A characterization of the meager ideal

PIOTR ZAKRZEWSKI

Abstract. We give a classical proof of the theorem stating that the σ -ideal of meager sets is the unique σ -ideal on a Polish group, generated by closed sets which is invariant under translations and ergodic.

Keywords: Polish group; σ -ideal; meager sets Classification: 03E15, 54H05

1. Introduction

The σ -ideal \mathcal{M} of meager subsets of \mathbb{R} has the following remarkable properties:

- *M* is generated by closed sets,
- *M* satisfies the countable chain condition (ccc),
- *M* is invariant under translations,
- \mathscr{M} is \mathbb{Q} -ergodic, i.e., every \mathbb{Q} -invariant Borel subset of \mathbb{R} is either meager or comeager.

These properties are interrelated and conjunctions of some of them characterize $\mathcal M.$

Balcerzak and Rogowska [1] and, independently (using a different method), Recław and Zakrzewski [4] proved that if a σ -ideal \mathcal{I} on a Polish space X is generated by closed sets and ccc, then it is Borel isomorphic to \mathcal{M} . Both proofs are based on a deep theorem by Kechris and Solecki [3, Theorem 3] which provides a characterization of those σ -ideals on Polish spaces which are generated by closed sets and fulfil ccc. As a corollary, Kechris and Solecki [3] also showed that the σ -ideal of meager sets on a Polish group is the unique σ -ideal generated by closed sets which is invariant under translations and ccc.

Zapletal (see [7]) in turn proved that if a σ -ideal on \mathbb{R} (respectively, on a Polish space X) is generated by closed sets and \mathbb{Q} -ergodic (respectively, ergodic; see Section 2 for a general definition of ergodicity), then it is ccc.

Combining the last two statements we arrive at the following characterization of the σ -ideal of meager sets on Polish groups.

Theorem 1.1. The σ -ideal of meager sets on a Polish group G is the unique σ -ideal on G which is generated by closed sets, invariant under translations by elements of G and ergodic.

DOI 10.14712/1213-7243-015.104

This research was partially supported by MNiSW Grant Nr N N201 543638.

The original Zapletal's proof of the fact that ergodicity of a σ -ideal which is generated by closed sets implies countable chain condition used forcing (see [5, Lemma 1.3] or [6, Lemma 5.4.2]). The aim of this note is to give a "classical" proof of this result.

2. Preliminaries

Throughout the paper X (more precisely: (X, τ)) is an uncountable Polish (i.e., a separable, completely metrizable) topological space. The σ -algebra of Borel subsets of X is denoted by $\mathscr{B}(X)$.

By a σ -*ideal* \mathcal{I} on X we understand a collection of subsets of X, closed under countable unions and such that for any $A \in \mathcal{I}$, all subsets of A are in \mathcal{I} . Throughout the paper we assume that $X \notin \mathcal{I}$ and \mathcal{I} contains all singletons.

We say that a σ -ideal \mathcal{I} on X is generated by closed sets if there is a family $\mathcal{F} \subseteq \mathcal{I}$ consisting of sets closed in X such that each element of \mathcal{I} can be covered by countably many elements of \mathcal{F} .

Given a σ -ideal \mathcal{I} on X, we shall use the following notation and terminology:

- $\mathcal{I}^* = \{X \setminus A : A \in \mathcal{I}\},\$
- $A_1, A_2 \in \mathscr{B}(X) \setminus \mathcal{I}$ are almost disjoint if $A_1 \cap A_2 \in \mathcal{I}$,
- a family $\mathcal{A} \subseteq \mathscr{B}(X) \setminus \mathcal{I}$ is almost disjoint if it consists of pairwise almost disjoint sets.

A σ -ideal \mathcal{I} on X is:

- *ccc* if it satisfies the countable chain condition, i.e., if there is no uncountable almost disjoint family $\mathcal{A} \subseteq \mathscr{B}(X) \setminus \mathcal{I}$,
- *ergodic* if there is a countable Borel equivalence relation R on X such that every set $B \in \mathscr{B}(X)$ which is the union of a family of R-equivalence classes is either in \mathcal{I} or in \mathcal{I}^* ,
- invariant (under translations) if (X, \cdot) is a Polish group and $x \cdot A \in \mathcal{I}$ whenever $A \in \mathcal{I}$ and $x \in X$.

