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Results on generalized models and singular products

of distributions in the Colombeau algebra G(R)

Blagovest Damyanov

Abstract. Models of singularities given by discontinuous functions or distribu-
tions by means of generalized functions of Colombeau have proved useful in
many problems posed by physical phenomena. In this paper, we introduce in a
systematic way generalized functions that model singularities given by distribu-
tions with singular point support. Furthermore, we evaluate various products
of such generalized models when the results admit associated distributions. The
obtained results follow the idea of a well-known result of Jan Mikusiński on
balancing of singular distributional products.
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1. Introduction

The Colombeau algebra of generalized functions G [1] has become a useful tool
for treating differential equations with singular coefficients and data as well as
singular products of Schwartz distributions. The flexibility of Colombeau theory
allows us to model such singularities by means of appropriately chosen generalized
functions, treat them in this framework and obtain results on distributional level,
using the association process in G. A detailed presentation of results on that topic
and list of references can be found in [9] and [4]; see also the recent paper [8] and
the references included.

We recall next the known result published by Jan Mikusiński in [7] :

(1) x−1 · x−1 − π2 δ(x) · δ(x) = x−2, x ∈ R.

Though, neither of the products on the left-hand side here exists, their difference
still has a correct meaning in the distribution space D′(R). Formulas including
such balanced singular products of distributions can be found in mathematics and
physics literature. For balanced products of this kind, we used the name ‘products
of Mikusiński type’ in a previous paper [2], where we derived a generalization of
equation (1) in the Colombeau algebra of equation (1) such that the distributions
x−p and δ(q) for arbitrary natural p and q were involved. Furthermore, we have

DOI 10.14712/1213-7243.2015.114



146 Damyanov B.

introduced in a unified way generalized functions of Colombeau that model sin-
gularities of certain type and have additional properties [3]. The singularities we
considered in that paper were given by distributions with singular support (the
complement to the maximal open set where the distribution is a C∞-function)
in a point x on the real line R. For x = 0, such are Dirac δ-function and its
derivatives, Heaviside step function, the non-differentiable functions xp

±, and the
distributions xa

±, a ∈ R\Z.
In the present paper, we study generalized models in G(R) of the distributions

x−p
± , p ∈ N and evaluate various products of such models when the result admits an

associated distribution. We note that when computed for the canonical embedding
of the distributions in G, none of the singular products computed in the paper
admits an associated distribution.

2. Notation and definitions

2.1 We recall first the basic definitions of Colombeau algebra G(R) [1].

Notation 1. Let N denote the natural numbers, N0 = N∪{0}, and for i, j ∈ N0.
Then we put for arbitrary q ∈ N0 :

Aq(R) = {ϕ(x) ∈ D(R) :

∫

R

xj ϕ(x) dx = δ0j , j = 0, 1, . . . , q},

where D(R) is the space of infinitely differentiable functions with compact support.
For ϕ ∈ A0(R) and ε > 0, we will use the following notation throughout the
paper: ϕε = ε−1ϕ(ε−1x) and s ≡ s(ϕ) := sup {|x| : ϕ(x) 6= 0}. Then clearly
s(ϕε) = εs(ϕ), and denoting σ ≡ σ(ϕ, ε) := s(ϕε) > 0, we have σ := εs = O(ε),
as ε → 0, for each ϕ ∈ A0(R). Finally, the shorthand notation ∂x = d/dx will be
used in the one-dimensional case too.

Definition 1. Let E [R] be the algebra of functions F (ϕ, x) : A0(R)×R → C that
are infinitely differentiable for fixed ‘parameter’ ϕ. Then the generalized functions
of Colombeau are elements of the quotient algebra G ≡ G(R) = EM[R] / I [R].
Here EM[R] is the subalgebra of ‘moderate’ functions such that for each compact
subset K of R and p ∈ N0 there is a q ∈ N such that, for each ϕ ∈ Aq(R),
supx∈K |∂p F (ϕε, x) | = O(ε−q), as ε → 0+, where ∂p denotes the derivative of
order p. The ideal I [R] of EM[R] consists of all functions such that for each
compact K ⊂ R and any p ∈ N0 there is a q ∈ N such that, for every r ≥ q and
ϕ ∈ Ar(R), supx∈K |∂p F (ϕε, x) | = O(εr−q), as ε→ 0+.

