On the metric reflection of a pseudometric space in ZF

HORST HERRLICH, KYRIAKOS KEREMEDIS

Abstract. We show:

(i) The countable axiom of choice **CAC** is equivalent to each one of the statements:

(a) a pseudometric space is sequentially compact iff its metric reflection is sequentially compact,

(b) a pseudometric space is complete iff its metric reflection is complete.

(ii) The countable multiple choice axiom CMC is equivalent to the statement:(a) a pseudometric space is Weierstrass-compact iff its metric reflection is Weierstrass-compact.

(iii) The axiom of choice AC is equivalent to each one of the statements:

(a) a pseudometric space is Alexandroff-Urysohn compact iff its metric reflection is Alexandroff-Urysohn compact,

(b) a pseudometric space ${\bf X}$ is Alexandroff-Urysohn compact iff its metric reflection is ultrafilter compact.

(iv) We show that the statement "The preimage of an ultrafilter extends to an ultrafilter" is not a theorem of **ZFA**.

Keywords: weak axioms of choice; pseudometric spaces; metric reflections; complete metric and pseudometric spaces; limit point compact; Alexandroff-Urysohn compact; ultrafilter compact; sequentially compact

Classification: 54E35, 54E45

1. Notation and terminology

Let $\mathbf{X} = (X, T)$ be a topological space. As usual, we denote topological spaces by fat letters and underlying sets by non-fat letters.

X is said to be *compact* iff every open cover \mathcal{U} of **X** has a finite subcover \mathcal{V} .

X is said to be *countably compact* iff every countable open cover \mathcal{U} of **X** has a finite subcover \mathcal{V} .

X is said to be *sequentially compact* iff every sequence $(x_n)_{n \in \mathbb{N}}$ of points of X has a convergent subsequence.

X is called Alexandroff-Urysohn compact iff every infinite subset A of X has a complete accumulation point x (for every neighborhood V of x, $|A \cap V| = |A|$).

H. Herrlich, K. Keremedis

X is called *limit point compact* iff every infinite subset A of X has a *limit point* x (for every neighborhood V of x, $V \cap A \setminus \{x\} \neq \emptyset$).

X is called *Weierstrass-compact* iff every infinite subset A of X has an *accumulation point* x (for every neighborhood V of $x, V \cap A$ is infinite).

X is said to be *ultrafilter compact* iff every ultrafilter \mathcal{F} of X converges to some point x in **X** (for every neighborhood V of x, there exists $F \in \mathcal{F}$ with $V \supseteq F$).

Let X be a non-empty set. A function $\rho: X \times X \to \mathbb{R}$ is called *pseudometric* in case ρ satisfies all the requirements of a metric except possibly the requirement $\rho(x, y) = 0$ implies x = y. If (X, ρ) is a pseudometric space, then the metric reflection (X^*, ρ^*) of (X, ρ) is the set X^* of all equivalence classes in X of the equivalence relation \sim given by:

$$x \sim y$$
 iff $\rho(x, y) = 0$

and $\rho^*: X^* \times X^* \to \mathbb{R}$ is given by

(1)
$$\rho^*([x], [y]) = \rho(x, y),$$

where [x] denotes the equivalence class of the element x.

Let $\mathbf{X} = (X, d)$ be a pseudometric space, $x \in X$ and $\varepsilon > 0$.

$$D(x,\varepsilon) = \{ y \in X : d(x,y) < \varepsilon \}$$

denotes the open disc in **X** with center x and radius ε . If $B \subseteq X$, then $\delta(B) = \sup\{d(x, y) : x, y \in B\}$ is the *diameter* of B.

X is totally bounded iff for every real number $\varepsilon > 0$, there exists an ε -net, i.e., a finite subset $\{x_i : i \leq n\}$ of X such that $\bigcup \{D(d_i, \varepsilon) : i \leq n\} = X$.

X is Cantor complete iff $\bigcap \{G_n : n \in \omega\} \neq \emptyset$ for every descending set $\{G_n : n \in \omega\}$ of non-empty closed subsets of **X** with $\lim_{n\to\infty} \delta(G_n) = 0$.

 \mathbf{X} is said to be *sequentially bounded* if each sequence of points of \mathbf{X} has a Cauchy-subsequence.

Let $h : \mathbf{X} \to \mathbf{X}^*$ be the mapping given by h(x) = [x]. Clearly, a set A in \mathbf{X} is closed (open) iff it is saturated (i.e., contains with any element a each element b with $a \sim b$) and h(A) is closed (open) in \mathbf{X}^* . Also, in view of (1) we see that for every $\varepsilon > 0$ and every $y, x \in X$,

$$y \in D(x,\varepsilon)$$
 iff $[y] \in D([x],\varepsilon)$,

i.e.,

(2)
$$h(D(x,\varepsilon)) = D([x],\varepsilon).$$

Therefore, we have the following straightforward result:

Proposition 1. Let \mathbf{X} be a pseudometric space. Then:

- (i) X is compact (resp. countably compact) iff X* is compact (resp. countably compact).
- (ii) \mathbf{X} is totally bounded iff \mathbf{X}^* is totally bounded.
- (iii) \mathbf{X} is Cantor complete iff \mathbf{X}^* is Cantor complete.

