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1. Introduction

The following theorem is one of the classical general results of group theory.

Theorem ZD. Let G be a group, C a subgroup of the center ζ(G) such that

G/C is finite. Then the derived subgroup [G, G] is finite.

This result plays a very important role in infinite group theory; it lies at the
foundation of many important group-theoretical results. In the form above it
first appeared in the work of Neumann [11]. In the conclusion of this work,
B. Neumann remarked that R. Baer told him that this theorem is a consequence
of a more general result, which was proved by R. Baer in his paper [1]. In fact, in
Theorem 3 of this paper it was proved that if a normal subgroup H of a group G
has finite index, then the factor ([G, G] ∩ H)/[H, G] is also finite. However, later
R. Baer in his article [2] considered this Theorem ZD in its usual form and supplied
it with a new proof. Immediately the natural question on the relations between
the order |G/ζ(G)| = t and the order of the derived subgroup |[G, G]| arose. This
question was posed by B. Neumann in the article [11]. He also obtained the first
bound for |[G, G]|. The best bound here was obtained by J. Wiegold. In his
article [17], he showed that |[G, G]| ≤ tm where m = (1

2
)(logp t − 1) and p is the

smallest prime divisor of the number t. Also he proved that this bound is attained
when t = pn and p is a prime. If this number t has more than one prime divisor,
the situation is much more complicated.

In his famous lectures on nilpotent groups, P. Hall obtained the generalization
of Theorem ZD [5, Theorem 8.7]. In these lectures P. Hall called Theorem ZD
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Schur’s theorem (note that in this case, P. Hall did not make any specific ref-
erences). Inheriting Hall, many algebraists started calling Theorem ZD Schur’s
theorem, while making a reference to the paper of I. Schur [14]. In this old
classical paper, I. Schur introduces (only for finite groups!) the concept of the
group, which is now called the Schur multiplicator or the Schur multiplier and
obtains some properties of this group. The results of the article [14] were used by
B.H. Neumann and J. Wiegold for obtaining new bounds for the order of the de-
rived subgroup. Some analogies of Theorem ZD were obtained in other algebraic
branches, such as, for example, Lie algebras and their generalizations [15], [13].

In the article [4], an analogue of Theorem ZD was obtained for linear groups.
Let A be a vector space over a field F and G be a subgroup of GL(F, A). The
subspace CA(G) is an analogy of the center and the subspace [A, G] generated by
the elements ag− a, a ∈ A, g ∈ G, is an analogy of the derived subgroups. In the
paper [4], the vector space A such that dimF (A/CA(G)) is finite has been con-
sidered. Immediately it should be noted, that the finiteness of dimF (A/CA(G))
does not always imply the finiteness of dimF ([A, G]). In the paper [4] one can
find an example of such situation. Note that in this example, G is an infinite
elementary abelian p-group, where p is a prime, and A is a vector space over a
field of characteristic p. However if a group G does not have an infinite elementary
p-section, p = char(F ), then the finiteness of dimF (A/CA(G)) implies finiteness
of dimF ([A, G]). A similar situation occurs for the case when char(F ) = 0 (see [4,
Theorem A]).

We can consider a vector space A as a module over a group ring FG. Therefore,
the next natural step is to consider the situation of the modules over the group
ring RG where R is some (commutative) ring. In this case, R-modules having
finite composition series are analogues of finite-dimensional vector spaces. Such
modules have more characteristics than the dimension. Consider the situation
in detail. Let R be a ring and A an R-module. Suppose that A has a finite
composition series

〈0〉 = C0 ≤ C1 ≤ . . . ≤ Cn = A

of submodules. Then Cj/Cj−1 = R(cj + Cj−1) ∼=R R/AnnR(cj + Cj−1). Since
Cj/Cj−1 is a simple R-module, AnnR(cj +Cj−1) = AnnR(Cj/Cj−1) is a maximal
ideal of R. Then the factor-ring R/AnnR(cj + Cj−1) is a field. We recall that
every two composition series of A are isomorphic. It follows that the length n of
composition series and the sets

Spec(A) = {char(Fj)|Fj = R/AnnR(Cj/Cj−1), 1 ≤ j ≤ n},

Sdim(A) = {dimFj
(Cj/Cj−1)|1 ≤ j ≤ n}

are invariants of the module A. The length of composition series of A is called
the composition length of A and denoted by cR(A).

We have already noted that the analogue of Theorem ZD for the case when
R is a field occurs only when the restrictions on the abelian p-sections of G,
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where p = char(F ), are imposed. Therefore it is natural to keep here the same
restrictions.

Let p be a prime. We say that a group G has finite section p-rank srp(G) = r
if every elementary abelian p-section of G is finite of order at most pr and there
is an elementary abelian p-section A/B of G such that |A/B| = pr.

