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On isometrical extension properties of function spaces
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Abstract. In this note, we prove that any “bounded” isometries of separable
metric spaces can be represented as restrictions of linear isometries of function
spaces C(Q) and C(∆), where Q and ∆ denote the Hilbert cube [0, 1]∞ and
a Cantor set, respectively.
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1. Introduction

A well-known theorem of Banach and Mazur is the result that C(I) (I = [0, 1])
is a universal space of separable metric spaces up to isometry (see [1]). But it
seems that there is no research of extension properties of isometries on separable
metric spaces in function spaces C(Z) because that C(I) does not have such a
property.

In this note, we prove that any “bounded” isometries of separable metric spaces
can be represented as restrictions of linear isometries of function spaces C(Q)
and C(∆), where Q and ∆ denote the Hilbert cube [0, 1]∞ and a Cantor set,
respectively. Also, Urysohn [7] constructed a complete separable metric space
U that is also universal up to isometry. In [8], Uspenskij proved that for any
separable metric space X there is a natural isometrical embedding i : X → U

such that i induces a natural continuous monomorphism i⋆ : Iso(X) → Iso(U)
satisfying that i⋆(g) ∈ Iso(U) is an extension of g ∈ Iso(X). In fact, we show
that the function spaces C(Q) and C(∆) satisfy similar extension properties.

In this note, unless stated otherwise, we assume that all maps are continuous
functions. Let Z, N and R denote the set of integers, the set of natural numbers
and the set of real numbers, respectively. If K is a subset of a space X , then
Cl(K), Bd(K) and Int(K) denote the closure, the boundary and the interior of K
in X , respectively. For any compact metric space Z, C(Z) denotes the function

space of all (continuous) maps from Z to R with the supremum metric d̃, i.e.,

d̃(f, g) = sup{|f(z)− g(z)| | z ∈ Z}
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for f, g ∈ C(Z). A map i : (X, dX) → (Y, dY ) between separable metric spaces
is an isometrical embedding from (X, dX) into (Y, dY ) if i satisfies the condi-
tion dY (i(x), i(x′)) = dX(x, x′) for each x, x′ ∈ X . A map g : (X, dX) →
(Y, dY ) between separable metric spaces is an isometry if g is surjective and
dY (g(x), g(x′)) = dX(x, x′) for each x, x′ ∈ X . For a separable metric space
(X, d), let Iso(X) be the group of all isometries of X equipped with the pointwise
convergent topology, i.e.,

Iso(X) = {g : X → X | g is an isometry}.

Let (X, d) be a separable metric space and x0 ∈ X . A subgroup G of Iso(X)
is bounded if diamG(x0) < ∞, where G(x0) = {g(x0)| g ∈ G} (⊂ X). The
definition of “bounded subgroup” of Iso(X) does not depend on the choice of the
point x0 ∈ X . Also, each g ∈ Iso(X) is bounded if diam{gn(x0)| n ∈ Z} < ∞.
Note that if (X, d) is bounded, i.e. diamd X <∞, then Iso(X) itself is bounded.
In particular, if X is a compact metric space, then Iso(X) is bounded. In [3],
Mazur and Ulam proved that if B and B′ are Banach spaces, then every isometry
T : B → B′ with T (0) = 0 is linearly isometric and moreover, Banach and
Stone proved that if X and Y are compact Hausdorff spaces, then every isometry
T : C(X)→ C(Y ) with T (0) = 0 is linearly isometric and moreover, T is induced
by a homeomorphism h : Y → X (see [1], [6]).

Theorem 1.1 (Banach [1] and Stone [6]). Let X and Y be compact Hausdorff

spaces. Then the followings hold.

(1) C(X) is isometric to C(Y ) if and only if X is homeomorphic to Y .

(2) If T : C(X)→ C(Y ) is a linear isometry, then there is a homeomorphism

h : Y → X and a (continuous) map α : Y → R with |α(y)| = 1 for y ∈ Y
such that

(T (f))(y) = α(y) · (f ◦ h)(y)

for f ∈ C(X) and y ∈ Y . Moreover, if Y is connected, T (f) = f ◦ h or

T (f) = −(f ◦ h).

For any Banach space B, let

LinIso(B) = {f ∈ Iso(B) | f is linear}.