Below we list the choice principles we shall be dealing with in the sequel.

- 1. AC (Form 1, in [6]): Every family $\mathcal{A} = (A_i)_{i \in I}$ of non-empty sets has a choice function.
- 2. CAC (Form 8, in [6]): Every family $\mathcal{A} = (A_i)_{i \in \mathbb{N}}$ of non-empty sets has a choice function. Equivalently, for every family $\mathcal{A} = (A_i)_{i \in \mathbb{N}}$ of non-empty sets has a partial choice function. i.e., there exists an infinite subfamily \mathcal{B} of \mathcal{A} with a choice function.
- 3. CAC_{fin} (Form 10, in [6]): Every family $\mathcal{A} = (A_i)_{i \in \mathbb{N}}$ of non-empty finite sets has a choice function.
- 4. **IDI** (Form 9 in [6]): Every infinite set is Dedekind infinite (has a countably infinite subset).
- 5. **IWDI** (Form 82 in [6]): Every infinite set is weakly Dedekind infinite (its powerset has a countably infinite subset). Equivalently, for every infinite set X there is a function from X onto ω , (Form 82 [A] in [6]).
- 6. CMC (Form 126 in [6]): For every family $\mathcal{A} = (A_i)_{i \in \mathbb{N}}$ of non-empty sets there exists a family $\mathcal{B} = (B_i)_{i \in \mathbb{N}}$ of non-empty finite sets such that for every $i \in \mathbb{N}$, $B_i \subseteq A_i$. Equivalently, for every family $\mathcal{A} = (A_i)_{i \in \mathbb{N}}$ of non-empty sets there exists an infinite subfamily $\mathcal{C} = (A_{i_n})_{n \in \mathbb{N}}$ and a family $\mathcal{B} = (B_n)_{n \in \mathbb{N}}$ of non-empty finite sets such that for every $n \in \mathbb{N}$, $B_n \subseteq A_{i_n}$.
- 7. **KW** (Kinna-Wagner selection principle, Form 15 in [6]): Every family $\mathcal{A} = (A_i)_{i \in I}$ of non-empty sets has a Kinna-Wagner selection, i.e., a family $\mathcal{B} = (B_i)_{i \in I}$ of non-empty sets such that for every $i \in I$, $B_i \subseteq A_i$ and if $|A_i| > 1$ then $B_i \neq A_i$.
- 8. **BPI** (Boolean Prime Ideal Theorem, **Form 14** in [6]): Every Boolean algebra has a prime ideal.
- 9. **SPI** (Weak Ultrafilter Principle, **Form 63** in [6]): Every infinite set has a non-trivial ultrafilter.
- 10. $\mathbf{UF}(\omega)$ (Form 70 in [6]): There is a non-trivial ultrafilter on ω .
- 11. **PUU** : The preimage of an ultrafilter extends to an ultrafilter. Equivalently, for every set X, for every partition P of X, if \mathcal{F} is an ultrafilter of P then the filterbase $\{\bigcup F : F \in \mathcal{F}\}$ of X extends to an ultrafilter.

2. Introduction and some preliminary results

The set theoretic setting in this paper is the Zermelo-Fraenkel set theory ZF without the axiom of choice AC. In ZFC (= ZF and AC), there are several equivalent notions of compactness for pseudometric, as well as, for metric spaces.

See, e.g., [1] and [7]. The following theorem is by no means a complete list of these equivalent forms.

Theorem 2 ([1], [7], [8] (**ZFC**)). Let \mathbf{X} be a pseudometric space. Then the following are equivalent:

- (i) **X** is compact;
- (ii) **X** is Weierstrass-compact;
- (iii) **X** is sequentially compact;
- (iv) **X** is Cantor complete and totally bounded;
- (v) **X** is complete and totally bounded;
- (vi) **X** is countably compact;
- (vii) **X** is Alexandroff-Urysohn compact;
- (viii) **X** is ultrafilter compact;
 - (ix) **X** is complete and sequentially bounded.

In the present project, we study those compactness forms which are shared in \mathbf{ZF} (resp. $\mathbf{ZF} + \mathbf{WAC}$, where \mathbf{WAC} is some weak axiom of choice, \mathbf{ZFC}) by pseudometric spaces and their metric reflections.