And similarly, we say that a group G has finite section 0-rank sr0(G) = r if for
every torsion-free abelian section U/V of G, rZ(U/V ) ≤ r and there is an abelian
torsion-free section U/V such that rZ(U/V ) = r.

Here rZ(A) is a Z-rank of an abelian group A (that is a rank A as a Z-module).
We note that if a group G has finite section p-rank for some prime p, then G

has finite section 0-rank, moreover sr0(G) ≤ srp(G). Indeed, suppose that U/V
is a torsion-free abelian section of G. Choose in U/V a free abelian subgroup S/V
such that the factor-group U/S is periodic. Then rZ(U/V ) = rZ(S/V ). We have
S/V = Drλ∈Λ〈dλ〉, then (S/V )p = Drλ∈Λ〈d

p
λ〉, and

(S/V )/(S/V )p = (Drλ∈Λ〈dλ〉)/(Drλ∈Λ〈d
p
λ〉)

∼= Drλ∈Λ〈dλ〉/〈d
p
λ〉.

Since srp(G) = r is finite, then (S/V )/(S/V )p is finite and has order at most pr.

On the other hand, then |(S/V )/(S/V )p| = p|Λ|, so that rZ(U/V ) = rZ(S/V ) =
|Λ| ≤ r. It follows that sr0(G) ≤ srp(G).

The group G has finite special rank r(G) = r, if every finitely generated sub-
group of G can be generated by r elements and r is the least positive integer with
this property.

Let G be a group, R a ring and A an RG-module. Put

ζRG(A) = {a ∈ A | a(g − 1) = 0 for each element g ∈ G} = CA(G).

Clearly ζRG(A) is an RG-submodule of A. This submodule is called the RG-center

of A.
The analogue of the derived subgroup is as follows. Denote by [A, G] the

RG-submodule generated by elements ag − a, a ∈ A, g ∈ G. In other words,
[A, G] = A(ωRG) where ωRG is the augmentation ideal of a group ring RG, that
is the two-sided ideal generated by all elements g − 1, g ∈ G. The submodule
[A, G] is called the derived submodule of A.

The main result of this paper is the following modular analogue of Theorem ZD.

Theorem 1. Let R be an integral domain, G be a group and A be an RG-

module. Suppose that A/ζRG(A) has finite composition series as an R-module. If

the group G has finite section p-rank rp for every p ∈ Spec(A/ζRG(A)), then [A, G]
has finite R-composition series and Spec([A, G]) ⊆ Spec(A/ζRG(A)). Moreover,

there exists a function κ6 such that

cR([A, G]) ≤ κ6(rp, d | p ∈ SpecR(A/ζRG(A)), d ∈ Sdim(A/ζRG(A))).

This result is an extension of Theorem A of the paper [4] in the case of modules
over group rings with an integral domain as a scalar ring.
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2. Linear groups having finite section p-rank.

The first natural step is to consider the case when factor-module A/ζRG(A)
is a simple RG-module having finite composition series as an R-module. In
this case AnnR(A/ζRG(A)) is a maximal ideal of R, so that a factor-ring F =
R/AnnR(A/ζRG(A)) is a field. Moreover, the fact that A/ζRG(A) has finite com-
position series as an R-module implies that dimF (A/ζRG(A)) is finite. There-
fore we can think of G/CG(A/ζRG(A)) as a subgroup of GLn(F ) where n =
dimF (A/ζRG(A)). Thus, we need some information on irreducible linear groups
having finite section p-rank where p = char(F ).

Lemma 1. Let p be a prime or p = 0 and let G be a group. Suppose that G
has finite section p-rank. If U , V are the subgroup of G such that V is a normal

subgroup of U , then U/V does not include a non-abelian free subgroup.

Proof: Suppose the contrary, let U/V include a non-abelian free subgroup F/V .
If the free rank of F/V is infinite, then F/V includes a normal subgroup E/V
such that F/E is a free abelian group of infinite Z-rank. If p = 0, then we obtain
a contradiction right away. Suppose that p is a prime. Since F/E is a free abelian
group of infinite Z-rank, F/E has an infinite elementary abelian p-factor-group,
which implies that F/V has infinite section p-rank. This contradiction shows that
F/V has finite free rank. But in this case, [F/V, F/V ] is a free subgroup of infinite
countable free rank (see, for example, [9, §36]), and using the above arguments,
we again come to a contradiction. �

Lemma 2. Let F be a field of prime characteristic p and G be a periodic subgroup

of GLn(F ). If G has finite section p-rank r, then G is abelian-by-finite and has

finite special rank at most max{r, 1

2
(5n + 1)n} + 1.

