Some results on (n, d)-injective modules, (n, d)-flat modules and *n*-coherent rings

ZHANMIN ZHU

Abstract. Let n, d be two non-negative integers. A left R-module M is called (n, d)-injective, if $\operatorname{Ext}^{d+1}(N, M) = 0$ for every n-presented left R-module N. A right R-module V is called (n, d)-flat, if $\operatorname{Tor}_{d+1}(V, N) = 0$ for every n-presented left R-module N. A left R-module M is called weakly n-FP-injective, if $\operatorname{Ext}^n(N, M) = 0$ for every (n + 1)-presented left R-module N. A right R-module V is called weakly n-flat, if $\operatorname{Tor}_n(V, N) = 0$ for every (n + 1)-presented left R-module N. In this paper, we give some characterizations and properties of (n, d)-injective modules and (n, d)-flat modules in the cases of $n \geq d + 1$ or n > d + 1. Using the concepts of weakly n-FP-injectivity and weakly n-flatness of modules, we give some new characterizations of left n-coherent rings.

Keywords: (*n*, *d*)-injective modules; (*n*, *d*)-flat modules; *n*-coherent rings Classification: 16D40, 16D50, 16P70

1. Introduction

Throughout this paper, R denotes an associative ring with identity, all modules considered are unitary and n, d are non-negative integers unless otherwise specified. For any R-module $M, M^+ = \text{Hom}(M, \mathbb{Q}/\mathbb{Z})$ will be the character module of M.

Recall that a left *R*-module *A* is said to be *finitely presented* if there is an exact sequence $F_1 \to F_0 \to A \to 0$ in which F_1, F_0 are finitely generated free left *R*-modules, or equivalently, if there is an exact sequence $P_1 \to P_0 \to A \to 0$, where P_1, P_0 are finitely generated projective left *R*-modules. Let *n* be a positive integer. Then a left *R*-module *M* is called *n*-presented [2] if there is an exact sequence of left *R*-modules $F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to M \to 0$ in which every F_i is a finitely generated free (or equivalently projective) left *R*-module. A left *R*-module *M* is said to be FP-injective [7] if $Ext^1(A, M) = 0$ for every finitely presented left *R*-module *A*. FP-injective modules are also called absolutely pure modules [5]. FP-injective modules and their generations have been studied by many authors. For example, following [1], a left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N) = 0$ for every *n*-presented left *R*-module *M* is called *n*-flat if $Tor_n(M, N)$

DOI 10.14712/1213-7243.2015.133

 $\operatorname{Ext}^{d+1}(N,M) = 0$ for every *n*-presented left *R*-module *N*; a right *R*-module *V* is called (n,d)-flat, if $\operatorname{Tor}_{d+1}(V,N) = 0$ for every *n*-presented left *R*-module *N*. We recall also that a ring *R* is called *left n*-coherent [2] if every *n*-presented left *R*-module is (n + 1)-presented. In [1], left *n*-coherent rings are characterized by *n*-*FP*-injective modules and *n*-flat modules. In this paper, we shall give some new characterizations and properties of (n, d)-injective modules and (n, d)-flat modules in the cases of $n \ge d + 1$ or n > d + 1. Moreover, we shall extend the concepts of *n*-*FP*-injective modules and *n*-flat modules to weakly *n*-*FP*-injective modules and weakly *n*-flat modules, respectively. Using the concepts of weakly *n*-*FP*-injectivity and weakly *n*-flatness of modules, we shall give some new characterizations of left *n*-coherent rings.

2. Weakly *n*-*FP*-injective modules and weakly *n*-flat modules

We first extend the concepts of n-FP-injective modules and n-flat modules as follows.

Definition 2.1. Let *n* be a positive integer. Then a left *R*-module *M* is called weakly *n*-*FP*-injective, if $\text{Ext}^n(N, M) = 0$ for every (n + 1)-presented left *R*-module *N*. A right *R*-module *V* is called weakly *n*-flat, if $\text{Tor}_n(V, N) = 0$ for every (n + 1)-presented left *R*-module *N*.

