The Rothberger property on $C_p(\Psi(\mathcal{A}), 2)$

DANIEL BERNAL-SANTOS

Abstract. A space X is said to have the Rothberger property (or simply X is Rothberger) if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X, there exists $U_n \in \mathcal{U}_n$ for each $n \in \omega$ such that $X = \bigcup_{n \in \omega} U_n$. For any $n \in \omega$, necessary and sufficient conditions are obtained for $C_p(\Psi(\mathcal{A}), 2)^n$ to have the Rothberger property when \mathcal{A} is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family \mathcal{A} for which the space $C_p(\Psi(\mathcal{A}), 2)^n$ is Rothberger for all $n \in \omega$.

Keywords: function spaces; $C_p(X, Y)$; Rothberger spaces; Ψ -space Classification: Primary 54C35, 54D35, 03G10; Secondary 54D45, 54C45

1. Introduction

There are two classical combinatorial strengthenings of Lindelöfness, namely the Menger and Rothberger properties.

Definition 1.1 ([7]). A space X is said to have the *Rothberger property* (or simply X is *Rothberger*) if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X, there exists $U_n \in \mathcal{U}_n$ for each $n \in \omega$ such that $X = \bigcup_{n \in \omega} U_n$.

Definition 1.2 ([4]). A space X is said to have the Menger property (or simply X is Menger) if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X, there exists a sequence $\langle \mathcal{F}_n : n \in \omega \rangle$ of finite sets such that $\bigcup_{n \in \omega} \mathcal{F}_n$ is a cover of X and $\mathcal{F}_n \subset \mathcal{U}_n$ for each $n \in \omega$.

These two properties were introduced in studies of strong measure zero and σ -compact metric spaces, respectively. Obviously every Rothberger space has the Menger property.

The author and A. Tamariz-Mascarúa prove the following in [3, Theorem 8.7].

Theorem 1.3 (CH). There is a mad family \mathcal{A} such that $C_p(\Psi(\mathcal{A}), 2)$ is Menger.

This paper is motivated by Problem 8.8 in [3] which asks the following:

Problem 1.4 ([3]). Let \mathcal{A} be the mad family from Theorem 1.3. Is $C_p(\Psi(\mathcal{A}), 2)^n$ Menger for every $n \geq 2$?

In this article, we will give a characterization for $C_p(\Psi(\mathcal{A}), 2)^n$ to have the Rothberger property for any $n \in \omega$. Finally, we answer positively Problem 1.4.

DOI 10.14712/1213-7243.2015.145

The author was supported by CONACyT grant No. 322416/233751.

2. Notation and preliminaries

For spaces X and Y, $C_p(X, Y)$ is the subspace of Y^X consisting of the continuous functions from X to Y (i.e., C(X, Y) with the topology of the pointwise convergence). As usual, ω is the discrete space of all non-negative integers and, for each $n \in \omega$, n denotes the subspace of ω consisting of all integers strictly less than n. For any space X and every n-valued continuous function $f: X \to n$, $\operatorname{supp}(f)$ denotes the set $\{x \in X : f(x) \neq 0\}$. The following three basic properties about Rothberger spaces will be useful.

Proposition 2.1 ([5]).

- (a) Every closed subspace of a Rothberger space is Rothberger.
- (b) The continuous image of a Rothberger space is Rothberger.
- (c) The countable union of Rothberger spaces is Rothberger.

3. The Rothberger property on $C_p(\Psi(\mathcal{A}), 2)$

An almost disjoint family of subsets of ω is an infinite collection \mathcal{A} of subsets of ω such that each element in \mathcal{A} is infinite, and if $A, B \in \mathcal{A}$ are different, $|A \cap B| < \omega$. An almost disjoint family \mathcal{A} is maximal if it is not a proper subfamily of another almost disjoint family.

For a maximal almost disjoint family (mad) \mathcal{A} on ω , $\Psi(\mathcal{A})$ is the space whose underlying set is $\omega \cup \mathcal{A}$ and its topology is given by the following: All points of ω are isolated, and a neighborhood base at $A \in \mathcal{A}$ consists of all sets $\{A\} \cup A \setminus F$ where F is a finite subset of ω .

Definition 3.1. A mad family \mathcal{A} is *Mrówka* if the Stone-Čech compactification $\beta \Psi(\mathcal{A})$ of $\Psi(\mathcal{A})$ coincides with the one-point compactification of $\Psi(\mathcal{A})$.

