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Property (wL) and the reciprocal Dunford-Pettis

property in projective tensor products

Ioana Ghenciu

Abstract. A Banach space X has the reciprocal Dunford-Pettis property (RDPP )
if every completely continuous operator T from X to any Banach space Y is
weakly compact. A Banach space X has the RDPP (resp. property (wL)) if
every L-subset of X∗ is relatively weakly compact (resp. weakly precompact).
We prove that the projective tensor product X ⊗ πY has property (wL) when
X has the RDPP , Y has property (wL), and L(X, Y ∗) = K(X, Y ∗).
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1. Introduction

Throughout this paper X, Y, E, and F will denote real Banach spaces. An
operator T : X → Y will be a continuous and linear function. The set of all
operators from X to Y will be denoted by L(X, Y ), and the compact operators
will be denoted by K(X, Y ).

In this paper we study weak precompactness and relative weak compactness
in spaces of compact operators. Our results are organized as follows. First we
give sufficient conditions for subsets of K(X, Y ∗) to be weakly precompact and
relatively weakly compact. Those results are used to study whether the projective
tensor product X ⊗π Y has properties (wL) and the RDPP , when X and Y have
the respective property.

Finally, we prove that in some cases, if X ⊗π Y has property (wL), then
L(X, Y ∗) = K(X, Y ∗). Our results generalize some results from [17] and [24].

2. Definitions and notations

Our notation and terminology is standard. The unit ball of X will be denoted
by BX , and X∗ will denote the continuous linear dual of X . By an operator we
understand any bounded linear mapping between Banach spaces. The set of all
operators from X to Y will be denoted by L(X, Y ), and the subspaces of compact,
resp. weakly compact operators will be denoted by K(X, Y ), resp. W (X, Y ). The
operator T is called completely continuous (or Dunford-Pettis) if T maps weakly
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convergent sequences to norm convergent sequences. A subset S of X is said to
be weakly precompact provided that every bounded sequence from S has a weakly
Cauchy subsequence [5]. An operator T : X → Y is called weakly precompact (or
almost weakly compact) if T (BX) is weakly precompact.

A bounded subset A of X∗ is called an L-subset of X∗ if each weakly null
sequence in X tends to 0 uniformly on A; i.e.,

lim
n

sup{|x∗(xn)| : x∗ ∈ A} = 0.

The Banach space X has the reciprocal Dunford-Pettis property (RDPP ) if
every completely continuous operator T from X to any Banach space Y is weakly
compact [25, p. 153]. The space X has the RDPP if and only if every L-subset
of X∗ is relatively weakly compact [27]. Banach spaces with property (V ) of
Pe lczyński, in particular reflexive spaces and C(K) spaces, have the RDPP [30].
Emmanuele [20] and Bator [3] showed that ℓ1 6 →֒ X if and only if every L-subset
of X∗ is relatively compact. We say that a Banach space X has property weak
(L) (wL) if every L-subset of X∗ is weakly precompact. The space X has the
RDPP (resp. property (wL)) if and only if any operator T : Y → X∗ such that
T ∗|X is completely continuous, is weakly compact (resp. weakly precompact) (by
Theorem 4.7 of [23]).

The Banach space X has the Dunford-Pettis property (DPP ) if every weakly
compact operator T : X → Y is completely continuous. The survey article by
Diestel [14] is an excellent source of information about classical contributions to
the study of the DPP .

A topological space S is called dispersed (or scattered) if every nonempty closed
subset of S has an isolated point. A compact Hausdorff space K is dispersed if
and only if ℓ1 6 →֒ C(K) [31].

The Banach-Mazur distance d(E, F ) between two isomorphic Banach spaces
E and F is defined by inf(‖T ‖‖T−1‖), where the infinum is taken over all iso-
morphisms T from E onto F . A Banach space E is called an L∞-space (resp.
L1-space) [9, p. 7] if there is a λ ≥ 1 so that every finite dimensional subspace of
E is contained in another subspace N with d(N, ℓn

∞
) ≤ λ (resp. d(N, ℓn

1 ) ≤ λ) for
some integer n. Complemented subspaces of C(K) spaces (resp. L1(µ) spaces) are
L∞-spaces (resp. L1-spaces) [9, Proposition 1.26]. The dual of an L1-space (resp.
L∞-space) is an L∞-space (resp. L1- space) [9, Proposition 1.27]. The L∞-spaces,
L1-spaces, and their duals have the DPP [9, Corollary 1.30].

