
Comment.Math.Univ.Carolin. 56,2 (2015) 223–230 223

A new Lindelöf space with points Gδ

Alan Dow

Abstract. We prove that ♦∗ implies there is a zero-dimensional Hausdorff Lin-
delöf space of cardinality 2ℵ1 which has points Gδ. In addition, this space has
the property that it need not be Lindelöf after countably closed forcing.
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1. Introduction

The set-theoretic principle ♦∗ was formulated by Jensen ([2, p. 128] and [9, VI
#16, p. 181]).

Definition 1.1. ♦∗ is the statement that there are countable Aα ⊂ P(α), for
α ∈ ω1, such that for every A ⊂ ω1 there is a cub C ⊂ ω1 such that A ∩ α ∈ Aα

for all α ∈ C.

Definition 1.2 ([10]). A Lindelöf space is indestructible if it remains Lindelöf
after any countably closed forcing. A Lindelöf space is destructible if it is not
indestructible.

Notice that ♦∗ implies CH but is consistent with 2ℵ1 being arbitrarily large ([9,
VII (H18)–(H20) p. 249]). As is well-known, Shelah proved, using forcing, that it is
consistent with CH to have Hausdorff zero-dimensional Lindelöf spaces with points
Gδ which had cardinality ℵ2 (see [5]). In establishing the consistency with CH of
there being no such spaces with cardinality strictly between ℵ1 and 2ℵ1 , Shelah
also established the relevance of the notion of a space being destructible (see [5]).
I. Gorelič [4] produced another forcing construction to establish the consistency
of the existence of Lindelöf spaces with points Gδ which had cardinality 2ℵ1 while
allowing 2ℵ1 to be as large as desired. F. Tall [10] points out that each of these
examples is indestructible. R. Knight [8] extended the Shelah style construction
in models of GCH with special L-like combinatorial structures (flat morasses)
and constructed an example of cardinality ℵω. Close inspection of Lemma 3.5.2
of [8] shows that this example is also indestructible. Finally, let us mention
that Juhasz [6] constructed a non-Hausdorff example in ZFC which (see [10]) is
destructible.

In this note we will prove
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Theorem 1.3. ♦∗ implies there is a space that is zero-dimensional Hausdorff

Lindelöf destructible of cardinality 2ℵ1 and that has points Gδ.

This is the first consistent example of a Lindelöf Hausdorff destructible space
with points Gδ.

Question 1. Does every Lindelöf Hausdorff destructible space have cardinality at
least 2ℵ1?

2. A Lindelöf tree

We build our space X using the structure 2≤ω1 . For each t ∈ 2≤ω1 let [t] denote
the set {s ∈ 2≤ω1 : t ⊆ s}. For any t ∈ 2<ω1 such that dom(t) is a successor, let
t† be the other immediate successor of the immediate predecessor of t, i.e. t and
t† are the two immediate successors of t ∩ t†. For distinct functions ρ, ψ in the
tree 2≤ω1 , we will let ρ∧ψ denote the maximal element of 2<ω1 which is an initial
segment of each of them. Let σ denote the standard topology on 2≤ω1 that has
the family

{∅} ∪ {[ρ ↾ ξ + 1] : ξ ∈ ω1, ρ ∈ 2ω1}∪

{[t ↾ ξ + 1] \ ([t⌢0] ∪ [t⌢1]) : ξ ∈ dom(t), t ∈ 2<ω1}

as a subbase. Of course t is isolated and [t] is clopen for all t such that dom(t) ∈ ω1

is not a limit.
This next lemma is very well-known but since it is crucial to our construction,

we include a proof.

Lemma 2.1. The topology σ on 2≤ω1 is compact zero-dimensional and Hausdorff.

Also, for each α ∈ ω1, 2≤α is a compact first-countable subspace.

Proof: One standard method of proof is to construct a canonical embedding

of 2≤ω1 into 22
<ω1

and show that the range is closed in the product topology.
However, we will give a more direct proof. Certainly σ is zero-dimensional since
the members of the generating subbase are easily shown to also be closed. If s, t
are distinct elements of 2≤ω1, we show they have disjoint neighborhoods. If t ⊂ s,
then, for any ξ ∈ dom(t), t ∈ [t ↾ ξ + 1] \ ([t⌢0] ∪ [t⌢1]) and s ∈ ([t⌢0] ∪ [t⌢1]).
Otherwise, we may assume that y = s ∧ t is strictly below each of s and t, and
note that [y⌢0] and [y⌢1] are disjoint and each contains one of s, t.