Theorem 2.2. Let M be a left R-module and $n \ge d + 1$. Then the following statements are equivalent:

- (1) M is (n, d)-injective;
- (2) if $F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} \cdots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{\epsilon} N \to 0$ is exact and each F_i is finitely generated and free, then $\operatorname{Ext}^1(\operatorname{Ker}(f_{d-1}), M) = 0;$
- (3) if $F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} \cdots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{\epsilon} N \to 0$ is exact and each F_i is finitely generated and free, then every homomorphism from Ker (f_d) to M extends to F_d .

PROOF: (1) \Leftrightarrow (2) It follows from the isomorphism

$$\operatorname{Ext}^{d+1}(N, M) \cong \operatorname{Ext}^1(\operatorname{Ker}(f_{d-1}), M).$$

 $(2) \Leftrightarrow (3)$ It follows from the exact sequence

$$\operatorname{Hom}(F_d, M) \to \operatorname{Hom}(\operatorname{Ker}(f_d), M) \to \operatorname{Ext}^1(\operatorname{Ker}(f_{d-1}), M) \to 0.$$

Corollary 2.3. Let $n \ge d+1$. Then FP-injective module is (n, d)-injective. In particular, FP-injective module is n-FP-injective.

PROOF: Let M be FP-injective and let $F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} \cdots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{\epsilon} N \to 0$ be exact and each F_i be finitely generated and free. Then $K_{d-1} = \text{Ker}(f_{d-1})$ is (n-d)-presented and so finitely presented since $n \ge d+1$. And thus $\text{Ext}^1(K_{d-1}, M) = 0$. By Theorem 2.2, M is (n, d)-injective.

Let B be a left R-module and A be a submodule of B, k be a positive integer. Recall that A is said to be a pure submodule of B if for right R-module M, the induced map $M \otimes_R A \to M \otimes_R B$ is monic, or equivalently, every finitely presented left R-module is projective with respect to the exact sequence $0 \to A \to B \to B/A \to 0$. In this case, the exact sequence $0 \to A \to B \to B/A \to 0$ is called pure. It is well known that a left R-module M is FP-injective if and only if it is pure in every module containing it as a submodule. According to [9], A is said to be k-pure in B if every k-presented left R-module N is projective with respect to the exact sequence $0 \to A \to B \to B/A \to 0$. Clearly, a submodule A of a module B is pure in B if and only if A is 1-pure in B, and a k-pure submodule is (k + 1)-pure. By [9, Theorem 2.2], A is (k, 0)-injective if and only if A is k-pure in every module containing A if and only if A is k-pure in E(A).

Proposition 2.4. If $n \ge d + 1$, then the class of (n, d)-injective left *R*-modules is closed under (n - d)-pure submodules.

PROOF: Let A be an (n-d)-pure submodule of an (n, d)-injective left R-module B. Let $F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} \cdots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{\epsilon} N \to 0$ be exact with each F_i finitely generated and free. Write $K_{d-1} = \text{Ker}(f_{d-1})$. Then K_{d-1} is (n-d)-presented. Since B is (n, d)-injective, $\text{Ext}^1(K_{d-1}, B) = 0$ by Theorem 2.2. So we have an exact sequence

$$\operatorname{Hom}(K_{d-1}, B) \to \operatorname{Hom}(K_{d-1}, B/A) \to \operatorname{Ext}^1(K_{d-1}, A) \to 0.$$

Observing that A is (n-d)-pure in B, the sequence

 $\operatorname{Hom}(K_{d-1}, B) \to \operatorname{Hom}(K_{d-1}, B/A) \to 0$

is exact. Hence $\text{Ext}^1(K_{d-1}, A) = 0$, and so A is (n, d)-injective by Theorem 2.2 again.

Corollary 2.5 ([8, Proposition 2.4(1)]). If $n \ge d+1$, then every pure submodule of an (n, d)-injective left *R*-module is (n, d)-injective.

Corollary 2.6. Let R be any ring and n be a positive integer. Then

- (1) pure submodules of *n*-*FP*-injective *R*-modules are *n*-*FP*-injective. In particular, pure submodules of *FP*-injective *R*-modules are *FP*-injective;
- (2) 2-pure submodules of weakly n-FP-injective R-modules are weakly n-FP-injective. In particular, pure submodules of weakly n-FP-injective modules are weakly n-FP-injective.