3. Weakly precompact subsets of spaces of compact operators

We begin by giving sufficient conditions for a subset of K(X, Y ) to be weakly
precompact and relatively weakly compact. We recall that the dual weak operator
topology (w′) on L(X, Y ) is defined by the functionals T 7−→ x∗∗T ∗(y∗), x∗∗ ∈
X∗∗, y∗ ∈ Y ∗ [26]. In Corollary 3 of [26] it is shown that if (Tn) is a sequence of
compact operators such that Tn → T (w′), where T is a compact operator, then
Tn → T weakly.
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If H is a subset of K(X, Y ), x ∈ X , y∗ ∈ Y ∗, and x∗∗ ∈ X∗∗, let H(x) = {Tx :
T ∈ H}, H∗(y∗) = {T ∗y∗ : T ∈ H}, and H∗∗(x∗∗) = {T ∗∗x∗∗ : T ∈ H}.

Theorem 1. Let H be a bounded subset of K(X, Y ) such that

(i) H(x) is weakly precompact for each x ∈ X , and

(ii) H∗(y∗) is relatively weakly compact for each y∗ ∈ Y ∗.

Then H is weakly precompact.

Proof: Let (Tn) be a sequence in H . Let S be the closed linear span of {T ∗

ny∗ :
y∗ ∈ Y ∗, n ∈ N}. The compactness of each Tn implies that S is a separable
subspace of X∗. Let X0 be a countable subset of X that separates points of
S. Let (xk) be a sequence in X so that X0 = {xk : k ∈ N}. By hypotheses,
{Tnxk : n ∈ N} is weakly precompact for each k. By diagonalization, we may
assume that (Tni

) is a subsequence of (Tn) so that (Tni
xk)i is weakly Cauchy for

each k. Without loss of generality, we assume that (Tnx) is weakly Cauchy for
each x ∈ X0.

For fixed y∗ ∈ Y ∗, the sequence (T ∗

ny∗) must have a weakly convergent sub-
sequence. Suppose that z∗1 and z∗2 are two weak sequential cluster points of the

sequence (T ∗

ny∗). Then z∗1 , z∗2 ∈ S. Suppose that T ∗

k(n)y
∗ w
−→ z∗1 , T ∗

p(n)y
∗ w
−→ z∗2 .

For each x ∈ X0,

〈z∗1 , x〉 = lim
n
〈T ∗

k(n)y
∗, x〉 = lim

n
〈y∗, Tk(n)x〉

= lim
n
〈y∗, Tnx〉 = lim

n
〈y∗, Tp(n)x〉

= lim
n
〈T ∗

p(n)y
∗, x〉 = 〈z∗2 , x〉.

Hence z∗1 = z∗2 , since X0 separates points of S. Then (T ∗

ny∗) is weakly convergent
for all y∗ ∈ Y ∗. Thus (Tn) is Cauchy in the (w′) topology on K(X, Y ). Hence for
any two subsequences (An) and (Bn) of (Tn), (An−Bn) → 0 (w′). By Corollary 3
of [26], (An − Bn) → 0 weakly; thus (Tn) is weakly Cauchy in K(X, Y ). �

Corollary 2. Let H be a bounded subset of K(X, Y ) such that

(i) H∗(y∗) is weakly precompact for each y∗ ∈ Y ∗, and

(ii) H∗∗(x∗∗) is relatively weakly compact for each x∗∗ ∈ X∗∗.

Then H is weakly precompact.

Proof: Suppose H satisfies the hypotheses. Consider the subset H∗ of K(Y ∗, X∗).
By Theorem 1, H∗ is weakly precompact. Let (Tn) be a sequence in H . Without
loss of generality, we can assume that (T ∗

n) is weakly Cauchy. Hence (T ∗

ny∗) is
weakly Cauchy for each y∗ ∈ Y ∗. Therefore (Tn) is Cauchy in the (w′) topology
on K(X, Y ). As in the proof of Theorem 1, (Tn) is weakly Cauchy. �

The following theorem generalizes Theorem 4.9 of [24].

Theorem 3. Suppose that L(X, Y ) = K(X, Y ). Let H be a bounded subset of

K(X, Y ) such that

(i) H(x) is relatively weakly compact for each x ∈ X , and
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(ii) H∗(y∗) is relatively weakly compact for each y∗ ∈ Y ∗.