Now assume that U is a cover by basic open sets. Let TU denote the set of
all t ∈ 2<ω1 such that there is no finite subcollection of U whose union contains
[t]. If ∅ /∈ TU then U has a finite subcover. So assume that TU is not empty.
Observe that if t ∈ TU , then t ↾ ξ ∈ TU for all ξ ∈ dom(t). For each ρ ∈ 2ω1 ,
there is a ξ ∈ ω1 such that [ρ ↾ ξ + 1] ∈ U , so we have that TU is a subtree of
2<ω1 with no uncountable branch. Similarly, TU has no maximal elements, since
if each of [t⌢0] and [t⌢1] are covered by a finite union from U , then certainly,
[t] = {t} ∪ [t⌢0] ∪ [t⌢1] is as well. Choose any maximal chain {tξ : ξ ∈ α} ⊂ TU
and let t =

⋃
{tξ : ξ ∈ α}. Since T has no maximal elements, t is on a limit level
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and U contains a finite cover of [t]. But in addition, there is some ξ < α such that
[tξ] \ ([t⌢0] ∪ [t⌢1]) is in U . This is a contradiction, since it shows that U has a
finite cover of [tξ] – contradicting that tξ ∈ TU .

It is obvious that 2≤α is a closed subset of 2≤ω1 , and, for each non-isolated
t ∈ 2≤α, the collection {[t ↾ ξ+1]\ ([t⌢0]∪ [t⌢1]) : ξ ∈ dom(t)} is a neighborhood
base at t. �

Next we consider Lindelöf subspaces.

Lemma 2.2. If Y ⊂ 2<ω1 satisfies that Y ∩ 2α is countable for all α ∈ ω1, then

the complement of Y in 2≤ω1 is Lindelöf in the topology induced by σ.

Proof: Assume that U is a cover of 2≤ω1\Y by basic clopen sets. Let us again set
TU to be the set of t ∈ 2<ω1 such that U contains a countable cover of [t]\Y . As in
the proof of Lemma 2.1, TU (if non-empty) is downwards closed, has no maximal
elements, and no uncountable branches. Now let us show that TU is branching.
Suppose that TU ∩ [t] is a chain. Then it is a countable chain (with supremum
in Y ), and let {tγ : γ ∈ α} be an enumeration in increasing order and let tα
denote the union. For each γ ∈ α, we have that t†γ+1 is not in TU , and so there is

a countable Uγ ⊂ U whose union covers ({tγ} ∪ [t†γ+1]) \ Y . Furthermore there is

a countable Uα ⊂ U that covers [tα] \ Y . It should be clear that
⋃⋃

{Uγ : γ ≤ α}
covers [t].

Now we have established that TU is branching and has no maximal elements.
Set t∅ = ∅ and by recursion on s ∈ 2<ω, choose ts ∈ TU so that for s ∈ 2<ω,
ts ⊂ (ts⌢0 ∧ ts⌢1) and ts⌢0 ⊥ ts⌢1. Let δ ∈ ω1 so that {ts : s ∈ 2<ω} ⊂ 2<δ.
Choose any x ∈ 2ω so that tx =

⋃
n tx↾n ∈ 2≤δ \ Y . By construction, dom(tx) is

a limit ordinal. Choose any ξ ∈ dom(tx) so that [tx ↾ ξ + 1] \ ([t⌢x 0] ∪ [t⌢x 1]) is
contained in some U ∈ U . Fix n so that ξ < dom(tx↾n), and choose any s ∈ 2<ω

so that x ↾ n ⊂ s and s 6⊂ x. Finally we can conclude that TU must be empty,
since we have that [ts] ⊂ U . �

3. Points Gδ

Let {Aα : α ∈ ω1} be a sequence as in Definition 1.1 witnessing the statement
♦∗.

Definition 3.1. For each limit α ∈ ω1 let Sα = {t ∈ 2α : t−1(1) ∈ Aα}. For
0 < α not a limit, let Sα be the empty set, and let S0 = {∅}.

Lemma 3.2. For each ρ ∈ 2ω1 , there is a cub Cρ ⊂ ω1 such that Cρ ⊂ {α : ρ ↾

α ∈ Sα}.

Proof: This is just a restatement of the fact that the sequence {Aα : α ∈ ω1} is
a ♦∗ sequence. �

For each ρ ∈ 2ω1 fix a cub Cρ as in Lemma 3.2.
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Proposition 3.3. For each ρ ∈ 2ω1, there is a countable-to-one function fρ :
ω1 → 2ω so that for each x ∈ 2ω, there is a δx ∈ Cρ ∪ {0} and δx < γx ∈ Cρ so

that f−1
ρ (x) is equal to the interval [δx, γx).