Let $\mathcal{A} = \{A_n : n \in \mathbb{N}\}$ be a disjoint family of sets such that for every $n \in \mathbb{N}$, $1 < |A_n| < \aleph_0$. Define a pseudometric d of $X = \bigcup \{A_n : n \in \mathbb{N}\}$ by requiring:

(3)
$$d(x,y) = \begin{cases} 0 & \text{is } x, y \in A_n \text{ for some } n \in \mathbb{N} \\ 1 & \text{otherwise} \end{cases}$$

It is easy to see that every non-empty subset A of \mathbf{X} has trivially a limit point and, no infinite subset of \mathbf{X} has an accumulation point. In particular, \mathbf{X} is limit point compact but not Weierstrass-compact. Thus, in **ZFC**, limit point compact pseudometric spaces need not be Weierstrass-compact. In addition, the metric reflection \mathbf{X}^* of \mathbf{X} being a discrete space is not limit point compact. So, the statement:

(a) If a pseudometric space ${\bf X}$ is limit point compact then so is ${\bf X}^*$

is a false statement in **ZFC**. However, the statement:

(b) If a pseudometric space **X** is Weierstrass-compact then

 \mathbf{X}^* is limit point compact,

as is shown in Theorem 6, is equivalent to the countable multiple choice axiom **CMC**.

In Theorem 4 we show that for every pseudometric space \mathbf{X} if its metric reflection \mathbf{X}^* is sequentially compact then \mathbf{X} is sequentially compact. Moreover, the converse holds iff the countable axiom of choice **CAC** holds true.

Likewise, in Theorem 5 we show that for every pseudometric space \mathbf{X} if the metric reflection \mathbf{X}^* is complete then \mathbf{X} is complete and, in addition, the converse holds iff **CAC** holds true.

80

Finally, in Theorem 8 we show that \mathbf{AC} is equivalent to each one of the statements:

(c) A pseudometric space \mathbf{X} is Alexandroff-Urysohn compact iff \mathbf{X}^* is Alexandroff-Urysohn compact,

and

(d) A pseudometric space \mathbf{X} is Alexandroff-Urysohn compact iff \mathbf{X}^* is ultrafilter compact.

Theorem 3. CMC iff for every family $\mathcal{A} = (A_i)_{i \in I}$ of disjoint non-empty sets there exists an infinite subfamily \mathcal{B} of \mathcal{A} with a multiple choice function.

PROOF: It suffices to show (\rightarrow) as the other implication is straightforward. Fix a disjoint family $\mathcal{A} = (A_i)_{i \in I}$ of non-empty sets. For every $n \in \mathbb{N}$, let $B_n = [I]^n$ denote the set of all *n*-element subsets of *I*. Fix, by **CMC**, a multiple choice set $\mathcal{C} = \{C_n : n \in \mathbb{N}\}$ of the set $\{B_n : n \in \mathbb{N}\}$ and let for every $n \in \mathbb{N}$, $I_n = \bigcup C_n$. Clearly, $I_n \in [I]^{<\omega}$ where $[I]^{<\omega}$ denotes the set of all finite subsets of *I*. Without loss of generality we may assume that for all $n, m \in \mathbb{N}$, $I_n \cap I_m = \emptyset$. Put $\mathcal{E} = \{E_n : n \in \mathbb{N}\}$ where, for all $n \in \mathbb{N}$, $E_n = \bigcup \{A_i : i \in I_n\}$ and let, by **CMC** again, $\mathcal{H} = \{H_n : n \in \mathbb{N}\}$ be a multiple choice set of \mathcal{E} . For every $n \in \mathbb{N}$, let $I'_n = \{i \in I_n : H_n \cap A_i \neq \emptyset\}$. Clearly, the subfamily $\mathcal{F} = (A_i)_{i \in I'}$ where $I' = \bigcup \{I'_n : n \in \mathbb{N}\}$ is infinite and has a multiple choice set, finishing the proof of the theorem.

3. Main results

It is known, in the realm of pseudometric spaces, that total boundedness implies sequential boundedness, and that both concepts are equivalent iff **CAC** holds. See [1] Section 2. We show next that **CAC** is equivalent to each one of the statements: "A pseudometric space \mathbf{X} is sequentially compact iff \mathbf{X}^* is sequentially compact" and "a pseudometric space \mathbf{X} is sequentially bounded iff \mathbf{X}^* is sequentially bounded".

Theorem 4. The following statements are equivalent:

- (i) **CAC**;
- (ii) a pseudometric space \mathbf{X} is sequentially compact iff \mathbf{X}^* is sequentially compact;
- (iii) a pseudometric space \mathbf{X} is sequentially bounded iff \mathbf{X}^* is sequentially bounded.