Then H is relatively weakly compact.

Proof: Let (Tn) be a sequence in H . By Theorem 1, H is weakly precompact.
Without loss of generality, assume that (Tn) is weakly Cauchy. For each x ∈ X ,
the sequence (Tnx) has a weakly convergent subsequence and is weakly Cauchy,
thus is weakly convergent to Tx, say. Similarly, for each y∗ ∈ Y ∗, the sequence
(T ∗

ny∗) has a weakly convergent subsequence and is weakly Cauchy, thus is weakly
convergent.

Clearly, the assignment X ∋ x 7−→ Tx is linear and bounded. Hence T ∈
L(X, Y ). For all y∗ ∈ Y ∗, x ∈ X , limn〈T

∗

ny∗, x〉 = limn〈y
∗, Tnx〉 = 〈T ∗y∗, x〉.

Then T ∗

ny∗ w∗

→ T ∗y∗. Since (T ∗

ny∗) is weakly convergent, T ∗

ny∗ w
→ T ∗y∗. Hence

Tn → T in the (w′) topology of K(X, Y ). By Corollary 3 of [26], Tn → T weakly,
and H is relatively weakly compact. �

Remark. If L(X, Y ) = K(X, Y ), then a subset H of K(X, Y ) is relatively weakly
compact if and only if conditions (i) and (ii) of the previous theorem hold.

Corollary 4 ([26, Corollary 2]). If X and Y are reflexive and L(X, Y ) = K(X, Y ),
then K(X, Y ) is reflexive.

Proof: Let H be the unit ball of L(X, Y ) = K(X, Y ). Since X and Y are
reflexive, H(x) and H∗(y∗) are relatively weakly compact for all x ∈ X and
y∗ ∈ Y ∗. By Theorem 3, H is relatively weakly compact, and thus K(X, Y ) is
reflexive. �

4. Property (wL) and the RDPP in projective tensor products

In this section we consider the property (wL) and the RDPP in the projective
tensor product X ⊗π Y . We begin by noting that there are examples of Banach
spaces X and Y such that X ⊗π Y has property RDPP . If 1 < q′ < p < ∞, then
L(ℓp, ℓq′) = K(ℓp, ℓq′) ([33]). Let q be the conjugate of q′. By [26, Corollary 2],
L(ℓp, ℓq′) ≃ (ℓp ⊗π ℓq)∗ is reflexive. Then ℓp ⊗π ℓq is reflexive, and thus has the
RDPP . Thus the spaces X = ℓp and Y = ℓq are as desired.

Observation 1. If X is an infinite dimensional space with the Schur property,
then X does not have property (wL).

Since ℓ1 →֒ X , ℓ1 →֒ X∗ ([13], p. 211). All bounded subsets of X∗ are L-
subsets, and thus there are L-subsets of X∗ which fail to be weakly precompact.

Since property (wL) is inherited by quotients, it follows that if X has property

(wL), then ℓ1 6
c
→֒ X , and c0 6 →֒ X∗ [6].

Observation 2. If T : Y → X∗ be an operator such that T ∗|X is compact, then
T is compact. To see this, let T : Y → X∗ be an operator such that T ∗|X is
compact. Let S = T ∗|X . Suppose x∗∗ ∈ BX∗∗ and choose a net (xα) in BX which

is w∗- convergent to x∗∗. Then (T ∗xα)
w∗

→ T ∗x∗∗. Now, (T ∗xα) ⊆ S(BX), which

is a relatively compact set. Then (T ∗xα) → T ∗x∗∗. Hence T ∗(BX∗∗) ⊆ S(BX),
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which is relatively compact. Therefore T ∗(BX∗∗) is relatively compact, and thus
T is compact. It follows that if L(X, Y ∗) = K(X, Y ∗), then L(Y, X∗) = K(Y, X∗).

The following lemma is known [8]; we include proof for the convenience of the
reader.

Lemma 5. Suppose that every operator T : X → Y ∗ is completely continuous.

If (xn) is a weakly null sequence in X and (yn) is a bounded sequence in Y , then

(xn ⊗ yn) is weakly null in X ⊗π Y .

Proof: Suppose that (xn) is weakly null and ‖yn‖ ≤ M for all n ∈ N. Let
T ∈ L(X, Y ∗) ≃ (X ⊗π Y )∗ ([15, p. 230]). Since T is completely continuous,

|〈T, xn ⊗ yn〉| ≤ M‖Txn‖ → 0.