The differential algebra G(R) contains the distributions on R, canonically em-
bedded as a C-vector subspace by the map

i : D′(R) → G : u 7→ ũ = {ũ(ϕ, x) := (u∗ϕ̌)(x)|ϕ ∈ Aq(R)}, where ϕ̌(x) = ϕ(−x).

The equality of generalized functions in G is very strict and so it is introduced
a weaker form of equality in the sense of association that plays a fundamental
role in Colombeau theory.
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Definition 2. (a) Two generalized functions F,G ∈ G(R) are said to be ‘as-
sociated’, denoted F ≈ G, if for some representatives F (ϕε, x), G(ϕε, x) and
arbitrary ψ(x) ∈ D(R) there is a q ∈ N0, such that for any ϕ(x) ∈ Aq(R),
limε→0+

∫
R
[F (ϕε, x) −G(ϕε, x)]ψ(x) dx = 0.

(b) A generalized function F ∈ G(R) is said to be ‘associated’ with a dis-
tribution u ∈ D′(R), denoted F ≈ u, if for some representative F (ϕε, x), and
arbitrary ψ(x) ∈ D(R) there is a q ∈ N0, such that for any ϕ(x) ∈ Aq(R),
limε→0+

∫
R
f(ϕε, x)ψ(x) dx = 〈u, ψ〉.

These definitions are independent of the representatives chosen, and the asso-
ciation is a faithful generalization of the equality of distributions. The following
relations hold in G :

(2) F ≈ u & F1 ≈ u1 =⇒ F + F1 ≈ u+ u1, ∂F ≈ ∂u.

2.2 We next recall the definition of some distributions to be used in the sequel.

Notation 2. If a ∈ C and Re a > −1, denote as usual the locally-integrable
functions :

xa
+ =

{
xa if x > 0,

0 if x < 0,
xa
− =

{
(−x)a if x < 0,

0 if x > 0.

lnx+ =

{
lnx if x > 0,

0 if x < 0,
lnx− =

{
ln(−x) if x < 0,

0 if x > 0.

ln |x| = lnx+ + lnx−, ln|x| sgnx = lnx+ − lnx−.

The distributions xa
± are defined for any a ∈ Ω := {a ∈ R : a 6= −1,−2, . . .},

by setting

xa
+ = ∂r xa+r

+ (x), xa
− = (−1)r ∂r xa+r

− (x),

where r ∈ N0 is such that a + r > −1 and the derivatives are in distributional
sense.

This definition can be extended also for negative integer values of a by a proce-
dure due to M. Riesz (see [5, § 3.2]). For each ψ(x) ∈ D(R), a 7→ 〈xa

+, ψ〉 is an ana-
lytic function of a on the set Ω. The excluded points are simple poles of this func-
tion. For any p ∈ N0, the residue at a = −p−1 is lima→−p−1(a+p+1) 〈xa

+, ψ〉 =

ψ(p)(0)/p!. Subtracting the singular part, one gets for any p ∈ N0 :

lim
a→−p−1

〈xa
+, ψ〉 −

1

p!

ψ(p)(0)

a+ p+ 1
= −

1

p!

∫ ∞

0

lnxψ(p+1) dx+
ψ(p)(0)

p!

p∑

k=1

1

k
.

The right-hand side of this equation, which is the principal part of the Laurent
expansion, was proposed by Hörmander in [5] to define the distribution x−p−1

+ ,
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acting here on the test-function ψ(x). In view of the notation in 2.2, this is

equivalent to the following definition of x−p−1
+ for arbitrary p ∈ N0 (x ∈ R) :

(3) x−p−1
+ =

(−1)p

p!
∂p+1

x lnx+ +
(−1)p κp

p!
δ(p)(x).

It is introduced here the shorthand notation κp :=
∑p

k=1 1/k (p ∈ N0); note that
κ0 = 0. Similar consideration leads to the defining equation

(4) x−p−1
− =

−1

p!
∂p+1

x lnx− +
κp

p!
δ(p)(x).

One checks that the distributions x−p
± satisfy :

∂x x
−p
+ = −p x−p−1

+ +
(−1)p

p!
δ(p)(x), ∂x x

−p
− = p x−p−1

− −
1

p!
δ(p)(x).