PROOF: (i) \rightarrow (ii) (\rightarrow) Fix a sequence $(c_n)_{n\in\mathbb{N}}$ of points of X^* and fix, by **CAC**, $x_n \in c_n$ for every $n \in \mathbb{N}$. Since **X** is sequentially compact, it follows that some subsequence $(x_{n_k})_{k\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$ converges to some point $x \in \mathbf{X}$. We claim that the subsequence $(c_{n_k})_{k\in\mathbb{N}}$ of $(c_n)_{n\in\mathbb{N}}$ converges to c = [x]. Indeed, fix $\varepsilon > 0$ and let $n_0 \in \mathbb{N}$ satisfy: $\forall k \ge n_0, d(x_{n_k}, x) < \varepsilon$. Then,

$$\forall k \ge n_0, d^*(c_{n_k}, c) = d^*([x_{n_k}], [x]) = d(x_{n_k}, x) < \varepsilon$$

and $(c_{n_k})_{k \in \mathbb{N}}$ converges to c as required.

 (\leftarrow) We show that this direction holds true in **ZF**. Fix a sequence $(x_n)_{n\in\mathbb{N}}$ of points of X and let for every $n \in \mathbb{N}$, $c_n = [x_n] \in X^*$. Since **X**^{*} is sequentially compact, it follows that $(c_n)_{n\in\mathbb{N}}$ has a limit point c = [x]. Let $(c_{n_k})_{k\in\mathbb{N}}$ be a subsequence of $(c_n)_{n\in\mathbb{N}}$ converging to c. Fix $\varepsilon > 0$ and let $n_0 \in N$ satisfy: $\forall k \ge n_0, d^*(c_{n_k}, c) < \varepsilon$. Then, $\forall n \ge n_0, d(x_{n_k}, x) = d^*(c_{n_k}, c) < \varepsilon$. Thus, the subsequence $(x_{n_k})_{k\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$ converges to x and **X** is limit point compact as required.

(ii) \rightarrow (i) Fix $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$ a disjoint family of non-empty sets. Assume, aiming for a contradiction, that \mathcal{A} has no infinite subfamily with a choice set. Let d be the pseudometric on $X = \bigcup \{A_n : n \in \mathbb{N}\}$ given by (3).

We claim that **X** is sequentially compact. To see this, fix $(x_n)_{n \in \mathbb{N}}$ a sequence of points of X. Then for some $n \in \mathbb{N}$,

$$E_n = \{m \in \mathbb{N} : x_m \in A_n\}$$

is infinite as otherwise a partial choice for the family \mathcal{A} can be easily derived. Let k_m denote the *m*-th element of E_n . Clearly, $(x_{k_m})_{m \in \mathbb{N}}$ is a subsequence of $(x_n)_{n \in \mathbb{N}}$ and for every $x \in A_n$, $d(x_{k_m}, x) = 0$. Thus, $(x_{k_m})_{m \in \mathbb{N}}$ converges to x and \mathbf{X} is sequentially compact as required. Therefore, by our hypothesis, \mathbf{X}^* is sequentially compact. Since for every $n \in \mathbb{N}$, $A_n \in X^*$ and for every $n, m \in \mathbb{N}$ with $n \neq m$, $d^*(A_n, A_m) = 1$, it follows that the sequence $(A_n)_{n \in \mathbb{N}}$ of points of \mathbf{X}^* has no convergent subsequence. Contradiction! Thus, \mathcal{A} has a choice set and **CAC** holds as required.

 $(i) \rightarrow (iii)$ This is straightforward.

(iii) \rightarrow (i) Fix $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$, d and $X = \bigcup \{A_n : n \in \mathbb{N}\}$ as in the proof of (ii) \rightarrow (i). We claim, assuming that \mathcal{A} has no infinite subfamily with a choice function, that \mathbf{X} is sequentially compact. To see this, fix $(x_n)_{n \in \mathbb{N}}$ a sequence of points of X. Clearly, the subsequence $(x_{k_m})_{m \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$ given in the proof of (ii) \rightarrow (i) is Cauchy. Thus, \mathbf{X} is sequentially bounded. Hence, by our hypothesis, \mathbf{X}^* is sequentially bounded. Contradiction! (The sequence $(A_n)_{n \in \mathbb{N}}$ of points of \mathbf{X}^* has clearly no Cauchy subsequence).

Theorem 5. The following statements are equivalent:

- (i) **CAC**;
- (ii) a pseudometric space \mathbf{X} is complete iff \mathbf{X}^* is complete.

PROOF: (i) \rightarrow (ii) (\rightarrow) Fix a Cauchy sequence $(c_n)_{n\in\mathbb{N}}$ of points of X^* and fix, by **CAC**, $x_n \in c_n$ for every $n \in \mathbb{N}$. Since, by (1), for all $n, m \in \mathbb{N}$,

(4)
$$d(x_n, x_m) = d^*(c_n, c_m)$$

it follows that $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence of points of **X**. Since **X** is complete, it follows that $(x_n)_{n\in\mathbb{N}}$ converges to some point $x \in \mathbf{X}$. In view of (4) it follows that the sequence $(c_n)_{n\in\mathbb{N}}$ converges to c = [x] and \mathbf{X}^* is complete as required. (\leftarrow) We show that this direction holds true in **ZF**. Fix a Cauchy sequence $(x_n)_{n\in\mathbb{N}}$ of points of X and let for every $n\in\mathbb{N}$, $c_n=[x_n]\in X^*$. By (4), $(c_n)_{n\in\mathbb{N}}$ is a Cauchy sequence of **X**^{*}. Since **X**^{*} is complete, it follows that $(c_n)_{n\in\mathbb{N}}$ converges to some point c = [x] of **X**^{*}. In view of (1) we see that $(x_n)_{n\in\mathbb{N}}$ converges to x. Hence, **X** is complete as required.