�

Theorem 6. (i) Suppose that X has the RDPP , Y has property (wL), and

L(X, Y ∗) = K(X, Y ∗). Then X ⊗π Y has property (wL).
(ii) Suppose that X has property (wL), Y has the RDPP , and L(X, Y ∗) =

K(X, Y ∗). Then X ⊗π Y has property (wL).

Proof: (i) We will use Theorem 1. Let H be an L-subset of (X ⊗π Y )∗ ≃
L(X, Y ∗) = K(X, Y ∗). We will verify the conditions (i) and (ii) of this theorem.
Let (Tn) be a sequence in H and let y∗∗ ∈ Y ∗∗. We will show that {T ∗

ny∗∗ : n ∈ N}
is an L-subset of X∗. Suppose that (xn) is weakly null in X . For n ∈ N,

|〈T ∗

ny∗∗, xn〉| = |〈y∗∗, Tnxn〉| ≤ ‖y∗∗‖ ‖Tnxn‖.

We show that ‖Tnxn‖ → 0. Suppose that ‖Tnxn‖ 6→ 0. Without loss of
generality we assume that |〈Tnxn, yn〉| > ǫ for some sequence (yn) in BY and
some ǫ > 0. Since {Tn : n ∈ N} is an L-set and (xn ⊗yn) is weakly null in X⊗π Y

(by Lemma 5), supm |〈Tm, xn⊗yn〉| → 0, and so |〈Tn, xn⊗yn〉| = |〈Tnxn, yn〉| → 0.
This contradiction shows that ‖Tnxn‖ → 0. Hence {T ∗

ny∗∗ : n ∈ N} is an L-subset
of X∗. Therefore this subset is relatively weakly compact [27]. This verifies (ii)
of Theorem 1.

It remains to verify (i) of Theorem 1. Let x ∈ X . We show that {Tnx : n ∈ N}
is an L-subset of Y ∗. Let (yn) be a weakly null sequence in Y . For n ∈ N,

|〈Tnx, yn〉| = |〈x, T ∗

nyn〉| ≤ ‖x‖ ‖T ∗

nyn‖.

An argument similar to the one above shows that ‖T ∗

nyn‖ → 0. Thus {Tnx :
n ∈ N} is an L-subset of Y ∗, hence weakly precompact, for all x ∈ X . We thus
verified (i) of Theorem 1. By Theorem 1, (Tn) has a weakly Cauchy subsequence.
We proved that H is weakly precompact.

(ii) If L(X, Y ∗) = K(X, Y ∗), then L(Y, X∗) = K(Y, X∗) (by Observation 2).
By (i), Y ⊗π X has property (wL). Since X ⊗π Y is isometrically isomorphic to
Y ⊗π X , X ⊗π Y has property (wL). �
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Theorem 7. Suppose that X and Y have the RDPP and L(X, Y ∗) = K(X, Y ∗).
Then X ⊗π Y has the RDPP .

Proof: Let H be an L-subset of (X ⊗π Y )∗ ≃ L(X, Y ∗) = K(X, Y ∗) and let
(Tn) be a sequence in H . The proof of Theorem 6 shows that {Tnx : n ∈ N}
is an L-subset of Y ∗, and thus relatively weakly compact by [27]. Similarly,
{T ∗

ny∗∗ : n ∈ N} is an L-subset of X∗, thus relatively weakly compact. Then, by
Theorem 3, (Tn) has a weakly convergent subsequence. �

Theorem 7 contains Corollary 4 of [17]. The assumptions that X∗ and Y ∗ are
weakly sequentially complete in Corollary 4 of [17] are superfluous.

Corollary 8. Suppose that ℓ1 6 →֒ X , Y has the RDPP (resp. property (wL)),
and L(X, Y ∗) = K(X, Y ∗). Then X ⊗π Y has the RDPP (resp. property (wL)).

Proof: If ℓ1 6 →֒ X , then every L-subset of X∗ is relatively compact [20], [3].
If Y has the RDPP (resp. property (wL)), then X ⊗π Y has the RDPP (resp.
property (wL)), by Theorem 7 (resp. Theorem 6 (i)). �

The RDPP case of the previous result was proved in Theorem 3 of [17]. In
Theorem 11 we show that if X ⊗π Y has the RDPP (resp. property (wL)), then
either ℓ1 6 →֒ X or ℓ1 6 →֒ Y . Thus, in Theorems 6 and 7 we can suppose without
loss of generality that either ℓ1 6 →֒ X or ℓ1 6 →֒ Y . Hence Theorem 7 is equivalent
to Theorem 3 of [17].

