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A characterization of the meager ideal

Piotr Zakrzewski

Abstract. We give a classical proof of the theorem stating that the σ-ideal of
meager sets is the unique σ-ideal on a Polish group, generated by closed sets

which is invariant under translations and ergodic.
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1. Introduction

The σ-ideal M of meager subsets of R has the following remarkable properties:

• M is generated by closed sets,
• M satisfies the countable chain condition (ccc),
• M is invariant under translations,
• M is Q-ergodic, i.e., every Q-invariant Borel subset of R is either meager

or comeager.

These properties are interrelated and conjunctions of some of them character-
ize M .

Balcerzak and Rogowska [1] and, independently (using a different method),
Rec law and Zakrzewski [4] proved that if a σ-ideal I on a Polish space X is
generated by closed sets and ccc, then it is Borel isomorphic to M . Both proofs
are based on a deep theorem by Kechris and Solecki [3, Theorem 3] which provides
a characterization of those σ-ideals on Polish spaces which are generated by closed
sets and fulfil ccc. As a corollary, Kechris and Solecki [3] also showed that the
σ-ideal of meager sets on a Polish group is the unique σ-ideal generated by closed
sets which is invariant under translations and ccc.

Zapletal (see [7]) in turn proved that if a σ-ideal on R (respectively, on a
Polish space X) is generated by closed sets and Q-ergodic (respectively, ergodic;
see Section 2 for a general definition of ergodicity), then it is ccc.

Combining the last two statements we arrive at the following characterization
of the σ-ideal of meager sets on Polish groups.

Theorem 1.1. The σ-ideal of meager sets on a Polish group G is the unique

σ-ideal on G which is generated by closed sets, invariant under translations by

elements of G and ergodic.
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The original Zapletal’s proof of the fact that ergodicity of a σ-ideal which is
generated by closed sets implies countable chain condition used forcing (see [5,
Lemma 1.3] or [6, Lemma 5.4.2]). The aim of this note is to give a “classical”
proof of this result.

2. Preliminaries

Throughout the paper X (more precisely: (X, τ)) is an uncountable Polish
(i.e., a separable, completely metrizable) topological space. The σ-algebra of
Borel subsets of X is denoted by B(X).

By a σ-ideal I on X we understand a collection of subsets of X , closed un-
der countable unions and such that for any A ∈ I, all subsets of A are in I.
Throughout the paper we assume that X /∈ I and I contains all singletons.

We say that a σ-ideal I on X is generated by closed sets if there is a family
F ⊆ I consisting of sets closed in X such that each element of I can be covered
by countably many elements of F .

Given a σ-ideal I on X , we shall use the following notation and terminology:

• I∗ = {X \A : A ∈ I},
• A1, A2 ∈ B(X) \ I are almost disjoint if A1 ∩A2 ∈ I,
• a family A ⊆ B(X) \ I is almost disjoint if it consists of pairwise almost

disjoint sets.

A σ-ideal I on X is:

• ccc if it satisfies the countable chain condition, i.e., if there is no uncount-
able almost disjoint family A ⊆ B(X) \ I,

• ergodic if there is a countable Borel equivalence relation R on X such
that every set B ∈ B(X) which is the union of a family of R-equivalence
classes is either in I or in I∗,

• invariant (under translations) if (X, ·) is a Polish group and x · A ∈ I
whenever A ∈ I and x ∈ X .

3. Classical proofs of Zapletal’s results

We start with the following lemma which in the forcing terminology is closely
related to the fact that “forcing with a σ-ideal generated by closed sets does not
collapse ℵ1” (cf. [5] and [7]).

Lemma 3.1 (Main Lemma). Assume that I is a σ-ideal onX generated by closed

sets. Let 〈An : n ∈ N〉 be a sequence of maximal almost disjoint subfamilies of

B(X) \ I. Then there exists a set E ∈ B(X) \ I such that for every n ∈ N we

have

|{A ∈ An : E ∩A /∈ I}| ≤ ℵ0.

Proof: For each n ∈ N, using the maximality of An, fix a function ψn : B(X) →
B(X) such that

B ∈ B(X) \ I ⇒
(

ψn(B) ∈ An ∧B ∩ ψn(B) /∈ I
)
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and let ϕn : B(X)−→B(X) be the function defined by

ϕn(B) = B ∩ ψn(B) for B ∈ B(X).

Note that if B ∈ B(X) \ I, then ϕn(B) /∈ I and ψn(B) is the only A ∈ An such
that ϕn(B) ∩A /∈ I.

Recall that τ is the topology of X and let (Un) be a countable basis of (X, τ).

Sublemma 3.2. There exist a field C of subsets of X , a Polish topology τ̄
extending τ and a countable base V of τ̄ satisfying the following conditions:

(1) C ⊆ B(X),
(2) C is countable,

(3) ϕn(B) ∈ C for every B ∈ C and n ∈ N,

(4) C ⊆ τ̄ ,
(5) V ⊆ C .

Proof of Sublemma 3.2: We construct inductively fields Cn of subsets of X
and Polish topologies τn on X with associated countable bases Vn, n ∈ N, so that:

• n > 0 implies τn is zero-dimensional,
• Vn ⊆ Cn,
• Cn ⊆ clop(X, τn), the field of clopen subsets of (X, τn),
• n < m implies Cn ⊆ Cm,
• n < m implies τn ⊆ τm,
• Cn is countable,
• B ∈ Cn and m ∈ N implies ϕm(B) ∈ Cn+1.