Proof: First let {δx : x ∈ 2ω} be any enumeration of Cρ ∪{0}. For each x ∈ 2ω,
define γx to be min(Cρ \ [0, δx]). Assume that δx < δy. Then it is obvious that
γx ≤ δy. Now define fρ so that fρ([δx, γx)) = {x} for all x ∈ 2ω. �

Now we are ready to prove our main theorem.

Proof of Theorem 1.3: Fix the sequence {Sα : α ∈ ω1} as in Definition 3.1,
and let Y equal the union of this family. Our space X will have as its base set
(2ω1 × 2ω)∪ 2<ω1 \ Y . We will use the fact (Lemma 2.2) that 2≤ω1 \ Y is Lindelöf
when using the topology σ. Recall that for each ρ ∈ 2ω1 and ξ ∈ ω1, [ρ ↾ ξ+1]\Y
is a clopen set. In this proof, for any s ∈ 2<ω, we will use [s]2ω to denote the set
{x ∈ 2ω : s ⊂ x}.

We define a clopen base for the topology τ . For each t ∈ 2<ω1 , we use the
notation [t]X to denote

[t]X = [t] ∩ (2<ω1 \ Y ) ∪ ([t] ∩ 2ω1) × 2ω.

Again, for each ρ ∈ 2ω1 and each ξ ∈ ω1, the set [ρ ↾ ξ + 1]X is declared to be a
clopen set in τ (i.e. [ρ ↾ ξ+1]X and its complement are in τ). Let us observe that
for t ∈ Y , [t]X is equal to [t⌢0]X ∪ [t⌢1]X and so is also clopen.

Next, for each ρ ∈ 2ω1 and each x ∈ 2ω, let f−1
ρ ({x}) be denoted as [δρx, γ

ρ
x) as

per Proposition 3.3. For s ∈ 2<ω, and γ ∈ Cρ, we define

U(ρ, s, γ) = ({ρ} × [s]2ω )∪
⋃

{[ρ ↾ δρx]X \ [ρ ↾ γρx]X : x ∈ [s]2ω and γ ≤ δρx} .

When the choice of ρ is clear from the context, we will use δx, γx as referring
to δρx, γ

ρ
x. The topology τ will also contain each such U(ρ, s, γ). Notice that, for

each γ ∈ Cρ and each n ∈ ω, the family {U(ρ, s, γ) : s ∈ 2n} is a partition of the
clopen set [ρ ↾ γ]X , and so each is clopen.

Claim 1. For each t ∈ 2<ω1 ∩X , the family

{[t ↾ ξ + 1]X \ ([t⌢0]X ∪ [t⌢1]X) : ξ ∈ dom(t)}

is a neighborhood base for t.

To show this we must consider some ρ, s, γ such that t ∈ U(ρ, s, γ) and γ ∈ Cρ.
There is a unique x ∈ 2ω such that t ∈ [ρ ↾ δx]X \ [ρ ↾ γx]X . Since ρ ↾ δx ∈ Y , we
know that t 6= ρ ↾ δx. Since [ρ ↾ δx]X \ [ρ ↾ γx]X contains [t ↾ δx + 1]X \ ([t⌢0]X ∪
[t⌢1]X), we have proven the claim.

Claim 2. For each ρ ∈ 2ω1 and z ∈ 2ω, the point (ρ, z) is the only element of the
intersection of the family {U(ρ, z ↾ n, γz) : n ∈ ω}.
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It is clear that for any γ ∈ Cρ, U(ρ, s, γ) ∩ ({ρ} × 2ω) is equal to {ρ} × [s]2ω .
Now suppose that ψ ∈ 2ω1 \ {ρ} and t ∈ X ∩ 2<ω1 . Let ρ ↾ ξψ = ψ ∩ ρ and
ρ ↾ ξt = t ∧ ρ. Choose any s ∈ 2<ω so that z ∈ [s]2ω and neither of fρ(ξt),
fρ(ξψ) are in [s]2ω \ {z}. But now, if γz ≤ ξ then fρ(ξ) 6= z. Therefore, for
all x ∈ [s]2ω with γz ≤ γx, we have that {ξt, ξψ} is disjoint from [δx, γx), and
therefore [ρ ↾ δx]X \ [ρ ↾ γx]X is disjoint from {t} ∪ ({ψ} × 2ω). This completes
the proof of the claim.