Corollary 2.7. If $n \ge d+1$, then every (n-d, 0)-injective submodule of an (n, d)-injective module is (n, d)-injective.

Proposition 2.8. If n > d + 1, then the class of (n, d)-injective left *R*-modules is closed under direct limits.

PROOF: See [1, Lemma 2.9(2)].

507

Corollary 2.9. The class of weakly *n*-FP-injective left *R*-modules is closed under direct limits.

Proposition 2.10. Let $\{M_i \mid i \in I\}$ be a family of left *R*-modules. Then the following statements are equivalent:

- (1) each M_i is (n, d)-injective;
- (2) $\prod_{i \in I} M_i$ is (n, d)-injective.

Moreover, if $n \ge d+1$, then the above two conditions are equivalent to

(3) $\bigoplus_{i \in I} M_i$ is (n, d)-injective.

PROOF: (1) \Leftrightarrow (2) It follows from the isomorphism

$$\operatorname{Ext}^{d+1}(A, \prod_{i \in I} M_i) \cong \prod_{i \in I} \operatorname{Ext}^{d+1}(A, M_i).$$

(1) \Leftrightarrow (3) Let $F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} \cdots \rightarrow F_1 \xrightarrow{f_1} F_0 \xrightarrow{\epsilon} N \rightarrow 0$ be exact and each F_i be finitely generated and free. It is easy to see that Ker (f_d) is (n-d-1)-presented. Since $n \ge d+1$, Ker (f_d) is finitely generated, and so the result follows immediately from Theorem 2.2 (3).

Corollary 2.11 ([8, Lemma 2.9]). If R is a left *n*-coherent ring, then every direct sum of (n, d)-injective left R-modules is (n, d)-injective.

PROOF: Let $\{M_i \mid i \in I\}$ be a family of (n, d)-injective left R-modules. Then each M_i is (n+d+1, d)-injective. By Proposition 2.10, $\bigoplus_{i \in I} M_i$ is (n+d+1, d)-injective. Since R is left n-coherent, every n-presented left R-module is (n+d+1)-presented. So every (n+d+1, d)-injective left R-module is (n, d)-injective, and thus $\bigoplus_{i \in I} M_i$ is (n, d)-injective.

- **Corollary 2.12.** (1) If R is a left Noetherian ring, then every direct sum of (n, d)-injective left R-modules is (n, d)-injective for any non-negative integers n and d. In particular, if R is a left Noetherian ring, then for any non-negative integer d, the class of the left R-modules with injective dimensions at most d is closed under direct sums.
 - (2) If R is a left coherent ring, then every direct sum of (n, d)-injective left R-modules is (n, d)-injective for any positive integer n and any non-negative integer d.

Recall that a right *R*-module *V* is called (n, d)-flat [8] if $\operatorname{Tor}_{d+1}(V, N) = 0$ for every *n*-presented left *R*-module *N*.

Theorem 2.13. Let V be a right R-module and $n \ge d + 1$. Then the following statements are equivalent:

- (1) V is (n, d)-flat;
- (2) if $F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} \cdots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{\epsilon} N \to 0$ is exact and each F_i is finitely generated and free, then $\operatorname{Tor}_1(V, \operatorname{Ker}(f_{d-1})) = 0;$

(3) if $F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} \cdots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{\epsilon} N \to 0$ is exact and each F_i is finitely generated and free, then the canonical map $V \otimes \text{Ker}(f_d) \to V \otimes F_d$ is monic.

PROOF: (1) \Leftrightarrow (2) It follows from the isomorphism

$$\operatorname{For}_{d+1}(V, N) \cong \operatorname{Tor}_1(V, \operatorname{Ker}(f_{d-1})).$$

 $(2) \Leftrightarrow (3)$ It follows from the exact sequence

$$0 \to \operatorname{Tor}_1(V, \operatorname{Ker}(f_{d-1})) \to V \otimes \operatorname{Ker}(f_d) \to V \otimes F_d.$$

Proposition 2.14. Let $\{V_i \mid i \in I\}$ be a family of right *R*-modules. Then the following statements are equivalent:

- (1) each V_i is (n, d)-flat;
- (2) $\bigoplus_{i \in I} V_i$ is (n, d)-flat.