Proof: We recall that G is locally finite (see, for example, [16, 9.1]). Let P be the
Sylow p-subgroup of G. The finiteness of srp(P ) implies that P has finite special
rank r [3, Corollary 2.3]. Then P is a Chernikov subgroup (see, for example, [9,
§64]). On the other hand, P is a nilpotent group of finite exponent (see, for
example, [16, 9.1]). It follows that P is finite. In the turn out, it follows that G is
almost abelian (see, for example, [16, Corollary 9.7]). Let q be a prime such that
q 6= p and let Q be a finite q-subgroup of G. Choose in Q a maximal normal abelian
subgroup A. Being a finite q-subgroup, Q is nilpotent, therefore A = CQ(A). By
Lemma 2.9 of the paper [4] A has special rank at most k ≤ n. It follows that Q/A
is isomorphic to some q-subgroup of GLn(Z/qm

Z) for some positive integer m.
Then Q/A has special rank at most 1

2
(5n − 1)n (see, for example, [6, 25.1.3]). It

follows that Q has a special rank at most n+ 1

2
(5n− 1)n = 1

2
(5n+1)n. Let H be

an arbitrary finite subgroup of G. If q ∈ Π(H) and q 6= p, then as proved above
the Sylow p-subgroup Sq of H has at most 1

2
(5n+1)n generators. As we remarked

above, every Sylow p-subgroup of G has special rank at most r, therefore the Sylow
p-subgroup Sp of H has at most r generators. Let κ1(r, n) = max{r, 1

2
(5n+1)n}.

Then H has at most κ1(r, n) + 1 generators [10, Theorem 1]. It follows that G
has a special rank at most κ1(r, n) + 1. �
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Lemma 3. Let F be a field of characteristic 0 and G be a periodic subgroup of

GLn(F ). Then G has finite special rank at most 1

2
(5n + 1)n + 1.

Proof: We recall that G is locally finite (see, for example, [16, 9.1]). Let q be
a prime and let Q be a finite q-subgroup of G. Choose in Q a maximal normal
abelian subgroup A. Being a finite q-subgroup, Q is nilpotent, and therefore
A = CQ(A). By Lemma 2.9 of [4], A has special rank at most k ≤ n. It follows
that Q/A is isomorphic to some q-subgroup of GLn(Z/qm

Z) for some positive
integer m. Then Q/A has special rank at most 1

2
(5n − 1)n (see, for example, [6,

25.1.3]). It follows that Q has a special rank at most n+ 1

2
(5n−1)n = 1

2
(5n+1)n.

Let H be an arbitrary finite subgroup of G. If q ∈ Π(H), then as proved above
the Sylow p-subgroup Sp of H has at most 1

2
(5n + 1)n generators. It follows that

H has at most 1

2
(5n + 1)n + 1 generators [10, Theorem 1]. Hence G has a special

rank at most 1

2
(5n + 1)n + 1. �

Lemma 4. Let F be a field, G be a group and A be a simple FG-module. Suppose

that G is (locally soluble)-by-finite and dimF (A) = n is finite. Then G/CG(A) is

abelian-by-finite.

Proof: Without loss of generality we can suppose that CG(A) = 〈1〉. The group
G includes a normal locally soluble subgroup S such that G/S is finite. We remark
at once that S is soluble (see, for example, [16, Corollary 3.8]). Since dimF (A)
is finite, A includes a non-zero FS-submodule B, having the least dimension.
Then B is a simple FS-submodule and A =

⊕
1≤j≤s Bgj for some elements

g1, . . . , gs ∈ G (see, for example, [8, Lemma 5.4]). Then S includes a normal
abelian subgroup U such that S/U is finite (see, for example, [16, Lemma 3.5]).
Since G/S is finite, U has finite index in G. �

If G is a group then denote by Tor(G) the maximal normal periodic subgroup
of G. The subgroup Tor(G) is called the periodic part of a group G. We remark
that if a group G is locally nilpotent, then Tor(G) contains all elements having
finite order, so that the factor-group G/Tor(G) is torsion-free.

Lemma 5. Let F be a field of prime characteristic p, G be a group and A be a

simple FG-module. Suppose that G has finite section 0-rank r and dimF (A) = n
is finite. Then G/CG(A) is abelian-by-finite and has finite special rank. Moreover,

there is a function κ2 such that r(G/CG(A)) ≤ κ2(r, n).

