

α (< n) ∩ U [T
pα
ζ

β′ (n)] 6= ∅, so (P4)(b) fails for pαζ .

If b ∈ Aβ
ξ , then we can use similar arguments using (7.2) instead of (7.1).

(ii) Assume on the contrary that there are a ∈ T r
α′(n) and b ∈ T r

β′(< n)∩U r(a).

Clearly a 6= t. If b 6= t, then a ∈ T q
α′(n) and b ∈ T q

β′(< n) ∩ U q(a) which
contradicts q ∈ P .

Assume that b = t. If b ∈ Apα
ζ , then (7.1) implies β′ = α and yζ ∈ U q(a)∩T q(<

n). Thus yζ ∈ T q
β′(< n) ∩ U q(a), which contradicts q ∈ P .

If b ∈ Ap
β

ξ , then we can use similar arguments using (7.2) instead of (7.1).

(P5) Let 〈x, γ〉 ∈ dom(gr) and y ∈ T r
γ (g(x, γ)). Since U r(t) = {t}, we can assume

that x, y 6= t. So x, y ∈ Aq. If U q(y) ⊂ U q(x), then x �q y and so U r(y) ⊂ U r(x).
Assume on the contrary that U q(x) ∩ U q(y) = ∅, but t ∈ U r(x) ∩ U r(y). We can

assume that 〈x, γ〉 ∈ gp
α
ζ . Thus x ∈ Aα

ζ and γ ∈ Iαζ . However T q
γ ⊂ Aα

ζ , so y ∈ Aα
ζ .

Since x, y ∈ Aα
ζ and γ ∈ Iαζ , t ∈ U r(x) ∩ U r(y) implies yζ ∈ Upα

ζ (x) ∩ Upα
ζ (y) by

(7.1), which contradicts U q(x) ∩ U q(y) = ∅.

So we proved r ∈ P .

Next we show that r ≤ pαζ , p
β
ξ . (O1)–(O4) are trivial. To check (O5), assume

on the contrary that Upα
ζ (a) ∩ Upα

ζ (b) = ∅, but U r ∩ U r(b) 6= ∅.
Then t ∈ U r(a) ∩ U r(b), and so yαζ ∈ Upα

ζ (a) ∩ Upα
ζ (b) by (7.1), which is

a contradiction.

Finally, it is also straightforward that

(7.3) r  (G5)(i)–(ii) holds for α, β, ζ, ξ, and t.

So we proved the theorem. �

8. Open problems

In this section, we present a list of open problems which could be of further
interest and are closely connected to our results.

Problem 8.1. Is every linearly ordered space base resolvable?

Problem 8.2. Is every T3 (hereditarily) separable space base resolvable?

Problem 8.3. Is every paracompact space base resolvable?



566 D.T. Soukup, L. Soukup

Note that under PFA, every T3 hereditarily separable space is Lindelöf hence
base resolvable by Corollary 3.7. Also, we conjecture that our forcing construction
can be modified to produce a separable non base resolvable space.

Problem 8.4. Is every power of R base resolvable? Is it true that base resolv-

ability is preserved by products?

We know that every π-base is the union of two disjoint π-bases by Proposi-
tion 2.5(2). However:

Problem 8.5. Does every base contain a disjoint base and π-base?

Bases closed under finite unions are resolvable by Corollary 4.9 which raises to
following question:

Problem 8.6. Is it true that every base which is closed under finite intersections

is base resolvable?

It would be interesting to look into the following:

Problem 8.7. Is every self-filling family F of closed (Borel) sets of ωω resolvable?

Concerning negligible subsets we ask the following:

Problem 8.8. Is there a base B for some space X such that every U ∈ [B]|B|

contains a neighborhood base at some point?
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