Note that LinIso(B) is bounded, because LinIso(B)(0) = {0}.

2. Extensions of bounded isometries in C(Q)

In this section, we assume that (X, d) is a separable metric space and x0 is a
fixed point of X . In [5], Sierpiński considered the space

X ′ = {f : X → R | f(x0) = 0 and |f(x)− f(y)| ≤ d(x, y) for x, y ∈ X}

which is a topological space equipped with the pointwise convergent topology and
by use of the spaces X ′, he proved that C(I) is a universal space of separable
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metric spaces up to isometry. We modify the Sierpiński’s method of [5]. In this
note, for any bounded subgroup G of Iso(X), we consider the following more
general space

X̃ (= X̃G) = {f : X → R | f(z) ∈ [− diam(G(x0)), diam(G(x0))]

for z ∈ G(x0) and |f(x)− f(y)| ≤ d(x, y) for x, y ∈ X}

which is a topological space equipped with the pointwise convergent topology.
Since X̃ is compact convex, we can easily see the following.

Lemma 2.1. X̃(= X̃G) is a compact metric absolute retract (= AR). Moreover,

if g ∈ G, then g̃ : X̃ → X̃ is a homeomorphism, where g̃ is defined by g̃(f) = f ◦g

for f ∈ X̃ .

Lemma 2.2. Suppose that pG : Z → X̃(= X̃G) is a map from a compact

metric space Z onto X̃ such that for each g ∈ G there is a (lift) homeomorphism

Lg : Z → Z satisfying the following commutative diagram.

Z
Lg

−−−−→ Z

pG





y





y

pG

X̃
g̃

−−−−→ X̃

Then there is an isometrical embedding iG : X → C(Z) such that for each g ∈ G,

the following commutative diagram holds.

X
g

−−−−→ X

iG





y





y

iG

C(Z)
L̃g

−−−−→ C(Z)

Here L̃g : C(Z)→ C(Z) is the isometry defined by L̃g(f) = f ◦ Lg for f ∈ C(Z).

In particular, L̃g ∈ LinIso(C(Z)) is an isometrical extension of g ∈ G.

Proof: Define iG : X → C(Z) by iG(x)(z) = pG(z)(x) for each x ∈ X and z ∈ Z
(see [5]). We will show that iG is an isometrical embedding. Let x, y ∈ X . Since

pG(z) ∈ X̃ (z ∈ Z),

d(iG(x), iG(y)) = sup{|iG(x)(z)− iG(y)(z)| | z ∈ Z}

= sup{|pG(z)(x)− pG(z)(y)| | z ∈ Z} ≤ d(x, y).

Let x ∈ X be fixed. Define hx : X → R by hx(y) = d(x, y) − d(x, x0). We will

show that hx ∈ X̃. Note that hx(x0) = 0 and |hx(y) − hx(y′)| ≤ d(y, y′) for
y, y′ ∈ X . Let z ∈ G(x0). Since d(x0, z) ≤ diam(G(x0)),

|hx(z)| = |hx(x0)− hx(z)| ≤ d(x0, z) ≤ diam(G(x0)).
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Then hx(z) ∈ [− diam(G(x0)), diam(G(x0))] and hence hx ∈ X̃ . Since pG is
surjective, there is z ∈ Z such that pG(z) = hx. Then

|iG(x)(z)− iG(y)(z)| = |pG(z)(x)− pG(z)(y)| = |hx(x) − hx(y)| = d(x, y).

Therefore, we see that iG is an isometrical embedding.
Finally, we will show that L̃g ◦ iG = iG ◦ g. By the commutative diagram of

the assumption, we see that for z ∈ Z,

(pG ◦ Lg)(z) = (g̃ ◦ pG)(z).

For each z ∈ Z and x ∈ X ,

(L̃g ◦ iG(x))(z) = (iG(x) ◦ Lg)(z) = iG(x)(Lg(z)) = pG(Lg(z))(x)

= (g̃ ◦ pG(z))(x) = (pG(z) ◦ g)(x) = pG(z)(g(x)) = iG(g(x))(z).

Consequently, we see that L̃g ◦ iG = iG ◦ g. This completes the proof. �

Here we have the following theorem which implies that C(Q) is universal con-
cerning isometrical extensions of bounded isometry groups of separable metric
spaces.