Moreover, if n > d + 1, then the above two conditions are equivalent to

(3) $\prod_{i \in I} V_i$ is (n, d)-flat.

PROOF: (1) \Leftrightarrow (2) It follows from the isomorphism $\operatorname{Tor}_{d+1}(\bigoplus_{i \in I} V_i, A) \cong \bigoplus_{i \in I} \operatorname{Tor}_{d+1}(V_i, A).$

(1) \Leftrightarrow (3) Since n > d+1, by [1, Lemma 2.10(2)], for any *n*-presented left *R*-module *A*, we have $\operatorname{Tor}_{d+1}(\prod_{i \in I} V_i, A) \cong \prod_{i \in I} \operatorname{Tor}_{d+1}(V_i, A)$, so the conditions (1) and (3) are equivalent.

Corollary 2.15. If R is a left n-coherent ring, then every direct product of (n, d)-flat right R-modules is (n, d)-flat.

PROOF: Let $\{V_i \mid i \in I\}$ be a family of (n, d)-flat right *R*-modules. Then each V_i is (n + d + 2, d)-flat. By Proposition 2.14, $\prod_{i \in I} V_i$ is (n + d + 2, d)-flat. Since *R* is left *n*-coherent, every *n*-presented left *R*-module is (n + d + 2)-presented. So every (n + d + 2, d)-flat right *R*-module is (n, d)-flat, and thus $\prod_{i \in I} V_i$ is (n, d)-flat. \Box

Corollary 2.16. If R is a left coherent ring, then the class of right R-modules with flat dimension at most d is closed under direct product. In particular, if R is a left coherent ring, then direct product of flat right R-modules is flat.

Lemma 2.17 ([8, Proposition 2.3]). We have that V is an (n, d)-flat right R-module if and only if V^+ is an (n, d)-injective left R-module.

Proposition 2.18. If n > d + 1, then the following are true for any ring R:

- (1) a left *R*-module *M* is (n, d)-injective if and only if M^+ is (n, d)-flat;
- (2) the class of (n, d)-injective left R-modules is closed under pure submodules, pure quotients, direct sums, direct summands, direct products and direct limits;

(3) the class of (n, d)-flat right R-modules is closed under pure submodules, pure quotients, direct sums, direct summands, direct products and direct limits.

PROOF: (1) Let A be an n-presented left R-module. Since n > d + 1, by [1, Lemma 2.7(2)], we have

$$\operatorname{Tor}_{d+1}(M^+, A) \cong \operatorname{Ext}^{d+1}(A, M)^+,$$

and so (1) follows.

(2) By Corollary 2.5 and Proposition 2.10, we need only to prove that the class of (n, d)-injective left *R*-modules is closed under pure quotients and direct limits. Let $0 \to A \to B \to C \to 0$ be a pure exact sequence of left *R*-modules with *B* being (n, d)-injective. Then we get the split exact sequence $0 \to C^+ \to B^+ \to A^+ \to 0$ by [3, Proposition 5.3.8]. Since B^+ is (n, d)-flat by $(1), C^+$ is also (n, d)-flat, and so *C* is (n, d)-injective by (1) again. Moreover, since n > d+1, by [1, Lemma 2.9(2)], we have that

$$\operatorname{Ext}^{d+1}(N, \lim M_k) \cong \operatorname{lim}\operatorname{Ext}^{d+1}(N, M_k)$$

for every *n*-presented left *R*-module N, and so the class of (n, d)-injective left *R*-modules is closed under direct limits.

(3) Since n > d+1, by Proposition 2.14, the class of (n, d)-flat right *R*-modules is closed under direct sums, direct summands and direct products. Let $0 \to A \to B \to C \to 0$ be a pure exact sequence of right *R*-modules with *B* being (n, d)-flat. Since B^+ is (n, d)-injective by Lemma 2.17, A^+ and C^+ are also (n, d)-injective, and so *A* and *C* are (n, d)-flat by Lemma 2.17 again. So the class of (n, d)-flat right *R*-modules is closed under pure submodules and pure quotients. Moreover, by the isomorphism formula

$$\operatorname{Tor}_{d+1}(N, \lim M_k) \cong \lim \operatorname{Tor}_{d+1}(N, M_k)$$

we see that the class of (n, d)-flat right *R*-modules is closed under direct limits. \Box

Theorem 2.19. Let n be a positive integer. Then the following statements are equivalent for a ring R:

- (1) R is left *n*-coherent;
- (2) for each $m \ge n$ and each $d \ge 0$, every (m, d)-injective left R-module is (n, d)-injective;
- (3) for each $m \ge n$ and each $d \ge 0$, every (m, d)-flat right R-module is (n, d)-flat;
- (4) every weakly n-FP-injective left R-module is n-FP-injective;
- (5) every weakly n-flat right R-module is n-flat.

