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A proof of the independence of the Axiom of

Choice from the Boolean Prime Ideal Theorem

MIROSLAV REPICKY

Abstract. We present a proof of the Boolean Prime Ideal Theorem in a transitive
model of ZF in which the Axiom of Choice does not hold. We omit the argument
based on the full Halpern-Lauchli partition theorem and instead we reduce the
proof to its elementary case.
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Let us recall the following result.

Theorem 1 (Halpern and Lévy [2]). There is a transitive model of ZF' in which
the Boolean Prime Ideal Theorem holds and the Axiom of Choice fails.

In the paper, we assume V E ZFC and we consider the following transitive
model M (see [3, pp. 184-187] or [4, pp. 221-223]). Let P be the set of finite
functions p such that dom(p) C wxw and rng(p) C {0,1}. Let G C P be a generic
set of conditions. For ¢ € w let

(n) 1, if (3p € G) p(i,n) =1,
a; =
0, otherwise,

A={a; i €ew},
M = HODVl(A4).

Then M is a transitive model of ZF and A € M. The Axiom of Choice does not
hold in M because the set A is infinite and has no countable subset in M (see [3]).

We prove the Boolean Prime Ideal Theorem in M = HODVICI(A). The present
proof uses the same ideas as the proof in [2] but its exposition relies on [3]. We also
omit the argument from [2] based on the full Halpern-Lauchli partition theorem [1]
and instead we reduce the proof to its elementary case substantiated in [2].

Recall that [u] = {x € “2: u C 2z} for any finite function u such that dom(u) C
w and rng(u) € {0,1}. For t € ™(*2) and k € w, [t[[k] = [[,.,,[t(i)[k] denotes
a basic clopen set in ™ (¥2).
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Lemma 2 (Schema of continuity). Let ¢(z1,...,xn, s, A) be a formula of ZF with
no free variables other than x1, ..., xpn, s, A. If x1,...,xp, €V, m € w, s € A is
a sequence of distinct members of A, and ¢(z1,...,%n, s, A) holds in V|[G], then
there is a basic clopen set U C ™ (¥2) with pairwise disjoint projections in “2 such
that s € U and p(z1,...,Tn,t, A) holds in V|G| for every t € U N ™A.

PrROOF: Let W be the set of all one-to-one functions in ™w. For h € W let
h* € ™A be defined by h*(i) = ap;y. For h € W let

b(h) = |le(z1,. .. ,xn,h*,A)H,

c(h) = Vyew Noew — 12 € R TEN|V lo(@, ... @0, 2%, A)]|
=||(3k € w)(Vz € W) 2 € [A*Ik] — @21, ..., 20, 2", A

* *

where h*, 2*, and A denote the canonical names for h*, z*, and A constructed
by means of the canonical names a; for i € w. The inequality b(h) < c(h) means
that if ¢(x1,...,2n, s, A) holds in V[G] for s = h*, then there is k € w such that
the conclusion of the lemma holds for the clopen set U = [s[[k]. Then, since s is
one-to-one, the projections of U are pairwise disjoint if & is sufficiently large. We
prove b(h) < ¢(h) for all h € W.

Let p' € P satisfy p’ < b(h) and we find p < p’ such that p < ¢(h). Extend p/
to a condition p O p’ so that dom(p) = k x k for some k € w, rng(h) C k, and for
all i < 7 < k there is [ < k such that p(i,1) # p(j,1). For every q € P let ¢; be
defined by ¢;(j) = q(i,4). Then p; € *2 for i < k are pairwise incompatible and
pl- [h* Tk] = I 1;<n[Pn(i)]- We prove that p < c(h).

To get a contradiction assume that for some z € W there is r < p such
that 7 |- 2* € [R*[lk] and r IF —@(z1,...,2,, %, A); the former assumption is
equivalent to saying that 7. [k = pp() for all i < m. If z(i) # h(i), then
z(i) > h(i) because p; for j < k are pairwise incompatible. Let 7 be the permu-
tation of w that interchanges h(i) and z(i) for all ¢ < m and 7(j) = j otherwise.
The permutation 7 induces an automorphism of P and an automorphism of V7,
ie, for p,g € P, ¢ = w(p) if ¢(n(i),j) = p(i,j). By the symmetry lemma
7(r) Ik —p(z1, ..., o0, 7(3*), 7(A)) which is impossible because 7(r) and p are
compatible, w(2*) = h*, m(A) = A, and pIF (z1,. .., T, h*, A). This contradic-
tion proves that there is no such r and hence p < ¢(h). O

Let F € [A]™. We say that a sequence (U; : i < m) of pairwise disjoint basic
open sets in “2 distinguishes F', if |[FFNU;| =1 for all ¢ < m.