Let Φ be the canonical map from X (with topology τ) onto 2≤ω1 \ Y (with
topology σ). That is, Φ(t) = t for all t ∈ X ∩ 2<ω1 , and Φ((ρ, x)) = ρ for all
ρ ∈ 2ω1 and x ∈ 2ω. It is evident that point preimages under Φ are compact. It
is immediate that Φ is continuous since Φ−1[t] = [t]X for all t ∈ 2<ω1 . This is
also useful to show that Φ is closed. By [3, 1.4.13] it is sufficient to show that
if U ⊂ X is an open set containing a fiber Φ−1(t) for some t ∈ 2≤ω1 \ Y , then
there is a neighborhood W of t such that Φ−1(W ) is contained in U . Let then,
t ∈ 2≤ω1 \ Y and suppose that U ⊂ X is an open set containing Φ−1(t). This is
obvious if t ∈ 2<ω1 , so suppose that t = ρ ∈ 2ω1 . Since Φ−1(ρ) is simply {ρ}×2ω,
it is clear that there is γ ∈ Cρ and n ∈ ω such that U(ρ, s, γ) ⊂ U for each s ∈ 2n.
As remarked above, this implies that [ρ ↾ γ]X is contained in U . Since [ρ ↾ γ] is
a neighborhood of ρ and, again, [ρ ↾ γ]X = Φ−1([ρ ↾ γ]), this completes the proof
that Φ is a closed mapping.

Now that we have established that there is a perfect map (continuous, closed,
point-preimages compact) from X onto a Lindelöf space, we conclude [3, 3.8.8]
that X is also Lindelöf.

Finally, it is immediate that the forcing notion 2<ω1 will introduce a new
member ψ of 2ω1 . Since the forcing adds no new members to 2<ω1 , the set
{ψ ↾ ξ + 1 : ξ ∈ ω1} is a subset of X and has no complete accumulation point
in X . We conclude that X is not Lindelöf in the forcing extension. �

4. Remarks on consistency

Let us consider the following principle which is evidently weaker than ♦∗.

Definition 4.1. w♦∗ is the statement that there is a subset Y ⊂ 2<ω1 such that

(1) for each α ∈ ω1, Y ∩ 2≤α contains no perfect set,
(2) for each ρ ∈ 2ω1, there is a cub Cρ ⊂ ω1 such that {ρ ↾ γ : γ ∈ Cρ} is

contained in Y .

Say that the set Y is a w♦∗ sequence.

The hypothesis “CH and w♦∗” is sufficient to prove Theorem 1.3. It is proba-
ble that this is a weaker statement than ♦∗ but, just as a ♦∗ sequence is destroyed
by forcing with 2<ω1 (see [9, p. 300 J5]), so too is a w♦∗-sequence. This implies
that w♦∗ fails in the models in which it has been shown that any Lindelöf points
Gδ space of cardinality greater than ω1 must be destructible. In particular, such
a model (see [10]) is obtained by countably closed forcing that collapses a super-
compact cardinal to ℵ2. It is reasonable to conjecture that in that model Lindelöf
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spaces with points Gδ will have cardinality at most ℵ1, and the approach till now
has focused on trying to show that there are (in ZFC) no destructible Lindelöf
spaces with points Gδ. However there is a stronger property that any ZFC ex-
ample of such space must have which we now define. A space with character at
most ω1 would have to have this first property.

Definition 4.2. Say that a regular Lindelöf space with pointsGδ is reconstructible

if it is destructible and there is a countably closed poset so that in the forcing
extension, it is no longer Lindelöf but it can be embedded into a regular Lindelöf
space with points Gδ.

It may not be as natural, but there is a similar, but weaker, property which is
the property we are really after. We use the word elementarily in reference to the
set-theoretic notion of elementary extensions of models.

Definition 4.3. Say that a regular Lindelöf space X with points Gδ is elemen-

tarily reconstructible if there is a countably closed poset so that in the forcing
extension, it is no longer Lindelöf and there is a regular Lindelöf space Y with
points Gδ that has a dense subspace Z and a continuous mapping f from Z onto
X and satisfies that f is a homeomorphism on the pre-image of the points with
character at most ω1.

