On finite commutative loops which are centrally nilpotent

Emma Leppälä, Markku Niemenmaa

Abstract. Let Q be a finite commutative loop and let the inner mapping group $I(Q) \cong C_{p^n} \times C_{p^n}$, where p is an odd prime number and $n \geq 1$. We show that Q is centrally nilpotent of class two.

Keywords: loop; inner mapping group; centrally nilpotent loop

Classification: 20N05, 20D15

1. Introduction

If Q is a loop, then the mappings $L_a(x) = ax$ and $R_a(x) = xa$ are permutations on Q for every $a \in Q$. The permutation group $M(Q) = \langle L_a, R_a : a \in Q \rangle$ is called the multiplication group of Q and the stabilizer of the neutral element $e \in Q$ is denoted by I(Q) and we say that I(Q) is the inner mapping group of Q. The center Z(Q) of a loop Q contains those elements $a \in Q$ which satisfy the equations $ax \cdot y = a \cdot xy$, $xa \cdot y = x \cdot ay$, $xy \cdot a = x \cdot ya$ and ax = xa for every $x, y \in Q$. The center Z(Q) is an abelian normal subloop of Q and $Z(Q) \cong Z(M(Q))$. If we write $Z_0 = 1$, $Z_1 = Z(Q)$ and $Z_i/Z_{i-1} = Z(Q/Z_{i-1})$, we obtain a series of normal subloops of Q. If Z_{n-1} is a proper subloop of Q and $Z_n = Q$, then Q is centrally nilpotent of class n.

In 1946 Bruck [1] showed that Q is centrally nilpotent of class at most two if and only if $N_{M(Q)}(I(Q)) = I(Q) \times Z(M(Q))$ is normal in M(Q). As the core of I(Q) in M(Q) is trivial, it follows that if Q is centrally nilpotent of class at most two, then I(Q) has to be an abelian group. In 1994 Niemenmaa and Kepka [7] managed to show that if Q is a finite loop and I(Q) is abelian, then Q is a centrally nilpotent loop and for some time it was assumed that the converse of Bruck's result would hold: If I(Q) is abelian, then Q is centrally nilpotent of class at most two. However, in 2007 Csörgő [2] gave a construction where Q is a loop of order 128, I(Q) is an elementary abelian group of order 2^6 and Q is centrally nilpotent of class three. In 2008, Drápal and Vojtěchovský [3] gave more examples of loops of nilpotency class three with inner mapping groups which are elementary abelian of order 2^6 , 2^9 and 2^{10} .

Now assume that I(Q) is abelian. How does the structure of I(Q) influence the nilpotency class of Q? In particular, we are interested in the following problem: Under which conditions imposed on I(Q) does it follow that Q is centrally

nilpotent of class two? Kepka and Niemenmaa [7] have shown that if Q is a finite loop and $I(Q) \cong C_p \times C_p$, then Q is centrally nilpotent of class two (here p is a prime number and C_p denotes the cyclic group of order p). The purpose of this paper is to improve this result in the case that Q is a finite commutative loop and p is an odd prime number. We show that if $I(Q) \cong C_{p^n} \times C_{p^n}$ $(n \ge 1)$, then Q is centrally nilpotent of class two.

2. Connected transversals

Let G be a group, $H \leq G$ and let A and B be two left transversals to H in G. We say that A and B are H-connected, if $[A,B] \leq H$. If A=B, then A is a selfconnected transversal to H in G. We denote by H_G the core of H in G (the largest normal subgroup of G contained in H).

Let Q be a loop and write $A = \{L_a : a \in Q\}$ and $B = \{R_a : a \in Q\}$. Then A and B are I(Q)-connected transversals in M(Q). Moreover, $M(Q) = \langle A, B \rangle$ and $I(Q)_{M(Q)} = 1$. In 1990, Niemenmaa and Kepka [6, Theorem 4.1] proved the following theorem, which gives the relation between loops and connected transversals.

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if and only if there exist a subgroup H and H-connected transversals A and B such that $H_G = 1$ and $G = \langle A, B \rangle$.

In the following lemmas we assume that $H \leq G$ and A and B are H-connected transversals in G (that is, $a^{-1}b^{-1}ab \in H$ for every $a \in A$ and $b \in B$) and p is a prime number.

Lemma 2.2. If $H_G = 1$, then $1 \in A \cap B$ and $N_G(H) = H \times Z(G)$.