Corollary 9. (i) Suppose that X is a closed subspace of an order continuous

Banach lattice and X has property (wL). If Y has the RDPP (resp. property

(wL)) and L(X, Y ∗) = K(X, Y ∗), then X ⊗π Y has the RDPP (resp. property

(wL)).
(ii) Suppose that X is a Banach space with property (wV ∗) and X has property

(wL). If Y has the RDPP (resp. property (wL)) and L(X, Y ∗) = K(X, Y ∗), then

X ⊗π Y has the RDPP (resp. property (wL)).

Proof: If X has property (wL), then ℓ1 6
c
→֒ X (by Observation 1).

(i) Since X is a subspace of a Banach lattice, ℓ1 6 →֒ X [36]. Apply Corollary 8.
(ii) Since X has property (wV ∗), ℓ1 6 →֒ X [7]. Apply Corollary 8. �

Corollary 9(i) contains Corollary 5 of [17]. The fact that properties RDPP and
(wL) are inherited by quotients, immediately implies the following result, which
contains Corollary 6 of [17].

Corollary 10. Suppose that ℓ1 6 →֒ E∗ and F has property RDPP (resp. prop-

erty (wL)). If L(E∗, F ∗) = K(E∗, F ∗), then the space N1(E, F ) of all nuclear

operators from E to F has the RDPP (resp. property (wL)).

Proof: It is known that N1(E, F ) is a quotient of E∗ ⊗π F [34, p. 41]. Apply
Corollary 8. �

Theorem 11. Suppose that L(E, F ∗) = K(E, F ∗). The following statements

are equivalent:
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(i) E and F have the RDPP (resp. property (wL)) and either ℓ1 6 →֒ E or

ℓ1 6 →֒ F .

(ii) E ⊗π F has the RDPP (resp. property (wL)).

Proof: (i) ⇒ (ii) by Corollary 8.
(ii) ⇒ (i) Suppose that E⊗π F has the RDPP (resp. property (wL)). Then E

and F have the RDPP (resp. property (wL)), since the RDPP (resp. property
(wL)) is inherited by quotients. Suppose ℓ1 →֒ E and ℓ1 →֒ F . Hence L1 →֒
E∗ [29]. Also, the Rademacher functions span ℓ2 inside of L1, and thus ℓ2 →֒
E∗. Similarly ℓ2 →֒ F ∗. Then c0 →֒ K(E, F ∗) ([16], [22]), a contradiction with
Observation 1. �

The RDPP case of the previous result was proved in Theorem 8 of [17].

Observation 3. If ℓ1 →֒ E and ℓ1 →֒ F , then c0 →֒ K(E, F ∗) ([16], [22]). More
generally, if ℓ1 →֒ E and ℓp →֒ F ∗, p ≥ 2, then c0 →֒ K(E, F ∗) ([16], [22]). Hence

ℓ1
c
→֒ E ⊗π F [6]. By Observation 1, E ⊗π F does not have property (wL).

Observation 4. If E∗ has the Schur property, then ℓ1 6 →֒ E. Indeed, if ℓ1 →֒ E,
then L1 →֒ E∗ [29], and E∗ does not have the Schur property.

Observation 5. If E∗ has the Schur property and F has property (wL), then
L(E, F ∗) = K(E, F ∗). To see this, let T : F → E∗ be an operator. Then T is
completely continuous (since E∗ has the Schur property). Therefore T ∗(BE∗∗) is
an L-subset of F ∗, thus is weakly precompact. Since T ∗ is weakly precompact, T

is weakly precompact, by Corollary 2 of [4]. Then T is compact. By Observation 2,
L(E, F ∗) = K(E, F ∗).

Corollary 12. (i) Suppose that E∗ has the Schur property and F has the

RDPP (resp. property (wL)). Then E ⊗π F has the RDPP (resp. pro-

perty (wL)).
(ii) [17, Corollary 10] Suppose that E = ℓp, where 1 < p ≤ ∞, and F = c0.

Then E ⊗π F has the RDPP .