Theorem 2.3. Let (X, d) be a separable metric space and let G be any bounded

subgroup of Iso(X). Then there is an isometrical embedding iG : X → C(Q)
such that iG induces a continuous monomorphism i⋆G : G → LinIso(C(Q)) such

that i⋆G(g) ∈ LinIso(C(Q)) is an extension of g ∈ G.

Proof: By Lemma 2.1, X̃(= X̃G) is a compact metric AR and hence X̃ × Q is

homeomorphic to Q (see [4, Theorems 7.5.8 and 7.8.1]). We identify X̃ ×Q with

Q, i.e. X̃ ×Q = Q. Let p = pG : X̃ ×Q→ X̃ is the natural projection. For each
g ∈ G, there is the natural (lift) homeomorphism Lg = g̃× idQ : X̃ ×Q→ X̃ ×Q
satisfying the following commutative diagram.

X̃ ×Q
Lg

−−−−→ X̃ ×Q

pG





y





y

pG

X̃
g̃

−−−−→ X̃

By Lemma 2.2, we see that for each g ∈ G, the following diagram is commutative.

X
g

−−−−→ X

iG





y





y

iG

C(X̃ ×Q)
L̃g

−−−−→ C(X̃ ×Q)

Note that the map i⋆G : G → LinIso(C(X̃ × Q)) = LinIso(C(Q)) defined by

i⋆G(g) = L̃g is the desired continuous monomorphism. �
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Corollary 2.4. Suppose that (X, d) is a bounded separable metric space. Then

there is an isometrical embedding i : X → C(Q) such that i induces a continuous

monomorphism i⋆ : Iso(X) → LinIso(C(Q)) such that i⋆(g) ∈ LinIso(C(Q)) is

an extension of g ∈ Iso(X).

Remark 1. Note that for any Banach space B, LinIso(B) is a bounded group.
Hence in this paper, we cannot omit the condition that G is bounded.

If we observe the proof of Lemma 2.2, we see that some converse assertions of
Lemma 2.2 are also true. In fact, we show that “isometrical extension properties”
are equivalent to “lifting properties” of homeomorphisms.

Proposition 2.5. Suppose that pG : Z → X̃(= X̃G) is a map from a compact

metric space Z onto X̃, iG : X → C(Z) is the isometrical embedding as in the

proof of Lemma 2.2 and g ∈ G. Let Lg : Z → Z be a homeomorphism. Then the

followings hold.

(1) The following diagram is commutative:

Z
Lg

−−−−→ Z

pG





y





y

pG

X̃
g̃

−−−−→ X̃

if and only if the following diagram is commutative:

X
g

−−−−→ X

iG





y





y

iG

C(Z)
L̃g

−−−−→ C(Z)

(2) The following diagram is commutative:

Z
Lg

−−−−→ Z

pG





y





y

pG

X̃
−g̃
−−−−→ X̃

if and only if the following diagram is commutative:

X
g

−−−−→ X

iG





y





y

iG

C(Z)
−L̃g

−−−−→ C(Z)
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Proof: We will prove only the converse assertion of (2). We assume that iG◦g =

−L̃g ◦ iG. Hence we have iG(g(x))(z) = (−L̃g ◦ iG(x))(z) = −iG(x)(Lg(z)) for
each x ∈ X and z ∈ Z. Then

(pG ◦ Lg(z))(x) = pG(Lg(z))(x) = iG(x)(Lg(z))

= −iG(g(x))(z) = −pG(z)(g(x)) = ((−g̃) ◦ pG(z))(x).

Hence pG ◦ Lg = (−g̃) ◦ pG. �

Example. Let X = {xi| i = 0, 1, 2} be the set of three elements and let d be
the metric on X defined by d(xi, xj) = r > 0 (i 6= j). Define the isometry
g : X → X by g(x0) = x0, g(x1) = x2 and g(x2) = x1. Let G = {idX , g}.
Note that G(x0) = {x0}. We will show that there is an isometrical embedding
iG : X → C(Q) such that there is no isometrical extension of g on C(Q). Note
that

X̃G = {f : X → R | f(x0) = 0 and |f(x)− f(y)| ≤ d(x, y) for x, y ∈ X}.