For the proof, see [6, Proposition 2.7]. In Lemmas 2.3–2.8 we further assume that $G = \langle A, B \rangle$.

Lemma 2.3. If H is cyclic, then $G' \leq H$.

Lemma 2.4. If $H \cong C_p \times C_p$, then $G' \leq N_G(H)$.

Lemma 2.5. Let G be a finite group and $H \leq G$ an abelian p-group. If $H_G = 1$, then Z(G) > 1.

Lemma 2.6. If $H_G = 1$ and H is abelian, then the core of HZ(G) in G contains Z(G) as a proper subgroup.

Lemma 2.7. If G is finite and $H \cong C_{p^k} \times C_{p^l}$, where p is an odd prime and $k > l \geq 0$, then $H_G > 1$.

For the proofs, see [4, Theorem 2.2], [7, Lemma 4.2], [8, Theorem 3.2] and [5, Lemma 2.7 and Theorem 3.1].

Lemma 2.8. If H > 1 and $H_G = 1$, then $H \cap H^a > 1$ for each $a \in A \cup B$.

PROOF: Assume that $H \cap H^a = 1$ for some $a \in A$. Then $H \cap H^{a^{-1}} = 1$. If aH = bH for some $b \in B$, then $b^{-1}a \in H$. Now $a^{-1}b^{-1}ab \in H$ and b = ah for some $h \in H$, hence $a^{-1}b^{-1}aa \in H$. Then $b^{-1}a \in H \cap H^{a^{-1}} = 1$. Thus a = b and $a \in A \cap B$.

If $d \in A \cup B$ and $c \in A \cup B$ such that $ad \in cH$, then $c^{-1}ad \in H$. Thus $c^{-1}adaH = c^{-1}acH = aa^{-1}c^{-1}acH = aH$, hence $a^{-1}c^{-1}ada \in H$. Thus $c^{-1}ad \in H \cap H^{a^{-1}} = 1$ and so ad = c.

This means that $aA \subseteq A \cap B$ and $aB \subseteq A \cap B$. If $a^{-1}H = dH$, where $d \in A$, then by Lemma 2.2, $ad \in H \cap A = 1$, and thus $a^{-1} = d \in A$. In fact, $a^{-1} \in A \cap B$. Thus $a^{-1}A \subseteq A \cap B$ and $a^{-1}B \subseteq A \cap B$. Let $f \in A \setminus B$. Now $af \in A \cap B$, hence $a^{-1}(af) = f \in A \cap B$, which is a contradiction. Thus A = B.

If $c \in A$, then $a^{-1}c^{-1}ac \in H$. Then $a(a^{-1}c^{-1}ac)a^{-1} = c^{-1}(a^{-1})^{-1}ca^{-1} \in H$, because $a^{-1} \in A = B$. It follows that $a^{-1}c^{-1}ac \in H \cap H^a = 1$, hence ac = ca. Thus $a \in Z(A)$ and hence $a \in Z(\langle A \rangle) = Z(G)$. Thus $H \cap H^a = H = 1$, which is a contradiction.

3. Main results

We shall now consider the situation where G is finite, A = B and $H \cong C_{p^n} \times C_{p^n}$.

Theorem 3.1. Let p be an odd prime and $H \cong C_{p^n} \times C_{p^n}$, where $n \geq 1$. If A is a selfconnected transversal to H in G and $G = \langle A \rangle$, then $G' \leq N_G(H)$.

PROOF: We proceed by induction on n. If n=1, then our claim follows from Lemma 2.4. If $H_G > 1$, then we consider G/H_G and its subgroup H/H_G . By Lemma 2.7, $H/H_G \cong C_{p^k} \times C_{p^k}$, where k < n and the claim follows by induction.

Thus we may assume that $H_G = 1$. By Lemma 2.2, $N_G(H) = H \times Z(G)$ and from Lemma 2.5, it follows that Z(G) > 1. By Lemma 2.6, the core of HZ(G) in G is equal to KZ(G), where $1 < K \le H$. If K = H, then HZ(G) is normal in G and $G' \le HZ(G) = N_G(H)$. Thus we may assume that K is a proper subgroup of H.

We then consider G/KZ(G) and HZ(G)/KZ(G). By Lemma 2.7, we conclude that $HZ(G)/KZ(G) \cong C_{p^k} \times C_{p^k}$, where k < n. Thus by induction,

$$(G/KZ(G))' \le N_{G/KZ(G)}(HZ(G)/KZ(G))$$

= $HZ(G)/KZ(G) \times Z(G/KZ(G))$

and consequently $G' \leq HM$, where M/KZ(G) = Z(G/KZ(G)). Clearly, HM and M are normal in G and $H \cap M = K$.

