Jordan automorphisms of triangular algebras II

DRISS AIAT HADJ AHMED, RACHID TRIBAK

Abstract. We give a sufficient condition under which any Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism.

Keywords: triangular algebra; Jordan automorphism; automorphism Classification: 15A78, 16W20

1. Introduction

Throughout the paper, R denotes a commutative ring such that $\frac{1}{2} \in R$. Let \mathcal{A} and \mathcal{B} be unital algebras over R. Recall that if θ is an R-linear map from \mathcal{A} into \mathcal{B} , then:

- (i) θ is said to be a Jordan homomorphism if $\theta(AB + BA) = \theta(A)\theta(B) + \theta(B)\theta(A)$ for all $A, B \in \mathcal{A}$;
- (ii) θ is said to be a homomorphism (resp., an anti-homomorphism) if $\theta(AB) = \theta(A)\theta(B)$ for all $A, B \in \mathcal{A}$ (resp., $\theta(AB) = \theta(B)\theta(A)$ for all $A, B \in \mathcal{A}$).

Clearly, every homomorphism and every anti-homomorphism is a Jordan homomorphism. It is well-known that the converse is not true in general.

Recall that a left \mathcal{A} -module (resp., right \mathcal{B} -module) \mathcal{M} is faithful if for any $A \in \mathcal{A}, A\mathcal{M} = \{0\}$ (resp., for any $B \in \mathcal{B}, \mathcal{M}B = \{0\}$) implies A = 0 (resp., B = 0).

Let \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$ -bimodule which is faithful as a left \mathcal{A} -module and also as a right \mathcal{B} -module. The R-algebra

$$\mathcal{U} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B}) = \left\{ \left(\begin{array}{cc} a & m \\ & b \end{array} \right) : a \in \mathcal{A}, b \in \mathcal{B}, m \in \mathcal{M} \right\},\$$

under the usual matrix operations is called a triangular algebra (see e.g. [2]). Benkovič and Eremita [3] described the three classical examples of triangular rings: upper triangular matrix rings, block upper triangular matrix rings, and nest algebras. In the same manner we can describe upper triangular matrix algebras and block upper triangular matrix algebras.

In [4], I.N. Herstein showed that every Jordan automorphism of a primitive ring of characteristic different from 2 and 3 is either an automorphism or an antiautomorphism. Since then many other results have been shown in a similar vein for different classes of rings and algebras.

DOI 10.14712/1213-7243.2015.135

It is shown in [1] that every Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism. The authors of [1] proved this result by a method based on calculations using each entry of an element in \mathcal{U} . In this paper we will provide a new proof of this result using fundamental properties of Jordan automorphisms of unital algebras obtained by Herstein [4].

2. Main result

Here is a basic lemma which will be used frequently.

Lemma 2.1 (see [4]). Let \mathcal{A} be a unital algebra over R. If θ is a Jordan automorphism of \mathcal{A} , then:

- (a) $\theta(A^2) = (\theta(A))^2$ for every $A \in \mathcal{A}$,
- (b) $\theta(ABA) = \theta(A)\theta(B)\theta(A)$ for all $A, B \in \mathcal{A}$,

(c) $\theta(AXB + BXA) = \theta(A)\theta(X)\theta(B) + \theta(B)\theta(X)\theta(A)$ for all $A, B, X \in \mathcal{A}$.

Notation 2.2. Let $P = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix}$, $Q = \begin{pmatrix} 0 & 0 \\ 1 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 \\ 1 \end{pmatrix}$ and if $m \in \mathcal{M}$, we put $E_m = \begin{pmatrix} 1 & m \\ 0 \end{pmatrix}$ and $F_m = \begin{pmatrix} 0 & m \\ 1 \end{pmatrix}$.

Lemma 2.3 (see [5, Proof of Theorem 1]). If both \mathcal{A} and \mathcal{B} have only trivial idempotents, then the set of idempotents of \mathcal{U} is $\Omega = \{E_m, F_m \mid m \in \mathcal{M}\}.$

Remark 2.4. An easy computation shows that QXP = 0 for any $X \in \mathcal{U}$.