(ii) \rightarrow (i) Fix $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$ and X as in the proof of (ii) \rightarrow (i) of Theorem 4 and let $d: X \times X \rightarrow \mathbb{R}$ be given by the rule:

(5)
$$d(x,y) = \begin{cases} 0 \text{ is } x, y \in A_n \text{ for some } n \in \mathbb{N} \\ 1/n \text{ if } x \in A_n, y \in A_m \text{ and } n < m \end{cases}$$

Assume, aiming for a contradiction, that \mathcal{A} has no partial choice. We claim that (X, d) is complete. Indeed, if $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence of points of X then, as in the proof of (ii) \rightarrow (i), $(x_n)_{n \in \mathbb{N}}$ has a convergent subsequence $(x_{k_n})_{n \in \mathbb{N}}$ say to the point $x \in X$. Since, $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence, it follows that $(x_n)_{n \in \mathbb{N}}$ converges to x. Hence, (X, d) is complete as required.

We claim that $(A_n)_{n \in \mathbb{N}}$ is a Cauchy sequence of \mathbf{X}^* . Indeed, for every $\varepsilon > 0$ pick $n_0 \in \mathbb{N}$ such that $1/n_0 < \varepsilon$. Then, for every $n, m \ge n_0$, $d^*(A_n, A_m) \le 1/n_0 < \varepsilon$. However, $(A_n)_{n \in \mathbb{N}}$ converges to no point of \mathbf{X}^* . Contradiction! Thus, \mathcal{A} has a choice set and **CAC** holds as required.

Theorem 6. The following statements are equivalent:

- (i) **CMC**;
- (ii) a pseudometric space \mathbf{X} is Weierstrass-compact iff \mathbf{X}^* is Weierstrass-compact.

PROOF: Assume that **CMC** holds and show that "a pseudometric space **X** is Weierstrass-compact iff its metric reflection \mathbf{X}^* is limit point compact".

 (\leftarrow) We show that this direction holds true in **ZF**. Fix an infinite subset A of X. If for some $x \in X$, $[x] \cap A$ is infinite then x is clearly an accumulation point of A. Otherwise, the set $B = \{[a] : a \in A\}$ is an infinite subset of \mathbf{X}^* . Hence, by our hypothesis, B has a limit point b = [x] for some $x \in X$. Thus, for every $\varepsilon > 0$, $D(b, \varepsilon) \cap B$ is an infinite subset of B. Since $y \in D(x, \varepsilon) \iff [y] \in D(b, \varepsilon)$ we see that for every $\varepsilon > 0$, $D(x, \varepsilon) \cap A$ is an infinite subset of A. Thus, x is a limit point of A and \mathbf{X} is Weierstrass-compact.

 (\rightarrow) Fix an infinite subset A of X^* . Let, by Theorem 3, $\{h^{-1}(a_i) : i \in I\}$ be an infinite subfamily of $\{h^{-1}(a) : a \in A\}$ with a multiple choice set $\mathcal{G} = \{G_i : i \in I\}$. Clearly, $G = \bigcup \{G_i : i \in I\}$ is an infinite subset of X. Hence, by our hypothesis G has an accumulation point g, i.e., for every $\varepsilon > 0$, $D(g,\varepsilon) \cap G$ is an infinite subset of G. Since, for every $a \in A$, $G \cap h^{-1}(a)$ is a finite set, it follows that for every $\varepsilon > 0$, $D([g], \varepsilon) \cap A$ is an infinite subset of A. Hence, [g] is an accumulation point of A and \mathbf{X}^* is Weierstrass-compact as required.

We assume that for every pseudometric space (X, d), **X** is Weierstrass-compact iff **X**^{*} is Weierstrass-compact and show that **CMC** holds true.