Then let $a, b \in A$ and write ab = ch, where $c \in A$ and $h \in H$. If also $d \in A$, then

$$h^{d} = (c^{-1}ab)^{d} = h_{1}c^{-1}ah_{2}bh_{3} = h_{1}(c^{-1}ab)h_{2}^{b}h_{3}$$
$$= h_{1}hh_{2}^{b}h_{3} \in HH^{b}H,$$

(here $h_1, h_2, h_3 \in H$). Now HZ(G) is normal in HM and HM is normal in G. Thus $H^b \leq HM$, $HZ(G)H^b$ is a subgroup of G and $HH^bH \subseteq HZ(G)H^b$. It follows that $h \in (HZ(G)H^b)^{d^{-1}}$ for every $d \in A$.

We denote by N(b) the intersection $\cap_{g \in G} (HZ(G)H^b)^g$. It is clear that N(b) is normal in G, $h \in N(b)$, $ab \in A(N(b) \cap H)$ and $N(b) \geq KZ(G)$ for every $b \in A$. We write $H = \langle x \rangle \times \langle y \rangle$, where $|x| = |y| = p^n$ and $S = \langle x^p \rangle \times \langle y^p \rangle$. Then let $L = \prod_{b \in A} N(b)$. Now $A^2 \subseteq A(L \cap H)$ and if $L \cap H \leq S$, then $\langle A \rangle$ is a proper subgroup of G, a contradiction.

Thus we may assume that there exists $b \in A$ such that HN(b)/N(b) is cyclic. By Lemma 2.3, we conclude that $G' \leq HN(b) \leq HZ(G)H^b$ and thus $HZ(G)H^b$ is a normal subgroup of G. If we consider G/KZ(G) and its subgroup HZ(G)/KZ(G), then from Lemma 2.8 it follows that $HZ(G)\cap H^gZ(G)>KZ(G)$ for every $g \in G$. Thus $HZ(G)\cap H^bZ(G)=LZ(G)$, where $K< L \leq H$. Now $LZ(G) \leq Z(HZ(G)H^b) \leq N_G(H)=HZ(G)$. As $Z(HZ(G)H^b)$ is normal in G, we see that the core of HZ(G) in G is larger than KZ(G). But this is a contradiction and the proof is complete.

If G is the multiplication group and H the inner mapping group of some loop Q, then $G' \leq N_G(H)$ is equivalent with $M(Q)' \leq N_{M(Q)}(I(Q))$, which implies that $N_{M(Q)}(I(Q))$ is normal in M(Q). Thus, by combining the criterion given by Bruck (see the introduction) with Theorems 2.1 and 3.1, we get the following

Corollary 3.2. If Q is a finite commutative loop and $I(Q) \cong C_{p^n} \times C_{p^n}$, where p is an odd prime number and $n \geq 1$, then Q is centrally nilpotent of class two.

References

- Bruck R.H., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245–354.
- [2] Csörgő P., Abelian inner mappings and nilpotency class greater than two, European J. Combin. 28 (2007), 858–867.
- [3] Drápal A., Vojtěchovský P., Explicit constructions of loops with commuting inner mappings, European J. Combin. 29 (2008), no. 7, 1662–1681.
- [4] Kepka T., Niemenmaa M., On loops with cyclic inner mapping groups, Arch. Math. 60 (1993), 233-236.
- [5] Niemenmaa M., On finite loops whose inner mapping groups are abelian II, Bull. Austral. Math. Soc. 71 (2005), 487–492.
- [6] Niemenmaa M., Kepka T., On multiplication groups of loops, J. Algebra 135 (1990), 112– 122.

- [7] Niemenmaa M., Kepka T., On connected transversals to abelian subgroups, Bull. Austral. Math. Soc. 49 (1994), 121–128.
- [8] Niemenmaa M., Rytty M., Connected transversals and multiplication groups of loops, Quasigroups and Related Systems 15 (2007), 95–107.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF OULU, PL 3000, 90014 OULU, FINLAND

 $\begin{array}{ll} \textit{E-mail:} \ emma.leppala@oulu.fi, \\ markku.niemenmaa@oulu.fi \end{array}$

(Received September 30, 2014)