PROOF: $(1) \Rightarrow (2) \Rightarrow (4)$ and $(1) \Rightarrow (3) \Rightarrow (5)$ are obvious.

 $(4) \Rightarrow (5)$ Let M be a weakly *n*-flat right R-module. Then by Lemma 2.17, M^+ is weakly *n*-FP-injective, so M^+ is *n*-FP-injective by (2). And thus M is *n*-flat by Lemma 2.17 again.

 $(5) \Rightarrow (1)$ Assume (5). Then since the direct products of weakly *n*-flat right *R*-modules are weakly *n*-flat by Proposition 2.14, the direct products of *n*-flat right *R*-modules are *n*-flat, and so *R* is left *n*-coherent by [1, Theorem 3.1]. \Box

Let \mathcal{F} be a class of left (right) R-modules and M a left (right) R-module. Following [3], we say that a homomorphism $\varphi : M \to F$ where $F \in \mathcal{F}$ is an \mathcal{F} -preenvelope of M if for any morphism $f : M \to F'$ with $F' \in \mathcal{F}$, there is a $g : F \to F'$ such that $g\varphi = f$. An \mathcal{F} -preenvelope $\varphi : M \to F$ is said to be an \mathcal{F} -envelope if every endomorphism $g : F \to F$ such that $g\varphi = \varphi$ is an isomorphism. Dually, we have the definitions of \mathcal{F} -precovers and \mathcal{F} -covers. \mathcal{F} -envelopes (\mathcal{F} -covers) may not exist in general, but if they exist, they are unique up to isomorphism.

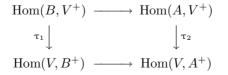
Theorem 2.20. If n > d + 1, then the following hold for any ring R:

- (1) every left *R*-module has an (n, d)-injective cover and an (n, d)-injective preenvelope;
- (2) every right *R*-module has an (n, d)-flat cover and an (n, d)-flat preenvelope;
- (3) if A → B is an (n, d)-injective (resp. (n, d)-flat) preenvelope of a left (resp. right) R-module A, then B⁺ → A⁺ is an (n, d)-flat (resp. (n, d)-injective) precover of A⁺.

PROOF: (1) Since n > d + 1, the class of (n, d)-injective left *R*-modules is closed under direct sums and pure quotients by Proposition 2.18(2), and so every left *R*-module has an (n, d)-injective cover by [4, Theorem 2.5]. Since the class of (n, d)-injective left *R*-modules is closed under direct summands, direct products and pure submodules by Proposition 2.18(2), every left *R*-module has an (n, d)injective preenvelope by [6, Corollary 3.5(c)].

(2) is similar to (1).

(3) Let $A \to B$ be an (n, d)-injective preenvelope of a left R-module A. Then B^+ is (n, d)-flat by Proposition 2.18(1). For any (n, d)-flat right R-module V, V^+ is an (n, d)-injective left R-module by Lemma 2.17, and so $\operatorname{Hom}(B, V^+) \to \operatorname{Hom}(A, V^+)$ is epic. Consider the following commutative diagram:



Since τ_1 and τ_2 are isomorphisms, $\operatorname{Hom}(V, B^+) \to \operatorname{Hom}(V, A^+)$ is an epimorphism. So $B^+ \to A^+$ is an (n, d)-flat precover of A^+ . The other is similar. \Box

Proposition 2.21. Let n > d + 1. Then the following statements are equivalent for a ring R:

- (1) $_{R}R$ is (n, d)-injective;
- (2) every left R-module has an epic (n, d)-injective cover;
- (3) every right *R*-module has a monic (n, d)-flat preenvelope;
- (4) every injective right *R*-module is (n, d)-flat;
- (5) every FP-injective right R-module is (n, d)-flat.