Proof: Without loss of generality we can suppose again that CG(A) = 〈1〉.
Lemma 1 shows that G does not include a non-abelian free subgroup. Then G
includes a normal soluble subgroup S such that G/S is locally finite (see, for
example, [16, Theorem 10.17]). Since dimF (A) is finite, A includes a non-zero
FS-submodule B having the least dimension. Then B is a simple FS-submodule
and A =

⊕
1≤j≤s Bgj for some elements g1, . . . , gs ∈ G (see, for example, [8,

Lemma 5.4]). Then S includes a normal abelian subgroup U such that S/U
is finite (see, for example, [16, Lemma 3.5]). Let T = Tor(S). An obvious



438 Kurdachenko L.A., Subbotin I.Ya., Chupordia V.A.

inclusion Tor(U) ≤ Tor(S) implies that S/T includes a normal abelian torsion-
free subgroup UT/T ∼= U/(U ∩ T ) = U/Tor(U) having finite index m. As we
have seen above the fact that G has finite section p-rank implies that UT/T has
finite Z-rank, and hence finite special rank. It follows that a subgroup S/T has
finite special rank.

Put V/T = (S/T )m, then V/T ≤ UT/T and, in particular, V/T is an abelian
torsion-free group having finite special rank. The fact that S/T has finite special
rank implies that a subgroup V/T has finite index in S/T . Finally the choice
of V/T yields that V/T is G-invariant. Since G/S is locally finite, G/V is also
locally finite. Put X/T = CG/T (V/T ), then by above remark a factor-group G/X
is finite. Moreover, the fact that G has finite section p-rank implies that V/T
has finite Z-rank, moreover rZ(V/T ) ≤ r. Lemma 3 shows that G/X has finite
special rank at most 1

2
(5r + 1)r + 1.

The inclusion V/T ≤ ζ(X/T ) implies that a derived subgroup [X/T, X/T ]
is locally finite (see, for example, [12, Corollary to Theorem 4.12]). Then the
choice of T yields that [X/T, X/T ] = 〈1〉. The choice of T yields also that
Tor(X/T ) = 〈1〉. The fact that X/T is abelian implies that (X/T )/Tor(X/T ) is
torsion-free, thus X/T is abelian and torsion-free.

By Lemma 2 a subgroup T is abelian-by-finite and has finite special rank at
most κ1(r, n) + 1. Since X/T is abelian and torsion-free, as we have seen above
X/T has finite special rank at most r. Finally, G/X has finite special rank at most
1

2
(5r+1)r+1, thus G has finite special rank at most κ1(r, n)+1+r+ 1

2
(5r+1)r+1 =

κ2(r, n).
Since T and G/T are abelian-by-finite, G is soluble-by-finite. An application

of Lemma 4 shows that G is abelian-by-finite. �

Lemma 6. Let F be a field of characteristic 0, G be a group and A be a simple

FG-module. Suppose that G has finite section 0-rank r and dimF (A) = n is

finite. Then G/CG(A) is abelian-by-finite and has finite special rank. Moreover,

there is a function κ3 such that r(G/CG(A)) ≤ κ3(r, n).

Proof: Without loss of generality we can suppose that CG(A) = 〈1〉. Lemma 1
shows that G does not include a non-abelian free subgroup. Then G includes a
normal soluble subgroup S such that G/S is finite (see, for example, [16, Theo-
rem 10.17]). Lemma 4 shows that G includes a normal abelian subgroup U such
that G/U is finite.

Let T = Tor(S). An obvious inclusion Tor(U) ≤ Tor(S) implies that G/T
includes a normal abelian torsion-free subgroup UT/T ∼= U/(U ∩T ) = U/Tor(U)
having finite index m. The fact that G has finite section 0-rank implies that
UT/T has finite Z-rank. Put X/T = CG/T (UT/T ), then the factor-group G/X
is finite. Since UT/T is of finite Z-rank at most r, Lemma 3 shows that G/X has
finite special rank at most 1

2
(5r + 1)r + 1.

The inclusion UT/T ≤ ζ(X/T ) implies that a derived subgroup [X/T, X/T ]
is finite (see, for example, [12, Theorem 4.12]). Together with the choice of
T it implies the equality [X/T, X/T ] = 〈1〉. The choice of T yields also that



The central factor-module and the derived submodule 439

Tor(X/T ) = 〈1〉. The fact that X/T is abelian implies that (X/T )/Tor(X/T ) is
torsion-free, thus X/T is abelian and torsion-free.

By Lemma 3, the subgroup T is abelian-by-finite and has finite special rank at
most 1

2
(5n+1)n+1. As we have seen above, X/T has finite special rank at most r.

Finally, G/X has finite special rank at most 1

2
(5r+1)r+1, thus G has finite special

rank at most 1

2
(5n + 1)n + 1 + r+ 1

2
(5r + 1)r + 1 = 1

2
(5n + 1)n + 1

2
(5r + 3)r + 2 =

κ3(r, n). �

3. The basic case

Now we will consider the case when the factor-module A/ζRG(A) is a simple
RG-module having a finite composition series as an R-module. This case is the
basic here.

Lemma 7. Let R be an integral domain, G be a group and A be a non-trivial

RG-module. Suppose that A/ζRG(A) is a simple RG-module and

F = R/AnnR(A/ζRG(A)).