Moreover, it follows immediately that

(5) x−p
+ |x 7→−x = x−p

− and also x−p
+ + (−1)p x−p

− = x−p (p ∈ N),

where x−p is defined, as usual, as a distributional derivative of order p of ln |x|.
Similarly, we define the distribution

(6) x−p sgnx := x−p
+ − (−1)p x−p

− (p ∈ N0).

Note that x−p sgnx 6= x−p for arbitrary p ∈ N0; it also differs from the ‘odd’
and ‘even’ compositions |x|−p sgnx := x−p

+ + x−p
− = x−p for odd natural p and

|x|−p := x−p
+ − x−p

− = x−p for even p.
Recall finally the definition of the distributions (x±i0)−p−1 for p ∈ N0 :

(7) (x±i0)−p−1 := lim
y→0+

(x±iy)−p−1 = x−p−1 ∓
(−1)p i π

p!
δ(p)(x), x ∈ R.

3. Modelling of singularities in the Colombeau algebra

Consider first generalized functions that model the δ-type singularity in the
sense of association, i.e. being associated with the δ-function. Since there is an

abundant variety of such functions (together with the canonical imbedding δ̃ in
G of the distribution δ), we can put on the generalized functions in question an
additional requirement. So define, following [9, §10], a generalized function D ∈ G
with the properties:

(8) D ≈ δ, D 2 ≈ δ.

To this aim, we let ϕ ∈ A0(R), s ≡ s(ϕ), and σ = s(ϕε) = εs be as in
Notation 1, and D ∈ G be the class [ϕ 7→ D(s(ϕ), x)]. We specify further that
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D(s, x) = f(x) + λs g(x), where f, g ∈ D(R) are real-valued, symmetric, with
disjoint support, and satisfying:

∫

R

f(x) dx = 1,

∫

R

g(x) dx = 0, and λ2
s =

s−
∫
f 2(x) dx∫

g 2(x) dx
.

It is not difficult to check that, for each ϕ ∈ A0(R), the representative D(s, x) of
the generalized function D satisfies the conditions:

(9) D(·, x) ∈ D(R), D(·,−x) = D(·, x),
1

s

∫

R

D 2(s, x) dx =

∫

R

D(s, x) dx = 1

for each real positive value of the parameter s. Moreover, the generalized function
D so defined satisfies the association relations (8). To show this, denote by

(10) Dσ(x) :=
1

σ
D

(
σ,
x

σ

)
, where σ = s(ϕε).

Now, for an arbitrary test-function ψ ∈ D(R), evaluate the functional values

I1(σ) = 〈Dσ(x), ψ(x)〉, I2(σ) = 〈D 2
σ (x), ψ(x)〉,

as ε → 0+, or equivalently, as σ → 0+. But in view of (9), it is immediate to
see that limσ→0+

I1(σ) = limσ→0+
I2(σ) = 〈δ, ψ〉; which according to Defini-

tion 2 (b) gives (8).
The first equation in (8) is in consistency with the observation that Dσ(x) is

a strict δ-net as defined in distribution theory [9, §7]. But notice that D is not

the canonical embedding δ̃ of the δ-function since δ̃ 2 does not admit associated
distribution.

The flexible approach to modelling singularities allowed by generalized func-
tions in G so that the models satisfy auxiliary conditions, can be systematically
applied to defining generalized models of particular singularities. We will con-
sider models of singularities given by distributions with singular point support.
For their definition, we intend to take advantage of the properties of δ-modelling
function D. Observe that

(δ ∗D(s, ·))(x) = 〈δy, D(s, x− y)〉 = D(s, x).

(δ ′ ∗D(s, ·))(x) = 〈δ ′
y, D(s, x− y)〉 = −〈δy ∂yD(s, x− y)〉

= 〈δy, D
′(s, x− y)〉 = D ′(s, x).

This can be continued by induction for any derivative to define a generalized
function D (p)(x) that models δ (p)(x) and has representative D (p)(s, x) = (δ (p) ∗
D(s, ·))(x).
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Clearly, this definition is in consistency with the differentiation: ∂xD
(p)(x) =

D (p+1)(x), p ∈ N0. Moreover,

(11) D (p)(−x) = (−1)pD (p)(x).