Then X̃G is homeomorphic to the compact subset

K = {(x, y) ∈ R
2| |x− y| ≤ r,−r ≤ x, y ≤ r}

of R
2 and we may assume X̃G = K. Also, we may assume that g̃ : X̃G → X̃G is

equal to the map g̃ : K → K defined by g̃((x, y)) = (y, x) for (x, y) ∈ K. Also, we
see that −g̃ : K → K is the map defined by −g̃((x, y)) = (−y,−x) for (x, y) ∈ K.
Consider the copy K ′ of K and subsets

K+ = {(x, y) ∈ K| y ≤ x}
⋃

{(x, y) ∈ K| y ≤ −x} ⊂ K

and

K ′
+ = {(x′, y′) ∈ K ′| y′ ≤ x′}

⋃

{(x′, y′) ∈ K ′| y′ ≤ −x′} ⊂ K ′.

Define the homeomorphism h : K+ → K ′
+ by h(x, y) = (x′, y′). Let K ∪h K ′ be

the adjunction space by h and let α : K ∪top K ′ → K ∪h K ′ be the quotient map.
Put Z = (K∪hK ′)×Q. Since K∪hK ′ is an AR, we see that Z is homeomorphic to

Q (see [4]). Let pG : Z → K = X̃G be the map defined by pG(α(x, y), q) = (x, y)
for (x, y) ∈ K and pG(α(x′, y′), q) = (x, y) for (x′, y′) ∈ K ′ (q ∈ Q). Define iG :
X → C(Z) by iG(x)(z) = pG(z)(x) for each x ∈ X and z ∈ Z. Note that p−1

G (x, y)

is connected for (x, y) ∈ K+ and p−1
G (x, y) is not connected for (x, y) /∈ K+. Hence

we see that there is no homeomorphism Lg : Z → Z so that g̃ ◦ pG = pG ◦ Lg.
Also, there is no homeomorphism Lg : Z → Z so that −g̃ ◦ pG = pG ◦ Lg.
Suppose, on the contrary, that there is an isometry T : C(Z) → C(Z) such that
T ◦ iG = iG ◦ g. Note that for any z ∈ Z, iG(x0)(z) = pG(z)(x0) = 0 and hence
iG(x0) = 0 ∈ C(Z)(= C(Q)). Since g(x0) = x0, we see that T (0) = 0 and hence
by [3], the isometry T is a linear isometry of C(Z). Since Z = Q is a continuum,
Theorem 1.1 implies that there is a homeomorphism Lg : Z → Z such that



On isometrical extension properties of function spaces 111

L̃g = T or −L̃g = T . By use of Proposition 2.5, we see that g̃ ◦ pG = pG ◦ Lg or
−g̃ ◦ pG = pG ◦ Lg. This is a contradiction.

3. Extensions of bounded isometries in C(∆)

In this section, we need the following notions. For a compact metric space X ,
let H(X) be the space of all homeomorphisms of X with the supremum metric.
A closed set K in X is regular closed in X if Cl(Int(K)) = K. A collection C
of regular closed sets in X is called a regular closed partition of X provided that
⋃

C = X and C ∩ C′ = Bd(C) ∩ Bd(C′) for each C, C′ ∈ C with C 6= C′. Let A
and B be regular closed partitions of X . Then A refines B (A ≤ B) if for each
A ∈ A there is (a unique) B ∈ B such that A ⊂ B. Also, A@B denotes the
regular closed partition

{Cl[Int(A) ∩ Int(B)] | A ∈ A and B ∈ B}

of X .

Then we have the following proposition (cf. [2]).

Proposition 3.1. Let X be a compact metric space and let G be a countable

subset of H(X). Then there is an onto map pG : ∆ → X such that for any

g ∈ G there is a (lift) homeomorphism Lg : ∆→ ∆ of ∆ such that the following

diagram is commutative.

∆
Lg

−−−−→ ∆

pG





y





y

pG

X
g

−−−−→ X

Proof: Since G is a countable subset of H(X), we put G = {gn | n ∈ N}. By
induction on n ∈ N, we can construct a sequence {C(n) | n ∈ N} of finite regular
closed partitions of X such that

(1) C(2) ≤ g−1
1 (C(1))@C(1)@g1(C(1)), and

(2) for each n ≥ 2,

C(n) ≤ @j∈{1,2,...,n−1}[g
−1
j (C(n− 1))@C(n− 1)@gj(C(n− 1))],

(3) limn→∞ mesh C(n) = 0.