Then AnnR(A/ζRG(A)) = AnnR([A, G]).

Proof: Put C = ζRG(A), D = [A, G]. Without loss of generality we can suppose
that CG(A) = 〈1〉. The mapping ξg : A 7→ A, defined by the rule ξg(a) = a(g−1),
a ∈ A, is R-linear for each element g ∈ G. We have Im(ξg) = A(g − 1) and
Ker(ξg) = CA(g), so that A(g−1) = Im(ξg) ∼=R A/Ker(ξg) = A/CA(g). Let α ∈
AnnR(A/C), then αa ∈ C for every element a ∈ A. It follows that α(a(g − 1)) =
(αa)(g−1) = 0, which shows that AnnR(A/C) ≤ AnnR(D). Since AnnR(A/C) is
a maximal ideal of R, then either that AnnR(D) = R or AnnR(D) = AnnR(A/C).
In first case D = 〈0〉 and A is a trivial RG-module, and we obtain a contradiction.
This contradiction proves an equality AnnR(A/ζRG(A)) = AnnR([A, G]). �

Lemma 8. Let R be an integral domain, G be a group and A be a non-trivial

RG-module. Suppose that A/ζRG(A) is a simple RG-module and

F = R/AnnR(A/ζRG(A)).

If G = CG(A/ζRG(A)) and the group G has finite section p-rank r where p =
char(F ), then AnnR(A/ζRG(A)) = AnnR([A, G]) and dimF ([A, G]) ≤ r.

Proof: Put C = ζRG(A), D = [A, G]. Without loss of generality we can suppose
that CG(A) = 〈1〉. The equality G = CG(A/C) implies that dimF (A/C) = 1.
Choose an element v ∈ A\C, then the coset v+C is a basis of A/C. The equality
AnnR(A/ζRG(A)) = AnnR([A, G]) follows from Lemma 7.

Consider the mapping ν : G → A which is defined by the rule ν(g) = v(g − 1),
g ∈ G. We note that Im(ν) ≤ C. If x is another element of G, then v(g − 1)(x−
1) = 0 and the equality v(gx− 1) = v(g − 1)(x− 1) + v(g − 1) + v(x − 1) implies
that

ν(gx) = v(gx − 1) = v(g − 1) + v(x − 1) = ν(g) + ν(x).
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In other words, ν is a homomorphism of a group G into the additive group of A.
We have Ker(ν) = CG(v) and Im(ν) is an additive subgroup of [A, G] generated
by all elements v(g − 1), g ∈ G.

If char(F ) = p is a prime, then Im(ν) is an elementary abelian p-subgroup.
Then the isomorphism Im(ν) ∼= G/Ker(ν) implies that G/Ker(ν) is an elemen-
tary abelian p-group. The fact that srp(G) = r implies that G/Ker(ν) is a finite
elementary abelian p-group of order at most pr. It follows that Im(ν) has at most
r generators. It follows that a subspace FIm(ν) = RIm(ν) is finitely generated
and hence finite dimensional. Moreover, dimF (RIm(ν)) ≤ r.

Consider now the case when char(F ) = 0. Then Im(ν) is a torsion-free abelian
subgroup. Using again the isomorphism Im(ν) ∼= G/Ker(ν), we obtain that
G/Ker(ν) is also a torsion-free abelian subgroup. In this case, from sr0(G) = r
we obtain that G/Ker(ν) is a torsion-free abelian group having finite Z-rank
at most r. It follows that rZ(Im(ν)) ≤ r. Let b1, . . . , bm be the maximal Z-
independent subset of Im(ν), m ≤ r. Every element of RIm(ν) has the form
αv(y − 1) where α ∈ R, y ∈ G. There exists an integer s such that sa(y − 1) =
t1b1 + . . .+ tmbm for some integers t1, . . . , tm. This shows that the subset {αa(y−
1), b1, . . . , bm} is not independent over F . It follows again that dimF (RIm(ν)) ≤
r.

If a is an arbitrary element of A, then a = c + γv where γ ∈ R, c ∈ C. Then
a(g−1) = (c+γv)(g−1) = γv(g−1) ∈ RIm(ν). It follows that [A, G] = RIm(ν),
which finishes the proof. �

Using ordinary induction, we derive from this lemma the following

Corollary 1. Let R be an integral domain, G be a group and A be a non-trivial

RG-module. Suppose that A has a series of RG-submodules

〈0〉 = C0 ≤ C1 = ζRG(A) ≤ C2 ≤ . . . ≤ Cn+1 = A

such that the factors Cj/Cj−1 are simple RG-modules, 2 ≤ j ≤ n + 1. If

CG(Cj/Cj−1) = G, 2 ≤ j ≤ n + 1, and G has finite section p-rank r for every

p ∈ Spec(A/ζRG(A)), then Spec([A, G]) ⊆ Spec(A/ζRG(A)) and cR([A, G]) ≤ rn.