Assume on the contrary and let $\mathcal{A} = \{A_i : i \in \mathbb{N}\}$ be a family of non-empty sets having no infinite subfamily $\mathcal{B} = \{B_{i_n} : n \in \mathbb{N}\}$ with a multiple choice set. Put $X = \bigcup \mathcal{A}$ and let $d : X \times X \to \mathbb{R}$ be the pseudometric given by (3). We show that **X** is Weierstrass-compact. Fix K an infinite subset of X. If $K \cap A_i$ is infinite for some $i \in \mathbb{N}$, then every member of A_i is an accumulation point of K. So, we assume that for every $i \in \mathbb{N}$, $K_i = K \cap A_i$ is a finite subset of A_i . Since K is infinite, it follows that $K = \{K_i : i \in \mathbb{N}\} \setminus \{\emptyset\}$ is a multiple choice of an infinite subfamily of \mathcal{A} . Contradiction! Thus, **X** is Weierstrass-compact. Hence, by our hypothesis, **X**^{*} is Weierstrass-compact contradicting the fact that **X**^{*} is an infinite discrete space. Thus, **CMC** holds true as required. \Box

Proposition 7. The following statements are equivalent:

- (i) **AC**;
- (ii) a topological space is compact iff it is Alexandroff-Urysohn compact ([4]);
- (iii) a topological space is ultrafilter compact iff it is Alexandroff-Urysohn compact ([4]);
- (iv) a pseudometric space is compact iff it is Alexandroff-Urysohn compact;
- (v) a pseudometric space is ultrafilter compact iff it is Alexandroff-Urysohn compact.

PROOF: (i) \leftrightarrow (ii) \leftrightarrow (iii) These have been established in [4].

The implications $(ii) \rightarrow (iv)$ and $(iii) \rightarrow (v)$ are straightforward.

 $(iv) \rightarrow (i)$ We mimic the proof of Theorem 3.22 from [4]. It suffices to show that for any two non-empty disjoint sets A, B either $|A| \leq |B|$ or $|B| \leq |A|$. Let $X = A \cup B$ and define a pseudometric $d: X \times X \rightarrow \mathbb{R}$ by requiring:

$$d(x,y) = \begin{cases} 1 \text{ if } x \in A \text{ and } y \in B \text{ or, } x \in B \text{ and } y \in A \\ 0 \text{ otherwise} \end{cases}$$

Clearly, **X** is a compact pseudometric space. Thus, by our hypothesis, **X** is Alexandroff-Urysohn compact and consequently X has a complete accumulation point x. If $x \in A$ then A = D(x, 1) is a neighborhood of x and $|A| = |A \cup B|$ meaning that $|B| \leq |A|$. Similarly, if $x \in B$ then $(v) \rightarrow (i)$ This can be proved as in $(iv) \rightarrow (i)$. $|A| \leq |B|$, finishing the proof of the proposition.

Theorem 8. The following statements are equivalent:

- (i) **AC**;
- (ii) a pseudometric space X is Alexandroff-Urysohn compact iff X* is Alexandroff-Urysohn compact;
- (iii) a pseudometric space \mathbf{X} is Alexandroff-Urysohn compact iff \mathbf{X}^* is ultrafilter compact.

PROOF: (i) \rightarrow (ii) (\rightarrow) This follows at once from Proposition 7. If **X** is Alexandroff-Urysohn compact then by Proposition 7, **X** is compact. Hence, by Proposition 1, **X**^{*} is compact. By Proposition 7 again, **X**^{*} is Alexandroff-Urysohn compact. Similarly, if \mathbf{X}^* is Alexandroff-Urysohn compact then \mathbf{X} is Alexandroff-Urysohn compact.

 $(ii) \rightarrow (i)$ This follows from the observation that in the proof of Proposition 7 the metric reflection \mathbf{X}^* of \mathbf{X} is a two point discrete space which is trivially Alexandroff-Urysohn compact.

 $(i) \rightarrow (iii) (\rightarrow)$ This follows at once from the proof of Proposition 7, the fact that the pseudometric space **X** is clearly ultrafilter compact and the proof of $(i) \rightarrow (ii)$ of the present theorem.

 $(iii) \rightarrow (i)$ Note that in the proof of Proposition 7 the metric reflection \mathbf{X}^* of \mathbf{X} is a two point discrete space which is trivially ultrafilter compact.

Clearly, the image of a filterbase under a function $f: X \to Y$ is a filterbase. In contrast with the image of a filterbase, the preimage of a filterbase need not be a filterbase. Indeed, if f is not onto then $f^{-1}(F)$ might be empty for some non-empty set A. Likewise, even in case where f is onto, the preimage of a filter \mathcal{F} need not be a filter.

Remark 9. We remark here that **PUU** is strictly weaker than **BPI**. Indeed, in any **ZF** model without free ultrafilters, such as the Feferman/Blass Model, model $\mathcal{M}15$ in [6], **PUU** holds. Indeed, fix an onto function $f: X \to Y$ and let \mathcal{F} be an ultrafilter of Y. Clearly, $\mathcal{F} = \{F \subset Y : f(x) \in F\}$ for some $x \in X$. Then, it is easy to see that $\mathcal{F}^* = \{A \subset X : x \in A\}$ is the required ultrafilter of Xextending the filterbase $\mathcal{W} = \{f^{-1}(F) : F \in F\}$. However, **BPI** fails in $\mathcal{M}15$ because the filter of all cofinite subsets of ω does not extend to an ultrafilter (such an ultrafilter is clearly a free ultrafilter of ω). The last observation also shows that $\mathcal{M}15$ witnesses the fact that **PUU** does not imply **UF**(ω) in **ZF**.