(iii) Suppose that E is an infinite dimensional L∞-space not containing ℓ1. If

F has the RDPP (resp. property (wL)), then E ⊗π F has the RDPP

(resp. property (wL)).

Proof: (i) Since E∗ has the Schur property, ℓ1 6 →֒ E (by Observation 4). By
Observation 5, L(E, F ∗) = K(E, F ∗). Apply Corollary 8.

(ii) By (i), F ⊗π E, hence E ⊗π F has the RDPP .
(iii) Suppose E is an infinite dimensional L∞-space not containing ℓ1. Then

E has the DPP by Corollary 1.30 of [9]; thus E∗ has the Schur property by
Theorem 3 of [14]. Apply (i). �

The RDPP case of Corollary 12(i) was proved in Corollary 9 of [17]. Corol-
lary 12(iii) generalizes Corollary 11 of [17]. The hypothesis that F ∗ is a subspace
of an L1-space in Corollary 11 of [17] is superfluous.
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Corollary 13. Suppose that E and F have the DPP. The following statements

are equivalent:

(i) E and F have the RDPP (resp. property (wL)) and ℓ1 6 →֒ E or ℓ1 6 →֒ F ;

(ii) E ⊗π F has the RDPP (resp. property (wL)).

Proof: (i)⇒(ii) Suppose that E and F have the DPP and the RDPP (resp.
property (wL)). Suppose without loss of generality that ℓ1 6 →֒ E. Then E∗ has
the Schur property by Theorem 3 of [14]. Apply Corollary 12 (i).

(ii)⇒(i) The proof is the same as the corresponding one in Theorem 11. �

By Theorem 11 (or Corollary 13), the space C(K1) ⊗π C(K2) has the RDPP

if and only if either K1 or K2 is dispersed. The spaces A and H∞ have the DPP

and property (V ), hence they have the RDPP , and contain copies of ℓ1 ([10],
[11], [12], [35]). Let E, F be A or H∞. Then E ⊗π F does not have property
(wL) (by Observation 3).

Corollary 14. Suppose that ℓ1 6 →֒ E and F has the RDPP (resp. property

(wL)). If F ∗ is complemented in a Banach space Z which has an unconditional

Schauder decomposition (Zn), with Zn having the Schur property for each n, then

the following statements are equivalent:

(i) E ⊗π F has the RDPP (resp. property (wL));
(ii) L(E, F ∗) = K(E, F ∗).

Proof: (i)⇒(ii) Suppose E ⊗π F has the RDPP (resp. property (wL)). Since
ℓ1 6 →֒ E and Zn has the Schur property, L(E, Zn) = K(E, Zn) for each n. If
L(E, F ∗) 6= K(E, F ∗), then c0 →֒ K(E, F ∗) (by Theorem 1 of [18]), a contradic-
tion.

(ii)⇒(i) Apply Corollary 8. �

Next we present some results about the necessity of the conditions L(E, F ∗) =
K(E, F ∗) and W (E, F ∗) = K(E, F ∗).

A Banach space X has the approximation property if for each norm compact
subset M of X and ǫ > 0, there is a finite rank operator T : X → X such that
‖Tx − x‖ < ǫ for all x ∈ M . If in addition T can be found with ‖T ‖ ≤ 1, then
X is said to have the metric approximation property. For example, C(K) spaces,
c0, ℓp for 1 ≤ p < ∞, Lp(µ) for any measure µ and 1 ≤ p < ∞, and their duals
have the metric approximation property [15, p. 238], [34].

A separable Banach space X has an unconditional compact expansion of the
identity (u.c.e.i) if there is a sequence (An) of compact operators from X to X

such that
∑

Anx converges unconditionally to x for all x ∈ X [21]. In this case,
(An) is called an (u.c.e.i.) of X . A sequence (Xn) of closed subspaces of a Banach
space X is called an unconditional Schauder decomposition of X if every x ∈ X

has a unique representation of the form x =
∑

xn, with xn ∈ Xn, for every n,
and the series converges unconditionally [28, p. 48].
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The space X has (Rademacher) cotype q for some 2 ≤ q ≤ ∞ if there is a
constant C such that for for every n and every x1, x2, . . . , xn in X ,

(

n
∑

i=1

‖xi‖
q

)1/q

≤ C

(
∫ 1

0

‖ri(t)xi‖
qdt

)1/q

,

where (rn) are the Radamacher functions. A Hilbert space has cotype 2 [1, p. 138].
The dual of C(K), the space M(K), has cotype 2 [1, p. 142].