In [3] we have employed such procedure for unified modelling of singularities
given by distributions with singular point support, i.e. (besides δ(p)) the distri-
butions xa

±, a ∈ Ω. Namely, choosing an arbitrary generalized function D with
representative D(s, x) that satisfies (9) for each ϕ ∈ A0(R), we have introduced
generalized functions Xa

±(x), modelling the above singularities, with representa-
tives

(12) Xa
±(s, x) := (ya

± ∗D(s, y))(x), a ∈ Ω.

This is consistent with the differentiation : ∂xX
a
±(x) = aXa−1

± (x); in particular,
H ′ = D, where H ∈ G is model of the step-function θ, with representative
H(s, x) = θ ∗D(s, ·)(x).

Extending now definition (12) to the distributions x−p−1
± , p ∈ N0, we obtain

(13) X−p−1
± (s, x) := (y−p−1

± ∗D(s, y))(x).

Similarly, we put Lnx± := (ln y± ∗D(s, y))(x).
Note that generalized functions so introduced are indeed models of the corre-

sponding singularities: it is straightforward to show that for each a ∈ Ω

Xa
±(x) ≈ xa

±(x); in particular, H ≈ θ, and Hp ≈ θ for each p ∈ N.

It was also proved in [3] that — as it can be expected — the functions H and
D that model correspondingly the θ- and δ-type singularities satisfy the relation
H .D ≈ 1

2 δ. Moreover, these generalized models were proved to satisfy

(14) H · D ′ ≈ − δ +
1

2
δ ′.

Concerning the singularities given by the distributions x−p
± , p ∈ N, it can be

easily checked that Ln±x ≈ ln± x for the latter locally-integrable function. Then

the modelling property for the generalized functions X−p
± (x) follows in view of

relation (2) for consistency between the differentiation and association in G.

Finally, we shall need below the representatives of the generalized models when
they depend on ϕε, or rather on the value s(ϕε) = εs(ϕ) = σ. In view of equations
(3), (4), (10), (12), and (13), we obtain for the corresponding representatives
(p ∈ N0) :

Xp
+ σ(x) =

1

σ

∫ ∞

0

ypD

(
σ,
x− y

σ

)
dy,(15)
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Xp
−σ(x) =

1

σ

∫ 0

−∞

(−y)pD

(
σ,
x− y

σ

)
dy,

X−p−1
+ σ (x) =

(−1)p

σp+2 p!

∫ ∞

0

ln yD(p+1)

(
σ,
x− y

σ

)
dy

+
(−1)p κp

σp+1 p!
D(p)

(
σ,
x

σ

)
,

X−p−1
−σ (x) =

−1

σp+2 p!

∫ 0

−∞

ln(−y)D(p+1)

(
σ,
x− y

σ

)
dy(16)

+
κp

σp+1 p!
D(p)

(
σ,
x

σ

)
.

4. Products of some singularities modelled in G(R)

The models of singularities we consider have products in the Colombeau algebra
as generalized functions, but we are seeking results that can be evaluated back
in terms of distributions, i.e. such that admit associated distributions. We will
establish first certain balanced products of generalized models in the algebra G(R)
that exist on distributional level, proving the following.

Theorem 1. The generalized models of the distributions x−2
± , θ, θ̌, and δ ′(x)

satisfy:

X−2
− · H − Lnx+ · D ′ ≈ − δ,(17)

X−2
+ · Ȟ + Lnx− · D ′ ≈ − δ.(18)

Proof: (i) For an arbitrary test-function ψ(x) ∈ D(R), denote I(σ) := 〈 X−2
−σ ·

Hσ, ψ(x) 〉. Suppose (without loss of generality) that supp D(σ, x) ⊆ [−l, l]
for some l ∈ R+; then −l ≤ x/σ ≤ l implies −lσ ≤ x ≤ lσ. Now from
equations (16) for p = 1 and (15) for p = 0, we get on transforming the variables
y = σu+ x, z = σv + x, and x = −σw:

(19)

I(σ) = −
1

σ4

∫ σl

−σl

dxψ(x)

∫ σl+x

0

dy D

(
σ,
x− y

σ

)

×

∫ 0

−σl+x

ln(−z)D ′′

(
σ,
x− z

σ

)
dz

+
1

σ3

∫ σl

−σl

dxψ(x)D ′

(
σ,
x

σ

)∫ σl+x

0

D

(
σ,
x− y

σ

)
dy

= −
1

σ

∫ l

−l

dwψ(−σw)