Clearly, **AC** implies the statement:

(h) A pseudometric space \mathbf{X} is ultrafilter compact iff \mathbf{X}^* is ultrafilter compact. However, (h) does not imply \mathbf{AC} . Indeed, in $\mathcal{M}15$ every space is ultrafilter compact, thus (h) holds but \mathbf{AC} fails.

Next, we show that **PUU** implies (h).

- **Theorem 10.** (i) For every pseudometric space \mathbf{X} , if \mathbf{X}^* is ultrafilter compact then so is \mathbf{X} .
 - (ii) PUU implies "for every pseudometric space X, if X is ultrafilter compact then so is X*".
 - (iii) $\mathbf{UF}(\omega)$ and \mathbf{IWDI} and "for every pseudometric space X, if X is ultrafilter compact then so is \mathbf{X}^* " together imply **SPI**.
 - (iv) The negation of **PUU** implies "there exists an infinite set X and a free ultrafilter \mathcal{F} on X" (Form 206 in [6]).

PROOF: Fix **X**, a pseudometric space, and let $h : \mathbf{X} \to \mathbf{X}^*$ be the mapping given by h(x) = [x].

(i) Fix an ultrafilter \mathcal{F} of **X**. We show that \mathcal{F} converges to some point $y \in X$. For every $A \in \mathcal{P}(X)$ let $A^* = h(A) = \{[a] : a \in A\}$. Clearly, $\mathcal{F}^* = \{F^* : F \in \mathcal{F}\}$ a filterbase of \mathbf{X}^* . To see that \mathcal{F}^* is an ultrafilter of \mathbf{X}^* , fix $H \subseteq X^*$, such that for all $F \in \mathcal{F}$, $H \cap F^* \neq \emptyset$. Since $H = (\bigcup H)^*$ it follows that for all $F \in \mathcal{F}$, $(\bigcup H) \cap F \neq \emptyset$ (if $(\bigcup H) \cap F = \emptyset$ for some $F \in \mathcal{F}$, then $(\bigcup H)^* \cap F^* = \emptyset$). Thus, by the fact that \mathcal{F} is an ultrafilter, $\bigcup H \in \mathcal{F}$ and consequently $H \in \mathcal{F}^*$ and \mathcal{F}^* is an ultrafilter as required. By our hypothesis, it follows that for some $[y] \in \mathbf{X}^*$, $D([y], \varepsilon) \in \mathcal{F}^*$ for every $\varepsilon > 0$. Hence, for every $\varepsilon > 0$, $\bigcup D([y], \varepsilon) \in \mathcal{F}$. Since, $\bigcup D([y], \varepsilon) = D(y, \varepsilon)$ it follows that for every $\varepsilon > 0$, $D(y, \varepsilon) \in \mathcal{F}$ and consequently \mathcal{F} converges to y as required.

(ii) Fix \mathcal{F} an ultrafilter of \mathbf{X}^* and let $\mathcal{H} = \{h^{-1}(F) (= \bigcup F) : F \in \mathcal{F}\}$. By **PUU**, there exists an ultrafilter \mathcal{G} of \mathbf{X} extending \mathcal{H} . By the ultrafilter compactness of \mathbf{X} , \mathcal{G} converges to some point $x \in \mathbf{X}$. Thus, $\{D(x,\varepsilon) : \varepsilon > 0\} \subseteq \mathcal{G}$. Hence, $\{D(x,\varepsilon) : \varepsilon > 0\} \cup \mathcal{H}$ has the fip. Since \mathcal{F} is an ultrafilter, $\{D([x],\varepsilon) : \varepsilon > 0\} \subseteq \mathcal{F}$ meaning that \mathcal{F} converges to [x]. Hence, \mathbf{X}^* is ultrafilter compact finishing the proof of (ii).

(iii) Assume on the contrary that **SPI** fails and fix X an infinite set without a free ultrafilter. Fix, by **IWDI**, an onto function $f : X \to \omega$ and define a pseudometric d on X by requiring:

$$d(x,y) = \begin{cases} 0 \text{ if } x, y \in f^{-1}(n) \text{ for some } n \in \omega \\ 1 \text{ otherwise} \end{cases}$$

Clearly, **X** is ultrafilter compact. Hence, by our hypothesis \mathbf{X}^* is ultrafilter compact. Without loss of generality we may identify X^* with ω and the topology T_{d^*} with the discrete topology on ω . Fix, by $\mathbf{UF}(\omega)$, a free ultrafilter \mathcal{F} of ω and let \mathcal{F} converge to a point, say n, of ω . Then $\{n\} \in \mathcal{F}$ contradicting the fact that \mathcal{F} is free. Thus, **SPI** holds as required.