Lemma 2.5. Let ϕ be a Jordan endomorphism of \mathcal{U} such that $\phi(P) = P$ and $\phi(Q) = Q$. Then for every $A, B, X \in \mathcal{U}$, we have:

- (1) $\phi(PAQ) = P\phi(A)Q, \ \phi(PA) = P\phi(A), \ \phi(AQ) = \phi(A)Q, \ \phi(AP) = \phi(A)P \text{ and } \phi(QA) = Q\phi(A),$
- (2) $\phi(APXQ) = \phi(A) P \phi(X) Q$,
- (3) $\phi(PXQA) = P\phi(X)Q\phi(A),$
- (4) $P\phi(AB)Q = P\phi(A)\phi(B)Q$,
- (5) $\phi(ABPXQ) = \phi(A)\phi(B)P\phi(X)Q$,
- (6) $\phi(PXQAB) = P\phi(X)Q\phi(A)\phi(B).$

PROOF: (1) Let $A \in \mathcal{U}$. Since QAP = 0, we have $\phi(PAQ) = \phi(PAQ + QAP) = P\phi(A)Q + Q\phi(A)P$ by Lemma 2.1(c). But $Q\phi(A)P = 0$. Then,

(E₁)
$$\phi(PAQ) = P\phi(A)Q.$$

Moreover, from Lemma 2.1(b) it follows that

(E₂)
$$\phi(PAP) = P\phi(A)P \text{ and } \phi(QAQ) = Q\phi(A)Q.$$

On account of equations (E_1) and (E_2) and the fact that P + Q = I, we have $\phi(PA) = \phi(PAQ) + \phi(PAP) = P\phi(A)Q + P\phi(A)P = P\phi(A)$ and $\phi(AQ) = \phi(QAQ) + \phi(PAQ) = Q\phi(A)Q + P\phi(A)Q = \phi(A)Q$.

In the same manner we can see that $\phi(AP) = \phi(A)P$ and $\phi(QA) = Q\phi(A)$.

(2) Note that YP = (P+Q)YP = PYP + QYP = PYP for all $Y \in \mathcal{U}$. Let $A, X \in \mathcal{U}$. From (1) it follows that

$$\begin{split} \phi \left(APXQ \right) &= \phi \left(PAPXQ \right) \\ &= \phi \left((PA)(PXQ) + (PXQ)(PA) \right) \\ &= \phi \left(PA \right) \phi \left(PXQ \right) + \phi \left(PXQ \right) \phi \left(PA \right) \\ &= P\phi \left(A \right) P\phi \left(X \right) Q + P\phi \left(X \right) QP\phi \left(A \right) \\ &= \phi \left(A \right) P\phi \left(X \right) Q \text{ since } QP = 0. \end{split}$$

(3) By using the fact that QY = QY(P+Q) = QYP + QYQ = QYQ for all $Y \in \mathcal{U}$, the proof of (3) is similar to that of (2).

(4) Let $A, B \in \mathcal{U}$. We have

$$P\phi (AB) Q = \phi (PABQ) \text{ by } (1)$$

= $\phi (PABQ + BQPA) \text{ since } QP = 0$
= $\phi (PA) \phi (BQ) + \phi (BQ) \phi (PA)$
= $P\phi (A) \phi (B) Q + \phi (B) QP\phi (A) \text{ by } (1)$
= $P\phi (A) \phi (B) Q.$

(5) Let $A, B, X \in \mathcal{U}$. By (1) and (2), we have

$$\begin{split} \phi \left(ABPXQ \right) &= \phi \left(APBPXQ + BPXQAP \right) \text{since } BP = PBP \\ &= \phi \left(AP \right) \phi \left(BPXQ \right) + \phi \left(BPXQ \right) \phi \left(AP \right) \\ &= \phi \left(A \right) P\phi \left(B \right) P\phi \left(X \right) Q + \phi \left(B \right) P\phi \left(X \right) Q\phi \left(A \right) P \\ &= \phi \left(A \right) \phi \left(B \right) P\phi \left(X \right) Q \text{ since } \phi (B)P = P\phi (B)P. \end{split}$$

(6) The proof is similar to that of (5) by using the fact that QA = QAQ. \Box

Lemma 2.6. Let ψ be a Jordan endomorphism of \mathcal{U} such that $\psi(P) = Q$ and $\psi(Q) = P$. Then for every $A, B, X \in \mathcal{U}$, we have:

- (1) $\psi(PAQ) = P\psi(A)Q, \ \psi(PA) = \psi(A)Q, \ \psi(AQ) = P\psi(A), \ \psi(AP) = Q\psi(A) \text{ and } \psi(QA) = \psi(A)P,$
- (2) $\psi(APXQ) = P\psi(X)Q\psi(A),$
- (3) $\psi(PXQA) = \psi(A) P\psi(X) Q$,
- (4) $P\psi(AB)Q = P\psi(B)\psi(A)Q$,
- (5) $\psi(ABPXQ) = P\psi(X)Q\psi(B)\psi(A),$
- (6) $\psi(PXQAB) = \psi(B)\psi(A)P\psi(X)Q.$

PROOF: The proof is similar to that of Lemma 2.5.