∫ l

w

duD(σ, u)

∫ w

−l

ln(σw − σv)D ′′(σ, v) dv

+
1

σ

∫ l

−l

dw ψ(−σw)D ′(σ,w)

∫ l

w

D(σ, u) du =: I1 + I2.
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Applying Taylor theorem to the function ψ and changing the order of integration,
we get

I1 = −
ψ(0)

σ

∫ l

−l

duD(σ, u)

∫ u

−l

dv D ′′(σ, v)

∫ u

v

ln(σw − σv) dw

+ψ ′(0)

∫ l

−l

duD(σ, u)

∫ u

−l

dv D ′′(σ, v)

∫ u

v

ln(σw − σv)w dw + o (1).

Here the Landau symbol o(1) stands for an arbitrary function of asymptotic order
less than any constant, and the asymptotic evaluation is obtained taking into
account that the third term in the Taylor expansion is multiplied by definite
integrals majorizable by constants. Now the substitution w → t = (w−v)/(u−v),
together with w − v = (u− v)t, yields

I1 = −
ψ(0)

σ

∫ l

−l

duD(σ, u)

∫ u

−l

dv D ′′(σ, v)(u − v)

[
ln(σu − σv) +

∫ 1

0

ln t dt

]

+ψ ′(0)

∫ l

−l

duD(σ, u)

∫ u

−l

dv D ′′(σ, v)(u − v) 2

[
ln(σu − σv)

2
+

∫ 1

0

t ln t dt

]

−ψ ′(0)

∫ l

−l

duD(σ, u)

∫ u

−l

dv D ′′(σ, v)(u − v) 2

[
ln(σu − σv) +

∫ 1

0

ln t dt

]

+ψ ′(0)

∫ l

−l

du uD(σ, u)

∫ u

−l

dv D ′′(σ, v)(u − v)

[
ln(σu− σv) +

∫ 1

0

ln t dt

]

+ o (1).

Calculating the integrals
∫ 1

0
ln t dt = −1,

∫ 1

0
ln t dt = −1/4, replacing v = u −

(u − v), and integrating by parts in the variable v (the integrated part being 0)
we get

I1 = −
ψ(0)

σ

∫ l

−l

duD(σ, u)

∫ u

−l

ln(σu − σv) D ′(σ, v) dv − 2ψ(0)

+ψ ′(0)

∫ l

−l

du uD(σ, u)

∫ u

−l

ln(σu − σv)D ′(σ, v) dv(20)

−ψ ′(0)

∫ l

−l

duD(σ, u)

∫ u

−l

ln(σu − σv)D(σ, v) dv + o (1).

To obtain the latter result, we have used equation (9) and also that

(21)

∫ l

−l

duD(σ, u)

∫ u

−l

D(σ, v) dv =
1

2
.

Applying again Taylor theorem to the function ψ, changing the order of inte-
gration, and integrating by parts in the variable w, we obtain for the second term
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in (19) :

I2 = ψ(0) −
1

2
ψ ′(0) + o (1),

where equation (21) is used again. Thus

(22)

I(σ) = −
ψ(0)

σ

∫ l

−l

duD(σ, u)

∫ u

−l

ln(σu − σv)D ′(σ, v) dv

+ ψ ′(0)

∫ l

−l

du uD(σ, u)

∫ u

−l

ln(σu − σv)D ′(σ, v) dv

− ψ ′(0)

∫ l

−l

duD(σ, u)

∫ u

−l

ln(σu− σv)D(σ, v) dv

− ψ(0) −
1

2
ψ ′(0) + o (1).

(ii) On the other hand, denoting J(σ) := 〈Lnx+σ . D
′
σ, ψ(x) 〉, we obtain on

transforming the variables y = σu + x and x = −σv, applying Taylor theorem
to ψ, and changing the order of integration :

J(σ) =
1

σ3

∫ σl

−σl

dxψ(x)D ′

(
σ,
x

σ

) ∫ σl+x

0

ln y D

(
σ,
x− y

σ

)
dy

= −
ψ(0)

σ

∫ l

−l

duD(σ, u)

∫ u

−l

ln(σv − σu)D ′(σ, v) dv

+ψ ′(0)

∫ l

−l

duD(σ, u)

∫ u

−l

ln(σv − σu) v D ′(σ, v) dv + o (1).