 \square

(iv) This, in view of Remark 9, is straightforward.

It is easy to see that:

(A) $\mathbf{UF}(\omega) + \mathbf{IDI} \to \mathbf{SPI}$

and,

(B) $\mathbf{UF}(\omega) + \mathbf{IWDI} \rightarrow$ "for every infinite set X, $\wp(X)$ has a free ultrafilter".

In [3] it has been shown in **ZF** that:

For every well-ordered cardinal number k, k has a free ultrafilter iff $\wp(k)$ has a free ultrafilter.

Hence, the statement: "For every infinite set X, $\wp(X)$ has a free ultrafilter" implies $\mathbf{UF}(\omega)$. Combining the latter implication with (A) we get:

Proposition 11. The conjunction **IDI** and "for every infinite set X, $\wp(X)$ has a free ultrafilter" implies **SPI**.

Remark 12. A. Blass has shown in [2] that in the model $\mathcal{M}15$ in [6], $\mathbf{UF}(\omega)$ fails but there is a free ultrafilter on the set of equivalence classes of reals modulo finite difference. Hence in $\mathcal{M}15$, $\wp(\mathbb{R})$ has a free ultrafilter but \mathbb{R} has no free ultrafilter.

Question 1. Can IDI be replaced by IWDI in (A)?

If the answer to Question 1 is in the negative, then the statement "if the pseudometric space \mathbf{X} is ultrafilter compact then so is \mathbf{X}^* " is unprovable in \mathbf{ZF} .

Clearly, the statement:

(e) "Cantor complete pseudometric spaces are complete"

is a theorem of \mathbf{ZF} . The standard proof that Cantor complete pseudometric spaces are complete goes through in \mathbf{ZF} . In [7] it is shown that the statement:

(f) "Every complete metric space (X, d) is Cantor complete"

implies CAC_{fin} . Hence, the statement

(g) "every complete pseudometric space (X, d) is Cantor complete"

also implies CAC_{fin} . We show next that (g) implies something stronger than CAC_{fin} .

Theorem 13. The following statements are equivalent:

- (i) **CAC**;
- (ii) every pseudometric space **X** is complete iff it is Cantor complete.

PROOF: (i) \rightarrow (ii) The standard **ZFC** proof that a pseudometric space is Cantor complete iff it is complete goes through if we only assume **CAC**.

 $(ii) \to (i)$ Let $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$ be a disjoint family of non-empty sets such that no infinite subfamily of \mathcal{A} has a choice function and consider the pseudometric d on $X = \bigcup \{A_n : n \in \mathbb{N}\}$ given by (5). Clearly, **X** is complete. For every $n \in \mathbb{N}$ let

$$G_n = \bigcup \{A_m : m \ge n\}.$$

It can be readily verified that each G_n is a closed subset of \mathbf{X} , $\lim_{n\to\infty} \delta(G_n) = 0$ and $\bigcap \{G_n : n \in \mathbb{N}\} = \emptyset$. Thus, \mathbf{X} is not Cantor complete. Contradiction! Hence, \mathcal{A} has a choice function.

Acknowledgment. We would like to thank the referee for some useful suggestions which improved our paper.

References

- Bentley H.L., Herrlich H., Countable choice and pseudometric spaces, Topology Appl. 85 (1998), 153–164.
- Blass A., The model of set theory generated by countably many generic reals, J. Symbolic Logic 46 (1981), 732–752.
- [3] Hall E., Keremedis K., Tachtsis E., The existence of free ultrafilters on ω does not imply the extension of filters on ω to ultrafilters, Math. Logic Quart. 59 (2013), 158–267.
- [4] Herrlich H., Axiom of Choice, Lecture Notes in Mathematics, 1876, Springer, New York, 2006.
- [5] Howard P., Keremedis K., Rubin H., Stanley A., Compactness in countable Tychonoff products and choice, Math. Logic Quart. 46 (2000), 3–16.

H. Herrlich, K. Keremedis

- [6] Howard P., Rubin J.E., Consequences of the axiom of choice, Math. Surveys and Monographs, 59, American Mathematical Society, Providence, R.I., 1998.
- [7] Keremedis K., On the relative strength of forms of compactness of metric spaces and their countable productivity in ZF, Topology Appl. 159 (2012), 3396–3403.
- [8] Munkres J.R., *Topology*, Prentice-Hall, New Jersey, 1975.

Feldhäuser Str. 69, 28865 Lilienthal, Germany

E-mail: horst.herrlich@t-online.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF THE AEGEAN, KARLOVASSI, SAMOS 83200, GREECE

E-mail: kker@aegean.gr

(Received January 25, 2014, revised March 21, 2014)