Theorem 15. Assume one of the following conditions holds.

(i) If T : E → F ∗ is an operator which is not compact, then there is a

sequence (Tn) in K(E, F ∗) such that for each x ∈ E, the series
∑

Tnx

converges unconditionally to Tx.

(ii) Either E∗ or F ∗ has an (u.c.e.i.).
(iii) E is an L∞-space and F ∗ is a subspace of an L1-space.

(iv) E = C(K), K a compact Hausdorff space, and F ∗ is a space with cotype 2.

(v) E has the DPP and ℓ1 →֒ F .

(vi) E and F have the DPP .

If E ⊗π F has property (wL), then L(E, F ∗) = K(E, F ∗).

Proof: Suppose E⊗π F has property (wL). Then E and F have property (wL).
(i) Let T : E → F ∗ be a noncompact operator. Let (Tn) be a sequence as in the

hypothesis. By the Uniform Boundedness Principle, {
∑

n∈A Tn : A ⊆ N, A finite}
is bounded in K(E, F ∗). Then

∑

Tn is wuc and not unconditionally convergent
(since T is noncompact). Hence c0 →֒ K(E, F ∗) [6], and we have a contradiction
with Observation 1.

(ii) Suppose that F ∗ has an (u.c.e.i.) (An). Then An : F ∗ → F ∗ is compact
for each n and

∑

Any converges unconditionally to y, for each y ∈ F ∗. Let
T : E → F ∗ be a noncompact operator. Hence

∑

AnTx converges unconditionally
to Tx for each x ∈ E and AnT ∈ K(E, F ∗). Then c0 →֒ K(E, F ∗) (by (i)),
a contradiction.

Similarly, if E∗ has an (u.c.e.i.) and L(E, F ∗) 6= K(E, F ∗), then c0 →֒
K(F, E∗).

Suppose (iii) or (iv) holds. It is known that any operator T : E → F ∗

is 2-absolutely summing ([32]), hence it factorizes through a Hilbert space. If
L(E, F ∗) 6= K(E, F ∗), then c0 →֒ K(E, F ∗) (by Remark 3 of [19]), a contradic-
tion.

(v) Suppose that E has the DPP and ℓ1 →֒ F . By Observation 3, ℓ1 6 →֒
E. Then E∗ has the Schur property by Theorem 3 of [14]. By Observation 5,
L(E, F ∗) = K(E, F ∗).

(vi) Suppose that E and F have the DPP . If ℓ1 →֒ F , then (v) implies
L(E, F ∗) = K(E, F ∗). If ℓ1 6 →֒ F , then F ∗ has the Schur property [14]. By the
proof of Observation 5, L(E, F ∗) = K(E, F ∗). �
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By Theorem 15, if one of the hypotheses (i)-(vi) holds and L(E, F ∗) 6= K(E, F ∗),
then E ⊗π F does not have property (wL). Thus the space ℓp ⊗ ℓq, where
1 < p ≤ q′ < ∞ and q and q′ are conjugate, does not have property (wL),
since the natural inclusion map i : ℓp → ℓq′ is not compact. Further, the space
C(K) ⊗π ℓp, with K not dispersed and 1 < p ≤ 2, does not have property (wL),
since L(C(K), ℓq) 6= K(C(K), ℓq) (by Corollary 3.11 of [2]), where q is the conju-
gate of p, 2 ≤ q < ∞.

Theorem 16. Suppose that F ∗ is complemented in a Banach space Z which has

an unconditional Schauder decomposition (Zn), and W (E, Zn) = K(E, Zn) for

all n. If E ⊗π F has property (wL), then W (E, F ∗) = K(E, F ∗).

Proof: Let T : E → F ∗ be a weakly compact and noncompact operator, Pn :
Z → Zn, Pn(

∑

zi) = zn, and let P be the projection of Z onto F ∗. Define
Tn : E → F ∗ by Tnx = PPnTx, x ∈ E, n ∈ N. Note that PnT is compact
since W (E, Zn) = K(E, Zn). Then Tn is compact for each n. For each z ∈ Z,
∑

Pnz converges unconditionally to z; thus
∑

Tnx converges unconditionally to
Tx for each x ∈ E. Then

∑

Tn is wuc and not unconditionally converging. Hence
c0 →֒ K(E, F ∗) [6], and we obtain a contradiction. �
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