Replacing v = u+(v−u) in the last term and integrating by parts the third term,
we get

(23)

J(σ) = −
ψ(0)

σ

∫ l

−l

duD(σ, u)

∫ u

−l

ln(σv − σu)D ′(σ, v) dv

+ ψ ′(0)

∫ l

−l

du uD(σ, u)

∫ u

−l

ln(σv − σu)D ′(σ, v) dv

− ψ ′(0)

∫ l

−l

duD(σ, u)

∫ u

−l

ln(σv − σu)D(σ, v) dv

−
1

2
ψ ′(0) + o (1).

Combining now equations (22) and (23), we obtain by linearity that

lim
σ→0+

∫

R

ψ(x)
[
X −2

−σ(x) · Hσ(x) − Lnx+ σ(x) · D ′
σ(x)

]
dx = −ψ(0) = −〈δ, ψ〉.
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According to Definition 2(b), this proves the first equation in (17). The second
equation follows on replacing x → −x in the first one and taking into account
equations (5) and (11). This completes the proof. �

The above balanced products of the functions X −2
± supported in the corre-

sponding real half-lines can be employed further to get results on singular prod-
ucts of the generalized modelling functions X −2 sgnx and X −2 (obtained from
equations (6), (5), and (13)).

Corollary 1. The following balanced product holds for the generalized models

of the distribution x−2 sgnx, θ, and δ ′ :

(24) X −2 sgnx · H + Ln |x| sgnx · D ′ ≈ x−2
+ + 2 δ.

Proof: Consider the following chain of identities and associations in G(R), taking
into account equation (18) and the relation H + Ȟ ≈ 1 :

X −2
+ · H = X −2

+ · (1 − Ȟ) = X −2
+ − X −2

+ · Ȟ ≈ X −2
+ + Lnx− · D ′ + δ.

Thus

X −2
+ · H − Lnx− · D ′ ≈ X −2

+ + δ,

which, in view of the association X −2
+ ≈ x−2

+ and the linearity by (2) of the
association in G, leads to the balanced product

(25) X −2
+ · H − Lnx− · D ′ ≈ x−2

+ + δ.

Further, equations (6) for p = 2, (17) and (25), will all yield

X −2 sgnx ·H =
(
X −2

+ − X −2
−

)
·H ≈ Lnx− ·D ′ + x−2

+ +δ−Lnx+ ·D ′+δ.

Due to relation (2) for linearity of the association, this proves equation (24).

Other consequences from the above results are given by this.

Corollary 2. The generalized models in G of the distributions (x±i0)−2, θ, and

δ ′ satisfy

(26) (X±i0)−2 · H − Ln |x| · D ′ ≈ x−2
+ ∓ iπ δ(x) ±

iπ

2
δ ′.

Proof: The second equation in (5), as well as equations (17) and (25), now give

X −2 · H =
(
X −2

+ + X −2
−

)
· H ≈ Lnx− · D ′ + x−2

+ + δ + Lnx+ · D ′ − δ.

In view of (2), this yields

(27) X −2 · H − Ln |x| · D ′ ≈ x−2
+ .
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Employing further equations (7), (27) and (14), we get

(X±i0)−1 · H = X −2 · H ± iπ D ′(x) · H ≈ Ln |x| · D ′+ x−2
+ ∓ iπ δ±

iπ

2
δ ′,

which in view of linearity of association in G proves (26). �

Finally, we will evaluate some products of singularities given by the non-
differentiable functions x± modelled by the generalized functions X± with deriva-
tives of D. They only exist as balanced products, as demonstrated by this.

Theorem 2. The following balanced products hold for the modelling generalized

function X±, H and D:

X+ · D (4) + H · D (3) ≈
5

2
δ ′′ −

3

2
δ ′′′,(28)

X− · D (4) + Ȟ · D (3) ≈
5

2
δ ′′ +

3

2
δ ′′′.(29)

Proof: For an arbitrary ψ(x) ∈ D(R), we denote

I(σ) := 〈X+ σ(x) · D (4)
σ (x), ψ(x) 〉.