If G is a group, R is a ring and A is an RG-module g, x ∈ G, then we have

a(gx − 1) = a(g − 1)(x − 1) + a(g − 1) + a(x − 1)

for each element a ∈ A. It follows that A(gx − 1) ≤ A(g − 1) + A(x − 1). Using
ordinary induction we obtain the equalities

[A, 〈g〉] = A(g − 1) and [A, 〈g, x〉] = A(g − 1) + A(x − 1).

Moreover,

[A, 〈g1, . . . , gn〉] = A(g1 − 1) + . . . + A(gn − 1).

Lemma 9. Let R be an integral domain, G = 〈g1, . . . , gn〉 be a finitely gen-

erated group and A be an RG-module. Suppose that A/ζRG(A) is a simple
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RG-module, G 6= CG(A/ζRG(A)) and dimF (A/ζRG(A)) = d is finite, where

F = R/AnnR(A/ζRG(A)). Then AnnR(A/ζRG(A)) = AnnR([A, G]) and

dimF ([A, G]) ≤ dn.

Proof: Put C = ζRG(A), D = [A, G]. Without loss of generality we can suppose
that CG(A) = 〈1〉. The equality AnnR(A/ζRG(A)) = AnnR([A, G]) follows from
Lemma 7. The mapping ξg : A → A, defined by the rule ξg(a) = a(g − 1), a ∈ A,
is R-linear for each element g ∈ G. We have Im(ξg) = A(g − 1) and Ker(ξg) =
CA(g), so that A(g − 1) = Im(ξg) ∼=R A/Ker(ξg) = A/CA(g). The inclusion
C ≤ CA(g) implies that dimF (A/Ker(ξg)) ≤ d. Thus dimF (A(g − 1)) ≤ d for
every element g ≤ G. We have noted above that [A, G] = A(g1−1)+· · ·+A(gn−1).
It follows that

dimF ([A, G]) ≤ dimF (A(g1 − 1)) + . . . + dimF (A(gn − 1)) ≤ dn. �

Corollary 2. Let R be an integral domain, G be a group and A be an RG-module.

Suppose that the following conditions hold:

(i) G 6= CG(A/ζRG(A));
(ii) A/ζRG(A) is a simple RG-module;

(iii) dimF (A/ζRG(A)) = d is finite, where F = R/AnnR(A/ζRG(A));
(iv) group G has finite section p-rank r where p = char(F );
(v) there are the elements g1, . . . , gn such that

G = 〈g1, . . . , gn〉CG(A/ζRG(A)).

Then AnnR(A/ζRG(A)) = AnnR([A, G]) and dimF ([A, G]) ≤ r(n + d).

Proof: Put C = ζRG(A), Z = CG(A/ζRG(A)). Without loss of generality we
can suppose that CG(A) = 〈1〉. The equality AnnR(A/ζRG(A)) = AnnR([A, G])
follows from Lemma 7. By Corollary 1 dimF ([A, Z]) ≤ rd. Since Z is a normal
subgroup of G, K = [A, Z] is an RG-submodule. Furthermore, Z ≤ CG(A/K), so
that a factor-group G/CG(A/K) is finitely generated and we can apply Lemma 9.
Put L/K = [A/K, G], then by Lemma 9 dimF (L/K) ≤ rn. An obvious inclusion
[A, G] ≤ L shows that

dimF ([A, G]) ≤ dimF (L) = dimF (L/K) + dimF (K) ≤ rn + rd = r(n + d).

�

Corollary 3. Let R be an integral domain, G be a group and A be an RG-module.

Suppose that the following conditions hold:

(i) G 6= CG(A/ζRG(A));
(ii) A/ζRG(A) is a simple RG-module;

(iii) dimF (A/ζRG(A)) = d is finite, where F = R/AnnR(A/ζRG(A));
(iv) group G has finite section p-rank r where p = char(F );
(v) G/CG(A/ζRG(A)) is finite.
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Then AnnR(A/ζRG(A)) = AnnR([A, G]) and there are functions κ3 and κ4 such

that dimF ([A, G]) ≤ κ3(r, d) whenever p > 0 and dimF ([A, G]) ≤ κ4(r, d) when-

ever p = 0.

Proof: Put C = ζRG(A). Without loss of generality we can suppose that
CG(A) = 〈1〉. The equality AnnR(A/ζRG(A)) = AnnR([A, G]) follows from
Lemma 7. If p > 0, then Lemma 2 shows that G/CG(A/C) has a special rank
at most κ1(r, d) + 1. Being finite G/CG(A/C) has κ1(r, d) + 1 generators. Using
Corollary 2, we obtain that dimF ([A, G]) ≤ r(κ1(r, d) + 1 + d).