3. Classical proofs of Zapletal's results

We start with the following lemma which in the forcing terminology is closely related to the fact that "forcing with a σ -ideal generated by closed sets does not collapse \aleph_1 " (cf. [5] and [7]).

Lemma 3.1 (Main Lemma). Assume that \mathcal{I} is a σ -ideal on X generated by closed sets. Let $\langle \mathcal{A}_n : n \in \mathbb{N} \rangle$ be a sequence of maximal almost disjoint subfamilies of $\mathscr{B}(X) \setminus \mathcal{I}$. Then there exists a set $E \in \mathscr{B}(X) \setminus \mathcal{I}$ such that for every $n \in \mathbb{N}$ we have

$$|\{A \in \mathcal{A}_n : E \cap A \notin \mathcal{I}\}| \leq \aleph_0.$$

PROOF: For each $n \in \mathbb{N}$, using the maximality of \mathcal{A}_n , fix a function $\psi_n : \mathscr{B}(X) \to \mathscr{B}(X)$ such that

$$B \in \mathscr{B}(X) \setminus \mathcal{I} \Rightarrow \left(\psi_n(B) \in \mathcal{A}_n \land B \cap \psi_n(B) \notin \mathcal{I}\right)$$

and let $\varphi_n : \mathscr{B}(X) \to \mathscr{B}(X)$ be the function defined by

$$\varphi_n(B) = B \cap \psi_n(B) \quad \text{for} \quad B \in \mathscr{B}(X).$$

Note that if $B \in \mathscr{B}(X) \setminus \mathcal{I}$, then $\varphi_n(B) \notin \mathcal{I}$ and $\psi_n(B)$ is the only $A \in \mathcal{A}_n$ such that $\varphi_n(B) \cap A \notin \mathcal{I}$.

Recall that τ is the topology of X and let (U_n) be a countable basis of (X, τ) .

Sublemma 3.2. There exist a field \mathscr{C} of subsets of X, a Polish topology $\bar{\tau}$ extending τ and a countable base \mathscr{V} of $\bar{\tau}$ satisfying the following conditions:

- (1) $\mathscr{C} \subseteq \mathscr{B}(X),$
- (2) \mathscr{C} is countable,
- (3) $\varphi_n(B) \in \mathscr{C}$ for every $B \in \mathscr{C}$ and $n \in \mathbb{N}$,
- (4) $\mathscr{C} \subseteq \overline{\tau}$,
- (5) $\mathscr{V} \subseteq \mathscr{C}$.

PROOF OF SUBLEMMA 3.2: We construct inductively fields \mathscr{C}_n of subsets of X and Polish topologies τ_n on X with associated countable bases \mathscr{V}_n , $n \in \mathbb{N}$, so that:

- n > 0 implies τ_n is zero-dimensional,
- $\mathscr{V}_n \subseteq \mathscr{C}_n$,
- $\mathscr{C}_n \subseteq clop(X, \tau_n)$, the field of clopen subsets of (X, τ_n) ,
- n < m implies $\mathscr{C}_n \subseteq \mathscr{C}_m$,
- n < m implies $\tau_n \subseteq \tau_m$,
- \mathscr{C}_n is countable,
- $B \in \mathscr{C}_n$ and $m \in \mathbb{N}$ implies $\varphi_m(B) \in \mathscr{C}_{n+1}$.

Let \mathscr{C}_0 be the field of subsets of X generated by $\{U_k : k \in \mathbb{N}\}$ and $\mathscr{V}_0 = \{U_k : k \in \mathbb{N}\}$.

If \mathscr{C}_n , τ_n and \mathscr{V}_n have been defined, let

$$\mathscr{R}_{n+1} = \mathscr{C}_n \cup \bigcup_{m \in \mathbb{N}} \varphi_m[\mathscr{C}_n]$$

and extend τ_n to a Polish zero-dimensional topology τ_{n+1} on X such that $\mathscr{R}_{n+1} \subseteq clop(X, \tau_{n+1})$. Then let \mathscr{V}_{n+1} be a countable base of τ_{n+1} consisting of sets clopen in τ_{n+1} . Finally, let \mathscr{C}_{n+1} be the field of subsets of X generated by $\mathscr{R}_{n+1} \cup \mathscr{V}_{n+1}$. This completes the construction.