We may assume that any element of each C(n) is nonempty. Note that

C(1) ≥ C(2) ≥ . . .

Put

C = {(c1, c2, . . . ) ∈
∏

n∈N

C(n) | c1 ⊃ c2 ⊃ · · · }

We may assume that each C(n) is a discrete finite space, i.e., each one point set {c}
is open in C(n) for each c ∈ C(n), and hence C(n) is a compact metric space. Note
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that any decreasing sequence of nonempty compact sets has a nonempty intersec-
tion. Then by (3), we see that

⋂

n∈N
cn is a one point set for each (c1, c2, . . . ) ∈ C.

Since C is the limit of the inverse sequence

C(1)← C(2)← C(3)← · · · ,

C is also a compact metric space. Define p : C → X by

p(c1, c2, . . . ) =
⋂

n∈N

cn.

It is easy to see that p is continuous and an onto map. Since C is a zero-
dimensional compact metric space, we see that C × ∆ is homeomorphic to the
Cantor set ∆. We identify C ×∆ with ∆. Put pG = p ◦ q : C ×∆ → X , where
q : C ×∆→ C is the natural projection.

Next, for each g ∈ G, we will construct a homeomorphism h = hg : C → C as
follows. Note that there is some j ∈ N such that g = gj . By (2), note that both
g(C(n + 1)) and g−1(C(n + 1)) are refinements of C(n) for each n ≥ j. Thus, by
regular closedness, for each n ≥ j there are unique maps hn, kn : C(n+1)→ C(n)
given by hn(cn+1) = cn,g if g(cn+1) ⊂ cn,g, and kn(cn+1) = cn,g−1 if g−1(cn+1) ⊂
cn,g−1 . Now define h, k : C → C by

h(c1, c2, . . . ) = (c′1, c
′
2, . . . , c

′
j−1, hj(cj+1), hj+1(cj+2), . . . )

∈ lim
←−

(C(1)← C(2)← C(3)← · · · ),

and

k(c1, c2, . . . ) = (c′′1 , c′′2 , . . . , c′′j−1, kj(cj+1), kj+1(cj+2), . . . )

∈ lim
←−

(C(1)← C(2)← C(3)← · · · ).

We will show that the following conditions (a), (b) and (c) are satisfied.
(a) h is continuous.

This is obvious since each hn is continuous.
(b) h is bijective.

Let (c1, c2, . . . ) ∈ C. Then for n ≥ j,

hn ◦ kn+1(cn+2) ⊃ g ◦ g−1(cn+2) = cn+2

kn ◦ hn+1(cn+2) ⊃ g−1 ◦ g(cn+2) = cn+2.

Note that for n ≥ j, hn ◦kn+1(cn+2) = kn ◦hn+1(cn+2) = cn. Then h◦k = k◦h =
idC . Therefore h is bijective and h−1 = k.
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(c) p ◦ h = g ◦ p.
Let (c1, c2, . . . ) ∈ C. Then

p ◦ h(c1, c2, . . . ) =
⋂

n≥j

hn(cn+1) ⊃
⋂

n≥j

g(cn+1),

g ◦ p(c1, c2, . . . ) = g(
⋂

n∈N

cn) =
⋂

n∈N

g(cn) =
⋂

n∈N

g(cn+1).

Therefore p ◦ h(c1, c2, . . . ) ⊃ g ◦ p(c1, c2, . . . ). Note that p ◦ h(c1, c2, . . . ) and
g ◦ p(c1, c2, . . . ) are one point sets in X . Thus p ◦ h = g ◦ p.

C
h (=hg)
−−−−−→ C

p





y





y

p

X
g

−−−−→ X

Finally, we define a homeomorphism Lg : C ×∆→ C ×∆ by Lg = hg × id∆.
Then we see that for any g ∈ G, the following diagram is commutative.

C ×∆
Lg

−−−−→ C ×∆

pG





y





y

pG

X
g

−−−−→ X

This completes the proof. �

Then we have the following theorem.