Let C0 be the field of subsets of X generated by {Uk : k ∈ N} and V0 = {Uk :
k ∈ N}.

If Cn, τn and Vn have been defined, let

Rn+1 = Cn ∪
⋃

m∈N

ϕm[Cn]

and extend τn to a Polish zero-dimensional topology τn+1 on X such that Rn+1 ⊆
clop(X, τn+1). Then let Vn+1 be a countable base of τn+1 consisting of sets clopen
in τn+1. Finally, let Cn+1 be the field of subsets of X generated by Rn+1 ∪Vn+1.
This completes the construction.

Now let C =
⋃

n∈N
Cn and let τ̄ be the topology generated by

⋃

n∈N
τn.

The topology τ̄ is Polish and finite intersections of elements of
⋃

n∈N
Vn form

a countable base V of τ̄ (cf. [2, Lemma 13.3]). Since C is closed under finite
intersections, we have V ⊆ C .

It is easy to see that C , τ̄ and V satisfy conditions (1)–(5) above which com-
pletes the proof of Sublemma 3.2. �

Continuing the proof of Main Lemma enumerate V as {Vk : k ∈ N} and let

D = X \
⋃

{Vk : k ∈ N and Vk ∈ I}.



48 P. Zakrzewski

Note that

• D ∈ I∗,
• D is closed in τ̄ , so uncountable Polish in the relative topology; in the

rest of the proof all topological notions concerning subsets of D will refer,

unless stated otherwise, to this topology,
• no nonempty open subset of D is in I,
• if P is closed in D and P ∈ I, then P is nowhere dense in D.

For every n ∈ N let

On = D ∩
⋃

k∈N

ϕn(Vk).

We claim that each On is open and dense in D.

To see that On is open, use (5), (3) and (4).
To prove that On is dense in D, take a basic open subset of D of the form

Vk ∩D 6= ∅.
Then Vk ∈ C \ I hence ϕn(Vk) ∈ C \ I.
Consequently, ϕn(Vk) being a member of C is τ̄ -open and ϕn(Vk)∩D 6= ∅ since

D ∈ I∗.
But ϕn(Vk) ⊆ Vk and D ∩ ϕn(Vk) ⊆ On which implies that

(Vk ∩D) ∩ On ⊇ Vk ∩ (D ∩ ϕn(Vk)) = ϕn(Vk) ∩D 6= ∅,

completing the proof that On is dense in D.

Finally, let

E =
⋂

n∈N

On.

To complete the proof of Main Lemma it suffices to prove the following

Claim.

(6) E /∈ I,
(7) ∀n {A ∈ An : E ∩A /∈ I} ⊆ {ψn(Vk) : k ∈ N}.

To prove (6), we shall use the fact that I is generated by closed sets. So let
(Dn) be a sequence of τ -closed sets from I. Our aim is to show that

E 6⊆
⋃

n∈N

Dn.

Note that:

• E =
⋂

n∈N
On is a dense Gδ subset od D.

• Each Dn being τ -closed is also closed in τ̄ , so Dn ∩D is closed nowhere
dense in D.

By the Baire category theorem, we are done.

To prove (7), recall that for each n:

• if B ∈ B(X)\I, then ψn(B) is the only A ∈ An such that ϕn(B)∩A /∈ I,
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• E =
⋂

m∈N
Om ⊆ On = D ∩

⋃

k∈N
ϕn(Vk) ⊆

⋃

k
ϕn(Vk).

Fix n and let A ∈ An be such that E∩A /∈ I. Then there is k with ϕn(Vk)∩A /∈
I. But the only A ∈ An with this property is A = ψn(Vk) which shows (7) and
completes the proof of Main Lemma. �

With the help of Main Lemma we are now ready to finish our proof of Zapletal’s
theorem (cf. [5, Lemma 1.3] and [6, Lemma 5.4.2]).

Theorem 3.3 (Zapletal). If a σ-ideal I on X is generated by closed sets and

ergodic, then I is ccc.

Proof: Recall that ergodicity of I means that there is a countable Borel equiv-
alence relation R on X such that every set B ∈ B(X) which is the union of a
family of R-equivalence classes is either in I or in I∗.

By the Feldman–Moore theorem, R is the orbit equivalence relation for a cer-
tain countable group G = {gn : n ∈ N} of Borel automorphisms of X .

So, ergodicity of I means that

B ∈ B(X) \ I ⇒
⋃

n

gnB ∈ I∗.

Suppose that I is not ccc and let {Aα : α < ω1} be a disjoint family of sets in
B(X) \ I.

For each n let

An = {gnAα : α < ω1} \ I.

An is a disjoint (perhaps empty) collection of sets in B(X) \ I hence by Main
Lemma, there is E ∈ B(X) \ I such that

(∗) ∀n |{α < ω1 : E ∩ gnAα /∈ I}| ≤ ℵ0.

On the other hand, by ergodicity, for every α < ω1 there is n ∈ N such that

E ∩ gnAα /∈ I,

so there is a single n ∈ N with

|{α < ω1 : E ∩ gnAα /∈ I}| = ℵ1,

contradicting (∗). �
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