Proposition 2.7. (1) Let ϕ be a Jordan automorphism of \mathcal{U} such that $\phi(P) = P$ and $\phi(Q) = Q$. Then ϕ is an automorphism.

(2) Let ψ be a Jordan automorphism of \mathcal{U} such that $\psi(P) = Q$ and $\psi(Q) = P$. Then ψ is an anti-automorphism.

PROOF: (1) Let $A, B, X \in \mathcal{U}$. Lemma 2.5((2), (5)) yields $\phi(AB) P\phi(X) Q = \phi(ABPXQ) = \phi(A)\phi(B) P\phi(X) Q$. So $(\phi(AB) - \phi(A)\phi(B))P\phi(X)Q = 0$. Since ϕ is a Jordan automorphism, we have $(\phi(AB) - \phi(A)\phi(B))P\mathcal{U}Q = 0$. Thus $[P(\phi(AB) - \phi(A)\phi(B))P]P\mathcal{U}Q = 0$ since $P^2 = P$. Note that by hypothesis, \mathcal{M} is a faithful left \mathcal{A} -module. Then an easy computation shows that $P(\phi(AB) - \phi(A)\phi(B))P = 0$. In the same manner we can also see that $Q(\phi(AB) - \phi(A)\phi(B))Q = 0$. Moreover, Lemma 2.5(4) gives $P\phi(AB)Q = P\phi(A)\phi(B)Q$. That is, $P(\phi(AB) - \phi(A)\phi(B))Q = 0$. Therefore $(P+Q)(\phi(AB) - \phi(A)\phi(B))(P + Q) = 0$. Consequently, $\phi(AB) = \phi(A)\phi(B)$. This completes the proof.

(2) The proof is similar to that of (1).

This brings us to the main result of this paper.

Theorem 2.8. If both \mathcal{A} and \mathcal{B} have only trivial idempotents, then any Jordan automorphism of \mathcal{U} is either an automorphism or an anti-automorphism.

PROOF: Let θ be a Jordan automorphism of \mathcal{U} . Since P is an idempotent of \mathcal{U} , either $\theta(P) = E_m$ or $\theta(P) = F_m$ for some $m \in \mathcal{M}$. Assume that $\theta(P) = E_m$ for some $m \in \mathcal{M}$. This implies that $\theta(Q) = F_k$ for some $k \in M$. Indeed, if $\theta(Q) = E_x$ for some $x \in M$, we obtain $\theta(PQ+QP) = \theta(P)\theta(Q)+\theta(Q)\theta(P) = E_m+E_x \neq 0$, a contradiction. Therefore $\theta(PQ+QP) = E_mF_k + F_kE_m$. Hence k+m=0. This gives $\theta(Q) = F_{-m}$. It is easy to check that $T = \begin{pmatrix} 1 & -m \\ 1 \end{pmatrix}$ is invertible and its inverse is $T^{-1} = \begin{pmatrix} 1 & m \\ 1 \end{pmatrix}$. Let σ_T be the automorphism of \mathcal{U} defined by $\sigma_T(Y) = TYT^{-1}$ for all $Y \in \mathcal{U}$. It is not difficult to see that $\theta(P) = \sigma_T(P)$ and $\theta(Q) = \sigma_T(Q)$. We thus get $\phi(P) = P$ and $\phi(Q) = Q$, where $\phi = \sigma_{T^{-1}} \circ \theta$ is also a Jordan automorphism of \mathcal{U} . By Proposition 2.7, ϕ is an automorphism. Therefore θ is an automorphism.

Similarly, we can prove that if $\theta(P) = F_m$ for some $m \in \mathcal{M}$, then θ is an anti-automorphism.

References

- Aiat-Hadj A.D., Ben Yakoub L., Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra, Internat. J. Math. Math. Sci. 13 (2005), 2125–2132.
- [2] Benkovič D., Eremita D., Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280 (2004), 797–824.
- Benkovič D., Eremita D., Multiplicative Lie n-derivations of triangular rings, Linear Algebra Appl. 436 (2012), 4223–4240.
- [4] Herstein I.N., Jordan homomorphisms, Trans. Amer. Math. Soc. 81(2) (1956), 331–341.
- [5] Khazal R., Dăscălescu S., Van Wyk L., Isomorphism of generalized triangular matrix-rings and recovery of tiles, Internat. J. Math. Math. Sci. 9 (2003), 533–538.

Centre Régional des Métiers de l'Education et de la Formation (CRMEF)-Tanger, Avenue My Abdelaziz, BP 3117 Souani, Tanger, Morocco

E-mail: ait_hadj@yahoo.com, tribak12@yahoo.com

(Received August 14, 2014, revised December 6, 2014)