Theorem 3.2. Let (X, d) be any separable metric space and let G be a countable

bounded subgroup of Iso(X). Then there is an isometrical embedding iG : X →
C(∆) such that there exist a countable subgroup G⋆ of LinIso(C(∆)) and a

continuous epimorphism r⋆ : G⋆ → G such that each g⋆ ∈ G⋆ is an extension of

r⋆(g⋆) ∈ G. In particular, if g ∈ G, then there is an extension g⋆ ∈ LinIso(C(∆))
of g.

Proof: Recall that X̃(= X̃G) is a compact metric space. Since G is a countable

bounded subgroup of Iso(X), G̃ = {g̃ | g ∈ G} is a countable subset of H(X̃).

By Proposition 3.1, we have an onto map pG : ∆ → X̃ such that for any g ∈ G,
there is a (lift) homeomorphism Lg : ∆ → ∆ such that the following diagram is
commutative.

∆
Lg

−−−−→ ∆

pG





y





y

pG

X̃
g̃

−−−−→ X̃
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By Lemma 2.2, we have the following commutative diagram.

X
g

−−−−→ X

iG





y





y

iG

C(∆)
L̃g

−−−−→ C(∆)

Let G⋆ be the subgroup of LinIso(C(∆)) generated by {L̃g | g ∈ G}. Then we
can easily see that there is the desired epimorphism r⋆ : G⋆ → G such that each
g⋆ ∈ G⋆ is an extension of r⋆(g⋆) ∈ G. �

Remark 2. Note that the space H(∆) of all homeomorphisms of ∆ is homeo-
morphic to the space P of irrationals, and hence H(∆) is zero-dimensional. If G
is any bounded subgroup of Iso(X) with dimG ≥ 1, there is no embedding from
G to H(∆).

Corollary 3.3. Let (X, d) be any separable metric space. If g ∈ Iso(X) is

periodic, i.e. gn = idX for some n ∈ N, then there is an isometrical embedding

ig : X → C(∆) such that there is an extension g⋆ ∈ LinIso(C(∆)) of g with

(g⋆)n = idC(∆).

Proof: Since gn = idX , g is bounded. Then g̃n = idX̃ . By the proof of

Lemma 2.2, we have an onto map p : C → X̃ and a homeomorphism hg : C → C of
a zero-dimensional compact metric space C such that p◦hg = g̃ ◦p and hn

g = idC .
By use of this fact, we can obtain an extension g⋆ ∈ LinIso(C(∆)) of g with
(g⋆)n = idC(∆).

Remark 3. Let (X, d) be any separable metric space and let g ∈ Iso(X) such
that g has a periodic point x0 with period n ∈ N. We see that if n ≥ 3, there
is no isometrical embedding i from X to C(I) such that g has an extension in
LinIso(C(I)). In fact, suppose, on the contrary, that there is an isometrical
embedding i : X → C(I) such that there is an extension T ∈ LinIso(C(I)) of
g. Since I is a continuum, Theorem 1.1 implies that there is a homeomorphism
h : I → I such that T = ±h̃. Note that T 2 = h̃2. We have the following
commutative diagram:

X
g2

−−−−→ X

i





y





y

i

C(I)
h̃2

−−−−→ C(I)

Since T n(i(x0)) = i(x0), we see that h̃2n(i(x0)) = i(x0). Note that h2(0) =
0, h2(1) = 1. Then there are countable open and disjoint subintervals Ij =
(aj , bj) (j ∈ N) of I such that

(1) h2(aj) = aj , h2(bj) = bj,
(2) h2(t) 6= t for any t ∈ Ij (j ∈ N), and
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(3) h2|(I − ∪j∈NIj) = id|(I − ∪j∈NIj).

Put f0 = i(x0). Note that f0 ◦ h2n = f0. Hence f0 ◦ (h2)nk = f0 for each k ∈ N.
If t ∈ Ij , then limk→∞(h2)nk(t) = aj or bj . Since f0 is continuous, we see that
f0|Cl(Ij) is a constant map. By use of these facts and (3), we see that f0◦h

2 = f0.
This implies that g2(x0) = x0. Hence n ≤ 2. This is a contradiction. �

Problem 3.4. Let (X, d) be any separable metric space. Is it true that there is

an isometrical embedding i from X to C(Q) such that each g ∈ Iso(X) has an

extension which is an affine isometry of C(Q) ?
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