From equations (10) and (15), we get on transforming the variables y = σv+x, x =
−σu, changing the order of integration, and applying Taylor theorem

I(σ) =
1

σ 3

∫ l

−l

duψ(−σu)D (4)(σ, u)

∫ l

u

(v − u)D(σ, v) dv

=
ψ(0)

σ 3

∫ l

−l

dv D(σ, v)

∫ v

−l

(v − u)D (4)(σ, u) du

−
ψ ′(0)

σ 2

∫ l

−l

dv D(σ, v)

∫ v

−l

u (v − u)D (4)(σ, u) du

+
ψ ′′(0)

2 σ

∫ l

−l

dv D(σ, v)

∫ v

−l

u 2 (v − u)D (4)(σ, u) du

−
ψ ′′′(0)

6

∫ l

−l

dv D(σ, v)

∫ v

−l

u 3 (v − u)D (4)(σ, u) du +O(σ)

=: ψ(0) I0 + ψ ′(0) I1 + ψ ′′(0) I2 + ψ ′′′(0) I3 + O(σ).

Denote further J(σ) := 〈H σ(x) · D
(3)
σ (x), ψ(x) 〉. Proceeding as above, we

get

J(σ) = ψ(0) J0 + ψ ′(0) J1 + ψ ′′(0) J2 + ψ ′′′(0) J3 + O(σ).
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Compute next the terms Ik, k = (0, 1, 2, 3). We shall use equations (9), (21),
as well as that

1

σ

∫ l

−l

v D(σ, v)D′(σ, v) dv = −
1

2 σ

∫ l

−l

D 2(σ, v) dv = −
1

2
.

Also, due to the equality D ′(·,−x) = −D ′(·, x), the following equations hold

∫ l

−l

D(σ, v)D′(σ, v) dv =

∫ l

−l

v D 2(σ, v) dv =

∫ l

−l

v 2 D(σ, v)D′(σ, v) dv = 0.

Integrating now by parts in the variable u, the integrated part being 0 each time,
we obtain :

I0 =
1

σ 3

∫ l

−l

dv D(σ, v)

∫ v

−l

D (3)(σ, u) du = − J0,

I1 = −
1

σ2

∫ l

−l

dv D(σ, v)

∫ v

−l

uD(3)(σ, u) du

+
1

σ2

∫ l

−l

dv D(σ, v)

∫ v

−l

(v − u)D(3)(σ, u) du

= − J1 +
1

σ 2

∫ l

−l

D(σ, v)D
′

(σ, v) dv = −J1,

I2 =
1

2σ

∫ l

−l

dv D(σ, v)

∫ v

−l

u 2D (3)(σ, u) du

−
1

σ

∫ l

−l

dv D(σ, v)

∫ v

−l

u(v − u)D (3)(σ, u) du

= − J2 + I ′
2,

where

I ′
2 =

1

σ

∫ l

−l

dv D(σ, v)

∫ v

−l

(v − u)2D(3)(σ, u) du

−
1

σ

∫ l

−l

dv v D(σ, v)

∫ v

−l

(v − u)D(3)(σ, u) du

=
2

σ

∫ l

−l

D 2(σ, v) dv −
1

σ

∫ l

−l

v D(σ, v)D ′(σ, v) dv =
5

2
,

I3 = −
1

6

∫ l

−l

dv D(σ, v)

∫ v

−l

u 3D (3)(σ, u) du

+
1

2

∫ l

−l

dv D(σ, v)

∫ v

−l

u 2 (v − u)D (3)(σ, u) du
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= − J3 +
3

2
.

Summing up, we get

(30) I(σ) = −ψ(0)J0−ψ
′(0)J1−ψ

′′(0)J2−ψ
′′′(0)J3+

5

2
ψ ′′(0)+

3

2
ψ ′′′(0)+O(σ).

Now from equation (30), we obtain by linearity that

lim
σ→0+

∫

R

ψ(x)
[
X+ σ(x) · D (4)

σ (x) +H σ(x) · D (3)
σ (x)

]
dx = 〈

5

2
δ ′′ −

3

2
δ ′′′, ψ 〉.

According to Definition 2(b), this proves equation (28), whereas equation (29)
follows on replacing x→ −x in the former. The proof is complete. �

Remark. Note that when computed for the canonical embedding of distributions
in G, none of the above singular products can be balanced so as to admit associated
distribution.
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