Clearly an elementarily reconstructible space that has character at most ω1

will be reconstructible. A reader of Tall’s paper [10] will realize that in the forc-
ing extension mentioned above, if there is a Lindelöf space X with points Gδ
and character at most ω1 which has cardinality greater than ω1 then this will
imply the consistency of there being regular Lindelöf spaces that are elementarily
reconstructible. It may possibly be true that X itself will be elementarily recon-
structible, but we do not know1 if a supercompact cardinal is sufficient for this
claim. However, we can prove, sketched below in Proposition 4.6, that a 2-huge
cardinal (see [7, p. 331]) is sufficient.

On the other hand, not only does the poset 2<ω1 render our space to be non-
Lindelöf, it also creates a subspace which cannot be embedded into a Lindelöf
space with points Gδ.

Proposition 4.4. If Y ⊂ 2<ω1 is a w♦∗-sequence, then in the forcing extension

by 2<ω1, there is a ψ ∈ 2ω1 such that Tψ(Y ) = {α : ψ ↾ α ∈ Y } is stationary.

Since {ψ ↾ α : α ∈ Tψ(Y )}, as a subspace of 2<ω1 , is homeomorphic to Tψ(Y )
as a subspace of the ordinal ω1, this next proposition shows that our space X is
not reconstructible.

Proposition 4.5. If S is a stationary subset of ω1, then S cannot be embedded

in a Lindelöf space with points Gδ.

Proof: Assume that Z is a Lindelöf space with S as a subspace. Since S cannot
equal a union of non-stationary sets, and Z is Lindelöf, there is a point z of Z

1the excellent referee noted the difficulty and suggested huge cardinals
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with the property that every neighborhood of z meets S in a non-stationary set.
Let us show that z is not a Gδ-point. Let {Un : n ∈ ω} be a family of open subsets
of Z, each meeting S in a non-stationary set. Since S is a subspace, S \ Un is a
closed subset of S that misses the stationary set Un. Of course this implies that
S\Un is countable. This shows that each Gδ of Z that contains z will also contain
many points of S. �

Following Kunen [9, VII.3.1], let Lv′(κ) denote the standard Silver variant
of the Levy collapse of a strongly inaccessible cardinal κ to ω2 with countable
conditions. If κ is strongly inaccessible, then Lv′(κ) has cardinality κ and satisfies
the κ-chain condition. We will need that if λ < κ is also strongly inaccessible, then
Lv′(κ) is isomorphic to the iteration Lv′(λ) ∗Lv′(κ) (see [9, VII.3.5]). A cardinal
κ is 2-huge if there is an elementary embedding j from V into a submodel M such
that κ is the critical point of j and M has the property that every subset of M
with cardinality at most j(j(κ)) is also a member of M . Let us note that j(κ) is a
measurable cardinal (see [7, p. 331]). We recall that Arhangelskii [1] showed that
every Lindelöf space with points Gδ has cardinality less than the first measurable
cardinal.

Lemma 4.6. Suppose that κ is a 2-huge cardinal and let G be Lv′(κ)-generic. In

the forcing extension V [G], every Lindelöf, points Gδ, regular space of cardinality

greater than ℵ1 is reconstructibly Lindelöf.

Proof: We work with forcing terminology rather than in the extension V [G].
Suppose that λ ≥ κ is a cardinal and that there is a Lv′(κ)-name τ̇ of a topology
on λ that is forced to be Lindelöf, regular, and with points Gδ. By Arhangelskii’s
result and the fact that j(κ) is measurable in V [G], we have that λ is smaller than
j(κ). Now we apply the elementary embedding j and work briefly in the model
M . We have that j(τ̇ ) is a Lv′(j(κ))-name of a Lindelöf, points Gδ topology on
the set j(λ). Following Tall [10], it can be shown that it is forced (in M) that
the closure, Y , of the set Z = j[λ] = {j(α) : α ∈ λ} in the space (j(λ), j(τ̇ ))
is Lindelöf and that j−1 maps Z continuously onto the space (λ, τ̇ ) as per the
requirements of Definition 4.3. Finally, since λ < j(κ), we have that j(λ) is
less than the strongly inaccessible cardinal j(j(κ)), and so it follows that the
Lv′(j(κ))-name j(τ̇ ) is forced to be Lindelöf even in the model V . Finally, from
the point of view of the forcing extension by Lv′(κ), and the fact that Lv′(j(κ))
is isomorphic to Lv′(κ) ∗ Lv′(j(κ)), we have that X = (λ, τ̇ ) is forced by Lv′(κ)
to be reconstructibly Lindelöf. �

We close with the obvious question.

Question 2. Does CH imply there is a regular Lindelöf space with points Gδ that
is elementarily reconstructible?
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