Corollary 3. Let (21, ...,2y, F) be a formula of ZF with no free variables other
than z1, ..., xpn, F. If s € <¥A, z1,...,2, € ODV[G][A, sl, F" C A\ rng(s) is
a finite set, m = |F’|, and p(x1, ..., xy, F') holds in V[G], then there is a sequence
of basic open sets (U; : i < m) in “2 disjoint from rng(s) and distinguishing
members of F' such that o(x1,...,2T,, F) holds in V[G] for every F € [A]™ such
that |FFNU;| =1 for all i < m.



A proof of the independence of the Axiom of Choice

PROOF: Assume |s| = k and let ¢ : m — F’ be any one-to-one enumeration.
There is a formula 1) such that for some ordinals ag, ..., a;,

VIG] E (Vt) ¥(a1,...,ar, s t, A) — ©(a1,..., 25, t0g(t)), and
VIGIE Y(ag,...,qn, st A).

By Lemma 2 there is a disjoint sequence of basic open sets (V; : i < k + m)
in 2 such that s™t' € [[, .1, Vi and ¢ (a1, ..., ap,t, A) holds in V[G] for every
t € [Lichpm Vi- Take U; = Viy for i <m. O

Now we prove the Boolean Prime Ideal Theorem in M = HODVII(A).

Let (B,V,A,—,0,1) be a Boolean algebra in M. Then there is f € <“A
such that B € ODVI?[A, f]. The class ODVI?/[A, f] has a well-ordering ordinal-
definable from A and f. Using this well-ordering by transfinite recursion we can
define a proper ideal I C B maximal ordinal-definable from A and f. Hence, for
every © € B which is ordinal-definable from A and f, either x € I or —x € 1.
Clearly I € M because I C B C M. We prove that I is a prime ideal of B in M.

Suppose that I is not prime and let k& € w be the least natural number such
that for some k' € ¥t1A there is an = € ODVIC[A, f~h'] such that = € B\ I and
—x € B\I. Let a’ = h/(k) and h = h/Ik. Then B € ODVI?[A, f~h] and by
minimality of k it is obvious that a’ ¢ rng(f) Urng(h) and I is a maximal ideal
of B in ODYIY[A, f~h] because I is a prime ideal there. There is a formula ¢
such that

T = {u € V[G] : V[G] F (P(U,Oél,. "7O‘naf/\h7a/7A)}

for some ordinals oy, ..., a,. Since fTh, a1, ..., a, are fixed throughout the
proof we shall denote

d(a) ={u e VI[G] : VIG] F p(u,a1,...,an, [ h,a, A)}.

Hence d(a’) € B\ I and —d(a’) € B\ I. By Corollary 3 there is a basic open set
U C “2 such that @’ € U, U Nrng(f~h) =0, and

(1) (Ya€ UNA) —d(a) € B\T and d(a) € B\ I.

The ideal of B generated by I U {d(a) : a € U N A} is in ODVI?I[A, f~h] and it
coincides with B by maximality of I. Therefore for some finite set F{ C UN A we
have /\GGF{ —d(a) € I. Similarly, if we consider the ideal generated by IU{—d(a) :

a € UN A} we obtain a finite set F; C U N A such that /\aeFQ/ d(a) € I. Denote
F'= F{UFj and m = |F'|. Then

Auwerr—d(@) €T and  A,op d(a) € 1.

By Corollary 3, there is a sequence of basic open sets (U; : i < m) distinguish-
ing F’, such that each set U; is a subset of U (this is possible because F' C U),

545



546 Repicky M.

hence disjoint from rng(f™h), and for every F' € [A]™ such that (Vi < m)
FnU; #0,

(2) Necr—d(a) €I and A, cpd(a) € 1.

For every i < m, (1) holds with U replaced with U; because U; C U. Replacing
U with U; in the argument that leads to (2) we obtain a sequence of pairwise
disjoint basic open sets (U, ; : j < m;) which are subsets of U; such that for every
i < m, and for every F C ANU with (Vj <m;) FNU;,; # 0, we have

(3) Auer—d(a) €T and A,.pd(a) € 1.

The system S = {U;,; : i <m and j < m;} is a pairwise disjoint system of basic
clopen sets in “2 and A is a dense subset of “2. Let y C AN U be a finite set of
the size |S| such that (VV € S) [yNV|=1. Then for every z C y,

(4) Aves d(@) A Ageyr, —d(a) € 1.

To prove this let us consider these two possibilities.

(i) For every i < m, zNU; # 0. Then by (2), A, d(a) € I and hence (4) holds.

(ii) There is ¢ < m such that z N U; = 0. Then (Vj < m;) (y \ 2)NU;,; # 0,
and by (3), Aye,. —d(a) € I, and hence (4) holds.

Using (4) we obtain a contradiction as follows: 1 = A,c, (d(a) V —d(a)) =
VZ]%; [(Ase-d(@) A Nyeyn . —d(a)] € I. This contradiction proves that I is prime
in M.
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