PROOF: (1) \Rightarrow (2) Let M be a left R-module. Then M has an (n, d)-injective cover $\varphi: C \to M$ by Theorem 2.20(1). On the other hand, there is an exact sequence $A \xrightarrow{\alpha} M \to 0$ with A free. Note that A is (n, d)-injective by (1), there exists a homomorphism $\beta: A \to C$ such that $\alpha = \varphi\beta$. It shows that φ is epic.

 $(2) \Rightarrow (1)$ Let $f: N \to {}_{R}R$ be an epic (n, d)-injective cover. Then the projectivity of ${}_{R}R$ implies that ${}_{R}R$ is isomorphic to a direct summand of N, and so ${}_{R}R$ is (n, d)-injective.

 $(1) \Rightarrow (3)$ Let M be any right R-module. Then M has an (n, d)-flat preenvelope $f: M \to F$ by Theorem 2.20(2). Since $(_RR)^+$ is a cogenerator, there exists an exact sequence $0 \to M \xrightarrow{g} \prod (_RR)^+$. Since $_RR$ is (n, d)-injective, by Proposition 2.18(1) and Proposition 2.18(3), $\prod (_RR)^+$ is (n, d)-flat. So there exists a right R-homomorphism $h: F \to \prod (_RR)^+$ such that g = hf, which shows that f is monic.

 $(3) \Rightarrow (4)$ Assume (3). Then for every injective right *R*-module *E*, *E* has a monic (n, d)-flat preenvelope *F*, so *E* is isomorphic to a direct summand of *F*, and thus *E* is (n, d)-flat.

 $(4) \Rightarrow (1)$ Since $(_RR)^+$ is injective, by (4), it is (n, d)-flat. Thus $_RR$ is (n, d)-injective by Proposition 2.18(1).

 $(4) \Rightarrow (5)$ Let M be an FP-injective right R-module. Then M is a pure submodule of its injective envelope E(M). By (4), E(M) is (n, d)-flat. So M is (n, d)-flat by Corollary 2.5.

 $(5) \Rightarrow (4)$ is clear.

Remark 2.22. It is easy to see that if R is a left n-coherent ring, then a left R-module M is (n, d)-injective if and only if M is (m, d)-injective for every m > n if and only if M is (m, d)-injective for some m > n. A right R-module V is (n, d)-flat if and only if V is (m, d)-flat for every m > n if and only if V is (m, d)-flat for some m > n. So, if R is a left n-coherent ring, then the results from Theorem 2.2 to Proposition 2.21 hold without the conditions " $n \ge d + 1$ " or "n > d + 1".

Acknowledgment. The author would like to thank the referee for the useful comments.

References

- [1] Chen J.L., Ding N.Q., On n-coherent rings, Comm. Algebra 24 (1996), 3211–3216.
- D.L. Costa, Parameterizing families of non-noetherian rings, Comm. Algebra 22 (1994), no. 10, 3997–4011.

 \square

Some results on (n, d)-injective modules, (n, d)-flat modules and n-coherent rings

- [3] Enochs E.E., Jenda O.M.G., *Relative Homological Algebra*, Walter de Gruyter, Berlin-New York, 2000.
- [4] Holm H., Jørgensen P., Covers, precovers, and purity, Illinois J. Math. 52 (2008), 691–703.
- [5] Megibben C., Absolutely pure modules, Proc. Amer.Math. Soc. 26 (1970), 561-566.
- [6] Rada J., Saorin M., Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra 26 (1998), 899–912.
- [7] Stenström B., Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), 323–329.
- [8] Zhou D.X., On n-coherent rings and (n, d)-rings, Comm. Algebra 32 (2004), 2425–2441.
- [9] Zhu Z., On n-coherent rings, n-hereditary rings and n-regular rings, Bull. Iranian Math. Soc. 37 (2011), 251–267.

DEPARTMENT OF MATHEMATICS, JIAXING UNIVERSITY, JIAXING, ZHEJIANG PROVINCE, 314001, P.R.CHINA

E-mail: zhuzhanminzjxu@hotmail.com

(Received July 10, 2014, revised May 19, 2015)