Now let $\mathscr{C} = \bigcup_{n \in \mathbb{N}} \mathscr{C}_n$ and let $\overline{\tau}$ be the topology generated by $\bigcup_{n \in \mathbb{N}} \tau_n$.

The topology $\bar{\tau}$ is Polish and finite intersections of elements of $\bigcup_{n \in \mathbb{N}} \mathscr{V}_n$ form a countable base \mathscr{V} of $\bar{\tau}$ (cf. [2, Lemma 13.3]). Since \mathscr{C} is closed under finite intersections, we have $\mathscr{V} \subseteq \mathscr{C}$.

It is easy to see that $\mathscr{C}, \bar{\tau}$ and \mathscr{V} satisfy conditions (1)–(5) above which completes the proof of Sublemma 3.2.

Continuing the proof of Main Lemma enumerate \mathscr{V} as $\{V_k : k \in \mathbb{N}\}$ and let

$$D = X \setminus \bigcup \{ V_k : k \in \mathbb{N} \text{ and } V_k \in \mathcal{I} \}.$$

```
P. Zakrzewski
```

Note that

- $D \in \mathcal{I}^*$,
- D is closed in τ
 , so uncountable Polish in the relative topology; in the rest of the proof all topological notions concerning subsets of D will refer, unless stated otherwise, to this topology,
- no nonempty open subset of D is in \mathcal{I} ,
- if P is closed in D and $P \in \mathcal{I}$, then P is nowhere dense in D.

For every $n \in \mathbb{N}$ let

$$\mathcal{O}_n = D \cap \bigcup_{k \in \mathbb{N}} \varphi_n(V_k).$$

We claim that each \mathcal{O}_n is open and dense in D.

To see that \mathcal{O}_n is open, use (5), (3) and (4).

To prove that \mathcal{O}_n is dense in D, take a basic open subset of D of the form $V_k \cap D \neq \emptyset$.

Then $V_k \in \mathscr{C} \setminus \mathcal{I}$ hence $\varphi_n(V_k) \in \mathscr{C} \setminus \mathcal{I}$.

Consequently, $\varphi_n(V_k)$ being a member of \mathscr{C} is $\bar{\tau}$ -open and $\varphi_n(V_k) \cap D \neq \emptyset$ since $D \in \mathcal{I}^*$.

But $\varphi_n(V_k) \subseteq V_k$ and $D \cap \varphi_n(V_k) \subseteq \mathcal{O}_n$ which implies that

$$(V_k \cap D) \cap \mathcal{O}_n \supseteq V_k \cap (D \cap \varphi_n(V_k)) = \varphi_n(V_k) \cap D \neq \emptyset,$$

completing the proof that \mathcal{O}_n is dense in D.

Finally, let

$$E = \bigcap_{n \in \mathbb{N}} \mathcal{O}_n.$$

To complete the proof of Main Lemma it suffices to prove the following **Claim.**

(6) $E \notin \mathcal{I}$,

(7) $\forall n \quad \{A \in \mathcal{A}_n : E \cap A \notin \mathcal{I}\} \subseteq \{\psi_n(V_k) : k \in \mathbb{N}\}.$

To prove (6), we shall use the fact that \mathcal{I} is generated by closed sets. So let (D_n) be a sequence of τ -closed sets from \mathcal{I} . Our aim is to show that

$$E \not\subseteq \bigcup_{n \in \mathbb{N}} D_n.$$

Note that:

- $E = \bigcap_{n \in \mathbb{N}} \mathcal{O}_n$ is a dense G_{δ} subset of D.
- Each D_n being τ -closed is also closed in $\overline{\tau}$, so $D_n \cap D$ is closed nowhere dense in D.

By the Baire category theorem, we are done.