For a mad family $\mathcal{A}, n \in \omega$ and $j \in n$, we define the subspace

$${}^{n}\sigma_{m}^{j}(\mathcal{A}) = \{ f \in C_{p}(\Psi(\mathcal{A}), n) : \forall i \in n \ (i \neq j \to |f^{-1}(i) \cap \mathcal{A}| \le m) \}$$

of $C_p(\Psi(\mathcal{A}), n)$. It is not hard to see that this subspace is closed.

If \mathcal{A} is a Mrówka mad family, then

$$C_p(\Psi(\mathcal{A}), n) = \bigcup_{m \in \omega, j \in n} {}^n \sigma_m^j(\mathcal{A}).$$

For every $m \in \omega$ and $i, j \in n$, ${}^{n}\sigma_{m}^{i}(\mathcal{A})$ is homeomorphic to ${}^{n}\sigma_{m}^{j}(\mathcal{A})$. We are going to write ${}^{n}\sigma_{m}(\mathcal{A})$ instead of ${}^{n}\sigma_{m}^{0}(\mathcal{A})$. Thus, by Proposition 2.1(a) and 2.1(c):

Lemma 3.2. Let \mathcal{A} be a Mrówka mad family. Then $C_p(\Psi(\mathcal{A}), n)$ is Rothberger if and only if ${}^n\sigma_m(\mathcal{A})$ is Rothberger for each $m \in \omega$.

For each $n \in \omega$, we define

$$\mathbf{Q}(n) = \{g \in n^{\omega} : |\mathrm{supp}(g)| < \omega\}.$$

With this terminology we introduce the following property, which is a generalization when a mad family concentrates on $[\omega]^{<\omega}$ (see [6], the original definition is equivalent to the case $\bigstar_m^2(\mathcal{A})$). For a mad family \mathcal{A} and $m, n \in \omega$, we define

 $\bigstar_m^n(\mathcal{A}): \text{ For each open subset } U \text{ of } n^\omega \text{ containing } Q(n), \text{ there exists a countable} \\ \text{subset } \mathcal{B} \subset \mathcal{A} \text{ such that } \{g \in n^\omega : \exists \widehat{g} \in C_p(\Psi(\mathcal{A}), n) (\widehat{g} \upharpoonright \omega = g \land \\ \operatorname{supp}(\widehat{g}) \cap \mathcal{A} \in [\mathcal{A} \setminus \mathcal{B}]^m) \} \subset U.$

The following generalized version of Theorem 4.2 in [6] holds:

Lemma 3.3. Let \mathcal{A} be a mad family and let $n, m \in \omega$. If ${}^{n}\sigma_{m}(\mathcal{A})$ is Lindelöf, then the property $\bigstar_{k}^{n}(\mathcal{A})$ is satisfied for all $k \leq m$.

PROOF: Suppose that the property $\bigstar_k^n(\mathcal{A})$ is false for some $k \leq m$. So, we may fix an open set U in n^{ω} , a pairwise disjoint family $\{y_{\alpha} : \alpha \in \omega_1\} \subset [\mathcal{A}]^k$ and $\{g_{\alpha} : \alpha \in \omega_1\} \subset C_p(\Psi(\mathcal{A}), n)$ such that

- (i) $Q(n) \subset U$, and
- (ii) for each $\alpha \in \omega_1$, supp $(g_\alpha) \cap \mathcal{A} = y_\alpha$ and $g_\alpha \upharpoonright \omega \notin U$.

Since $\{y_{\alpha} : \alpha \in \omega_1\}$ are pairwise disjoint, any complete accumulation point of $\{g_{\alpha} : \alpha \in \omega_1\}$ must be in ${}^n\sigma_0$. Moreover, since U contains Q(n), there is an open subset V in ${}^n\sigma_m(\mathcal{A})$ containing ${}^n\sigma_0$ such that $f \upharpoonright \omega \in U$ for each $f \in V$. Indeed, we can fix a set \mathcal{F} consisting of finite functions such that $U = \{g \in n^{\omega} : \exists s \in \mathcal{F}(s \subset g)\}$, then $V = \{f \in {}^n\sigma_m(\mathcal{A}) : \exists s \in \mathcal{F}(s \subset f)\}$ is the required open set.

Thus, the open set V contains any complete accumulation point of $\{g_{\alpha} : \alpha \in \omega_1\}$ and, by (ii), $g_{\alpha} \notin V$ for each $\alpha \in \omega_1$. This means that the uncountable set $\{g_{\alpha} : \alpha \in \omega_1\}$ has no complete accumulation points in ${}^n\sigma_m(\mathcal{A})$, which is a contradiction.