If p = 0, then, by Lemma 2, G/CG(A/C) has a special rank at most 1

2
(5d +

1)d+1. Being finite G/CG(A/C) has 1

2
(5d+1)d+1 generators. Using Corollary 2,

we obtain that dimF ([A, G]) ≤ r(1

2
(5d + 1)d + 1 + d) = r(1

2
(5d + 3)d + 1).

Put now κ3(r, d) = r(κ1(r, d) + 1 + d) and κ4(r, d) = r(1

2
(5d + 3)d + 1). �

Starting from the RG-center, we can construct the upper RG-central series
of A

〈0〉 = ζRG,0(A) ≤ ζRG,1(A) ≤ ζRG,2(A) ≤ . . .

ζRG,α(A) ≤ ζRG,α+1(A) ≤ . . . ζRG,γ(A) ≤ . . .

where ζRG,1(A) = ζRG(A) is the center of G, and recursively

ζRG,α+1(A)/ζRG,α(A) = ζRG(A/ζRG,α(A))

for all ordinals α, ζRG,λ(A) =
⋃

µ<λ ζRG,µ(A) for the limit ordinals λ and

ζRG(A/ζRG,γ(A)) = 〈0〉. The last term ζRG,γ(A) = ζRG,∞(A) of this series is
called the upper RG-hypercenter of A and the ordinal is called the RG-central
length of a module A and will denoted by zlRG(A). We observe that [ζRG,α+1(A), G]
≤ ζRG,α(A) for all α < γ.

If the upper RG-hypercenter of A coincides with A, then A is called RG-
hypercentral.

If A is an RG-hypercentral module and zlRG(A) is finite, then we will say that
A is RG-nilpotent.

An RG-module A is called locally RG-nilpotent, if the FH-submodule MFH is
FH-nilpotent for every finite subset M of A and every finitely generated subgroup
H of G.

Let G be a group, R a ring and A an RG-module. If B, C are the RG-
submodules of A and B ≤ C, then a factor C/B is called G-central (respectively
G-eccentric), if G = CG(C/B) (respectively G 6= CG(C/B)).

We say that the RG-module A is G-hypereccentric, if A has an ascending series
of RG-submodules

〈0〉 = A0 ≤ A1 ≤ . . . Aα ≤ Aα+1 ≤ . . . Aγ = A

whose factors Aα+1/Aα are G-eccentric and simple FG-modules for all α < γ.
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We say that the RG-module A has Z-decomposition, if A = C × E where
C is the upper RG-hypercenter of A and E is an RG-submodule which is G-
hypereccentric (see, [8, Chapter 10]). We remark that this decomposition is unique
(of course, if it exists) [8, Chapter 10].

Lemma 10. Let R be an integral domain, G be an abelian-by-finite group and

A be an RG-module. Suppose that A/ζRG(A) is a simple RG-module, G 6=
CG(A/ζRG(A)) and dimF (A/ζRG(A)) = d is finite, where

F = R/AnnR(A/ζRG(A)).

If a group G has finite section p-rank r where p = char(F ) and the factor-

group G/CG(A/ζRG(A)) is infinite, then AnnR(A/ζRG(A)) = AnnR([A, G]) and

dimF ([A, G]) ≤ d.

Proof: Put C = ζRG(A). Without loss of generality we can suppose that
CG(A) = 〈1〉. The equality AnnR(A/ζRG(A)) = AnnR([A, G]) follows from
Lemma 7. Let U be a normal abelian subgroup of G having finite index. Since
dimF (A/C) is finite, A/C includes a non-zero FU -submodule B/C having the
least dimension. Then B/C is a simple FU -submodule and there exist the el-
ements g1, . . . , gs ∈ G such that A/C =

⊕
1≤j≤s(B/C)gj (see, for example, [8,

Lemma 5.4]). Suppose that CU (B/C) = U . The equation CU ((B/C)g) =
(CU (B/C))g implies that CU ((B/C)g) = Ug = U for each element g ∈ G.
But in this case CU (A/C) = U , so that U ≤ CG(A/C) and the factor-group
G/CG(A/C) is finite, and we obtain a contradiction. This contradiction shows
that CU (A/C) 6= U . In this case CU ((B/C)g) 6= U for each element g ∈ G.
It follows that A/C is U -hypereccentric. Then the RU -module A has the Z-
decomposition A = ζRU,∞(A) × E where E is an RU -submodule, which is U -
hypereccentric [7, Corollary 2.6]. We remark at once that ζRU,∞(A) = C. Sup-
pose that E does not include Ex = B for some element x ∈ G. Since U is normal
in G, it is not hard to see that B is also U -hypereccentric. Then (B + E)/E
is non-zero, therefore it includes a non-zero simple RU -submodule D/E. The
isomorphism (B + E)/E ∼=RU B/(B ∩ E) shows that D/E is RU -isomorphic to
some simple RU -factor of B, and it follows that U/CU (D/E) 6= U . On the other
hand, (B + E)/E ≤ A/E ≤ ζRU (A), which gives that U/CU (D/E) = U . This
contradiction shows that Eg ≤ E for every element g ∈ G. Hence E is an RG-
submodule. Since A/E = (C + E)/E, G = CG(A/E), which implies an inclusion
[A, G] ≤ E. Then dimF ([A, G]) ≤ dimF (E) = dimF (A/C) = d. �

Corollary 4. Let R be an integral domain, G be a group and A be an RG-

module. Suppose that A/ζRG(A) is a simple RG-module, G 6= CG(A/ζRG(A))
and dimF (A/ζRG(A)) = d is finite, where F = R/AnnR(A/ζRG(A)). If a group

G has finite section p-rank r where p = char(F ) and the factor-group

G/CG(A/ζRG(A))

is infinite, then AnnR(A/ζRG(A)) = AnnR([A, G]) and dimF ([A, G]) ≤ d(r + 1).
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Proof: Put C = ζRG(A). Without loss of generality we can suppose that
CG(A) = 〈1〉. The equality AnnR(A/ζRG(A)) = AnnR([A, G]) follows from
Lemma 7. Lemmas 4 and 5 show that G/CG(A/C) is abelian-by-finite. Put
Z = CG(A/C). By Corollary 1 dimF ([A, Z]) ≤ rd. Since Z is a normal subgroup
of G, K = [A, Z] is an RG-submodule. Furthermore, Z ≤ CG(A/K), so that
a factor-group G/CG(A/K) is abelian-by-finite. Put L/K = [A/K, G]. Since
G/CG(A/K) is infinite, Lemma 10 shows that dimF (L/K) ≤ d. An obvious
inclusion [A, G] ≤ L shows that

dimF ([A, G]) ≤ dimF (L) = dimF (L/K) + dimF (K)

≤ d + rd = d(r + 1). �

Proposition 1. Let R be an integral domain, G be a group and A be an RG-

module. Suppose that A/ζRG(A) is a simple RG-module, and dimF (A/ζRG(A)) =
d is finite, where F = R/AnnR(A/ζRG(A)). If a group G has finite section p-rank

r where p = char(F ), then AnnR(A/ζRG(A)) = AnnR([A, G]) and there exists a

function κ5 such that dimF ([A, G]) ≤ κ5(r, d).

Proof: Put C = ζRG(A). The equality AnnR(A/ζRG(A)) = AnnR([A, G]) fol-
lows from Lemma 7. If G = CG(A/C), then Lemma 8 shows that dimF ([A, G]) ≤
r. Hence in this case we put κ5(r, d) = r. Suppose now that the factor A/C
is G-eccentric. If G/CG(A/C) is finite and p > 0, then Corollary 3 shows that
dimF ([A, G]) ≤ κ3(r, d). In this case we put κ5(r, d) = κ3(r, d). If G/CG(A/C)
is finite and p = 0, then Corollary 3 shows that dimF ([A, G]) ≤ κ4(r, d). In this
case we put κ5(r, d) = κ4(r, d). Finally, suppose now that G/CG(A/C) is infinite.
Here Corollary 4 shows that dimF ([A, G]) ≤ d(r + 1), so that for this case we can
put κ5(r, d) = d(r + 1). �

4. Proof of the main theorem

Put C = ζRG(A). Since A/C has finite R-composition series, A has a series of
RG-submodules

〈0〉 = C0 ≤ C1 = ζRG(A) ≤ C2 ≤ . . . ≤ Cn+1 = A

such that the factors Cj/Cj−1 are simple RG-modules, cR(Cj/Cj−1) is finite,
2 ≤ j ≤ n + 1. We will use induction by n + 1. If A/C is simple RG-
module, the statement follows from Proposition 1. Suppose now that n > 1
and consider an RG-submodule B = Cn. For this submodule we can use induc-
tion hypothesis and obtain that D = [B, G] has a finite R-composition series,
Spec(D) ⊆ Spec(B/ζRG(B)) ⊆ Spec(A/ζRG(A)) and there exists a function λ
such that

cR(D) ≤ λ(rp, d | p ∈ SpecR(B/ζRG(B)), d ∈ Sdim(B/ζRG(B))).
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For the factor-module A/D we have that B/D ≤ ζRG(A/D), so that A/D =
ζRG(A/D) or (A/D)/ζRG(A/D) is a simple RG-module. Now we can apply
Proposition 1.
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