To prove (7), recall that for each n:

• if $B \in \mathscr{B}(X) \setminus \mathcal{I}$, then $\psi_n(B)$ is the only $A \in \mathcal{A}_n$ such that $\varphi_n(B) \cap A \notin \mathcal{I}$,

48

• $E = \bigcap_{m \in \mathbb{N}} \mathcal{O}_m \subseteq \mathcal{O}_n = D \cap \bigcup_{k \in \mathbb{N}} \varphi_n(V_k) \subseteq \bigcup_k \varphi_n(V_k).$

Fix *n* and let $A \in \mathcal{A}_n$ be such that $E \cap A \notin \mathcal{I}$. Then there is *k* with $\varphi_n(V_k) \cap A \notin \mathcal{I}$. But the only $A \in \mathcal{A}_n$ with this property is $A = \psi_n(V_k)$ which shows (7) and completes the proof of Main Lemma.

With the help of Main Lemma we are now ready to finish our proof of Zapletal's theorem (cf. [5, Lemma 1.3] and [6, Lemma 5.4.2]).

Theorem 3.3 (Zapletal). If a σ -ideal \mathcal{I} on X is generated by closed sets and ergodic, then \mathcal{I} is ccc.

PROOF: Recall that ergodicity of \mathcal{I} means that there is a countable Borel equivalence relation R on X such that every set $B \in \mathscr{B}(X)$ which is the union of a family of R-equivalence classes is either in \mathcal{I} or in \mathcal{I}^* .

By the Feldman–Moore theorem, R is the orbit equivalence relation for a certain countable group $G = \{g_n : n \in \mathbb{N}\}$ of Borel automorphisms of X.

So, ergodicity of \mathcal{I} means that

$$B \in \mathscr{B}(X) \setminus \mathcal{I} \Rightarrow \bigcup_{n} g_{n} B \in \mathcal{I}^{*}.$$

Suppose that \mathcal{I} is *not* ccc and let $\{A_{\alpha} : \alpha < \omega_1\}$ be a disjoint family of sets in $\mathscr{B}(X) \setminus \mathcal{I}$.

For each n let

$$\mathcal{A}_n = \{g_n A_\alpha : \alpha < \omega_1\} \setminus \mathcal{I}.$$

 \mathcal{A}_n is a disjoint (perhaps empty) collection of sets in $\mathscr{B}(X) \setminus \mathcal{I}$ hence by Main Lemma, there is $E \in \mathscr{B}(X) \setminus \mathcal{I}$ such that

(*)
$$\forall n \quad |\{\alpha < \omega_1 : E \cap g_n A_\alpha \notin \mathcal{I}\}| \le \aleph_0.$$

On the other hand, by ergodicity, for every $\alpha < \omega_1$ there is $n \in \mathbb{N}$ such that

 $E \cap g_n A_\alpha \notin \mathcal{I},$

so there is a single $n \in \mathbb{N}$ with

$$|\{\alpha < \omega_1 : E \cap g_n A_\alpha \notin \mathcal{I}\}| = \aleph_1,$$

contradicting (*).

References

- Balcerzak M., Rogowska D., Making some ideals meager on sets of size of the continuum, Topology Proc. 21 (1996), 1–13.
- [2] Kechris A.S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995.
- [3] Kechris A.S., Solecki S., Approximation of analytic by Borel sets and definable countable chain conditions, Israel J. Math. 89 (1995), 343–356.

P. Zakrzewski

- [4] Recław I., Zakrzewski P., Fubini properties of ideals, Real Anal. Exchange 25 (1999/00), no. 2, 565–578.
- [5] Zapletal J., Forcing with ideals generated by closed sets, Comment. Math. Univ. Carolin. 43 (2002), no. 1, 181–188.
- [6] Zapletal J., Descriptive Set Theory and Definable Forcing, Mem. Amer. Math. Soc. 167 (2004), no. 793.
- [7] Zapletal J., Forcing Idealized, Cambridge Tracts in Mathematics, 174, Cambridge University Press, Cambridge, 2008.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW, UL. BANACHA 2, 02-097 WARSAW, POLAND

E-mail: piotrzak@mimuw.edu.pl

(Received August 23, 2013, revised March 9, 2014)