We need the following terminology for proof of the next lemma. For each $n\in\omega$ and each $t\in\omega^n$ we define

$${}^{n}\sigma_{t}(\mathcal{A}) = \{ f \in C_{p}(\Psi(\mathcal{A}), n) : \forall i \in n \ (i \neq 0 \to |f^{-1}(i) \cap \mathcal{A}| \le t(i)) \}$$

The order \leq will denote the lexicographic order on ω^n . Observe that if $m \in \omega$ and $t \in \omega^n$ is the constant function m, then ${}^n \sigma_m(\mathcal{A}) = {}^n \sigma_t(\mathcal{A})$.

Lemma 3.4. Let \mathcal{A} be a mad family, $n \in \omega$, $t_0 \in \omega^n$ and $p = \sum_{i=1}^{n-1} t_0(i)$. If $\bigstar_p^n(\mathcal{A})$ is satisfied and ${}^n\sigma_t(\mathcal{A})$ is Rothberger for every $t \prec t_0$, then ${}^n\sigma_{t_0}(\mathcal{A})$ is Rothberger.

PROOF: We adapt, for our purposes, the respective part of the proof of Lemma 8.2 from [3]. The proof depends on two claims.

Claim 1. If V is an open subset of ${}^{n}\sigma_{t_{0}}(\mathcal{A})$ containing ${}^{n}\sigma_{t}(\mathcal{A})$ for each $t \prec t_{0}$, then there is a countable subset $\mathcal{B} \subset \mathcal{A}$ such that for any $f \in {}^{n}\sigma_{t_{0}}(\mathcal{A}) \setminus V$, there is $1 \leq i < n$ with $f^{-1}(i) \cap \mathcal{B} \neq \emptyset$. Indeed, since ${}^{n}\sigma_{0}(\mathcal{A})$ is a countable subset of ${}^{n}\sigma_{t_{0}}(\mathcal{A})$, we can choose a sequence of finite functions $s_{k} \subset \Psi(\mathcal{A}) \times n$ such that ${}^{n}\sigma_{0}(\mathcal{A}) \cap [s_{k}] \neq \emptyset$ and ${}^{n}\sigma_{0}(\mathcal{A}) \subset \bigcup_{k \in \omega} [s_{k}] \subset V$, where $[s_{k}] = \{f \in {}^{n}\sigma_{t_{0}}(\mathcal{A}) : s_{k} \subset f\}$ for each $k \in \omega$. Note that $s_{k}^{-1}(i) \subset \omega$ for each $1 \leq i < n$ and, thus, $s_{k} \upharpoonright \mathcal{A}$ is the constant zero function for each $k \in \omega$. We define the open subset U of n^{ω} to be $\bigcup_{k \in \omega} \{f \in n^{\omega} : s_{k} \upharpoonright \omega \subset f\}$ and note that $Q(n) \subset U$. Let \mathcal{B}' be a countable subset of \mathcal{A} given by $\bigstar_{p}^{n}(\mathcal{A})$. Let $\mathcal{B} = \mathcal{B}' \cup \bigcup_{k \in \omega} (s_{k}^{-1}(0) \cap \mathcal{A})$ and let us show that \mathcal{B} is the required set in Claim 1. Let $f \in {}^{n}\sigma_{t_{0}}(\mathcal{A}) \setminus V$ and $x = \operatorname{supp}(f) \cap \mathcal{A}$. Since V contains ${}^{n}\sigma_{t}(\mathcal{A})$ for each $t \prec t_{0}, |x| = p$. Now, we proceed by contradiction supposing that $x \cap \mathcal{B} = \emptyset$. Then $\operatorname{supp}(f) \cap \mathcal{A} \in [\mathcal{A} \setminus \mathcal{B}]^{p}$. By the choice of $\mathcal{B}, f \upharpoonright \omega \in U$ and consequently, there is $k \in \omega$ such that $s_{k} \upharpoonright \omega \subset f \upharpoonright \omega$ and, since $x \cap s_{k}^{-1}(0) = \emptyset$ and $s_{k} \upharpoonright \mathcal{A}$ is the constant zero, $s_{k} \subset f$. Thus $f \in V$, which is impossible, and Claim 1 is proved.

Claim 2. If V is an open subset of ${}^{n}\sigma_{t_{0}}(\mathcal{A})$ containing ${}^{n}\sigma_{t}(\mathcal{A})$ for each $t \prec t_{0}$, then there is a countable set $Y \subset C_{p}(\Psi(\mathcal{A}), n)$ such that ${}^{n}\sigma_{t_{0}}(\mathcal{A}) \setminus V \subset \bigcup_{h \in Y, t \prec t_{0}} (h + {}^{n}\sigma_{t}(\mathcal{A}))$, where $h + {}^{n}\sigma_{t}(\mathcal{A}) = \{h + g : g \in {}^{n}\sigma_{t}(\mathcal{A})\}$ and addition is taken mod n.

Let \mathcal{B} be the countable subset of \mathcal{A} given by Claim 1. Fix $1 \leq j < n$ and let $r_j(i)$ be 1 if i = j and 0 otherwise. Define $Y = \bigcup_{j=1}^{n-1} \{ f \in {}^n \sigma_{r_j}(\mathcal{A}) : f^{-1}(j) \cap \mathcal{A} \subset \mathcal{B} \}$. It is not difficult to show that Y is countable.

Let $f \in {}^{n}\sigma_{t_0}(\mathcal{A}) \setminus V$. By the choice of \mathcal{B} , there is $1 \leq i < n$ and an element $a \in f^{-1}(i) \cap \mathcal{B}$. We define a continuous function $g: \Psi(\mathcal{A}) \to n$ as follows

$$g(x) = \begin{cases} n-i, & \text{if } x \in a \cup \{a\};\\ 0, & \text{otherwise.} \end{cases}$$

If $t_1 \in \omega^n$ is defined as $t_1(l) = t_0(l)$ if $l \neq i$ and $t_1(i) = t_0(i) - 1$, we obtain that $f + g \in {}^n \sigma_{t_1}(\mathcal{A})$ and $t_1 \prec t_0$. Let $h \in C_p(\Psi(\mathcal{A}), n)$ be the additive inverse function of g. Observe that $h \in Y$. Consequently, $f = h + (f+g) \in \bigcup_{h \in Y, t \prec t_0} (h + {}^n \sigma_t(\mathcal{A}))$. This concludes the proof of Claim 2.

Now, we are going to finish the proof of our lemma. Let $\langle \mathcal{U}_k : k \in \omega \rangle$ be a sequence of covers of ${}^n\sigma_{t_0}(\mathcal{A})$ and $\{P_t : t \leq t_0\}$ a partition of ω into infinite sets. Since for each $t \prec t_0$, ${}^n\sigma_t(\mathcal{A})$ is Rothberger, there is, for each $k \in P_t$, $U_k \in \mathcal{U}_k$ such that ${}^n\sigma_t(\mathcal{A}) \subset \bigcup_{k \in P_t} U_k = V_t$. Then, by Claim 2, there is a countable set Y such that ${}^n\sigma_{t_0}(\mathcal{A}) \setminus \bigcup_{t \prec t_0} V_t \subset \bigcup_{h \in Y, t \prec t_0} (h + {}^n\sigma_t(\mathcal{A}))$. Since ${}^n\sigma_t(\mathcal{A})$ is homeomorphic to $h + {}^n\sigma_t(\mathcal{A})$ for each $h \in Y$ and Y is countable, $\bigcup_{h \in Y, t \prec t_0} (h + {}^n\sigma_t(\mathcal{A}))$ is Rothberger (see Proposition 2.1(c)). Then, there is $U_k \in \mathcal{U}_k$ for each $k \in P_{t_0}$ such that $\bigcup_{k \in P_{t_0}} U_k$ covers ${}^n\sigma_{t_0}(\mathcal{A}) \setminus \bigcup_{t \prec t_0} V_t$. Therefore, the sequence $\{U_k : k \in \omega\}$ is the required choice.

Theorem 3.5. Let \mathcal{A} be a Mrówka mad family and $n \in \omega$. Then, the following statements are equivalent.

- (a) $C_p(\Psi(\mathcal{A}), 2)^n$ is Lindelöf.
- (b) $C_p(\Psi(\mathcal{A}), 2)^n$ is Menger.
- (c) $C_p(\Psi(\mathcal{A}), 2)^n$ is Rothberger.

(d) The property $\bigstar_m^{2^n}(\mathcal{A})$ is satisfied for all $m \in \omega$.

PROOF: First observe that $C_p(\Psi(\mathcal{A}), 2)^n$ is homeomorphic to $C_p(\Psi(\mathcal{A}), 2^n)$. The implication (d) \rightarrow (c) is proved as follows. By Lemma 3.2 it is sufficient to show that $2^n \sigma_m(\mathcal{A})$ is Rothberger for each $m \in \omega$. Indeed, fix $m \in \omega$ and $t_m \in \omega^{2^n}$ to be the constant function m. Since $2^n \sigma_0$ is countable, this is Rothberger, and if we suppose that $2^n \sigma_t$ is Rothberger for each $t \prec t_0$ for some $t_0 \preceq t_m$, by hypothesis and Lemma 3.4, $2^n \sigma_{t_0}(\mathcal{A})$ is Rothberger. By induction, $2^n \sigma_{t_m}(\mathcal{A}) = 2^n \sigma_m(\mathcal{A})$ is Rothberger.

The implications (c) \rightarrow (b) and (b) \rightarrow (a) are clear. Finally, if $C_p(\Psi(\mathcal{A}), 2^n)$ is Lindelöf, the closed subspace $2^n \sigma_m(\mathcal{A})$ of $C_p(\Psi(\mathcal{A}), 2^n)$ is Lindelöf for each $m \in \omega$ and, by Lemma 3.3, $\bigstar_m^{2^n}(\mathcal{A})$ is satisfied for each $m \in \omega$. This proves that (a) \rightarrow (d).

As was shown in [6], every finite power of $C_p(\Psi(\mathcal{A}), 2)$ is Lindelöf, where \mathcal{A} is the family constructed in Theorem 1.3. Theorem 3.5 then gives a positive answer to Problem 1.4:

Theorem 3.6 (CH). There is a Mrówka mad family \mathcal{A} such that $C_p(\Psi(\mathcal{A}), 2)^n$ is Rothberger for each $n \in \omega$.

A space X is ω -monolithic if $nw(cl(A)) \leq \omega$ for any $A \subset X$ with $|A| \leq \omega$. In [2] it is proved that if $C_p(X, 2)$ is Lindelöf for a countably compact ω -monolithic X then it is Rothberger. E.A. Reznichenko showed that assuming MA+ \neg CH, every compact zero-dimensional space X with $C_p(X, \mathbb{R})$ Lindelöf is ω -monolithic (see [1, IV.8.6, IV.8.16]). This leads to the conjecture that, perhaps, strong covering properties of a suitable $C_p(X, Y)$ might imply ω -monolithicity of X. One might, for example, ask whether Reznichenko's result can be generalized.

Question 3.7. Assume X is a zero-dimensional compact space and that $C_p(X,2)^n$ is Rothberger for every $n \in \omega$. Does this imply that X is ω -monolithic?

The following theorem gives a consistent counterexample.

Theorem 3.8 (CH). There is a Mrówka mad family \mathcal{A} such that $C_p(\beta \Psi(\mathcal{A}), 2)^n$ is Rothberger for every $n \in \omega$.

PROOF: It is sufficient to observe that the function

$$\phi_m^{2^n}: {}^{2^n}\sigma_m(\mathcal{A}) \to \{g \in C_p(\beta \Psi(\mathcal{A}), 2^n): \forall i \in 2^n (i \neq 0 \to |g^{-1}(i) \cap \mathcal{A}| \le m)\}$$

defined by $\phi_m^{2^n}(f) = \tilde{f}$ is an onto continuous function where \tilde{f} is the continuous extension of $f: \Psi(\mathcal{A}) \to 2^n$ to $\beta \Psi(\mathcal{A})$.

Acknowledgments. I would like to thank my advisor Professor Á. Tamariz-Mascarúa for his corrections and the revision of several manuscripts which produced this final text.

Bernal-Santos D.

References

- Arhangel'skii A.V., Topological Function Spaces, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers, 1992.
- [2] Bernal-Santos D., The Rothberger property on $C_p(X, 2)$, Topology Appl. **196** (2015), 106–119.
- [3] Bernal-Santos D., Tamariz-Macarúa Á., The Menger property on C_p(X, 2), Topology Appl. 183 (2015), 110–126.
- [4] Hurewicz W., Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1926), 401–421.
- [5] Just W., Miller W., Scheepers M., Szeptycki J., The combinatorics of open covers II, Topology Appl. 73 (1996), 241–266.
- [6] Hrušák M., Szeptycki P.J., Tamariz-Mascarúa Á., Spaces of functions defined on Mrówka spaces, Topology Appl. 148 (2005), no. (1-3), 239–252.
- [7] Rothberger F., Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNAM, CIRCUITO EXTERIOR S/N, CIUDAD UNIVERSITARIA, CP 04510, MÉXICO D. F., MÉXICO

E-mail: shen_woo@me.com

(Received March 16, 2015, revised August 11, 2015)