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Diagonals of separately continuous functions of n

variables with values in strongly c-metrizable spaces

OLENA KARLOVA, VOLODYMYR MYKHAYLYUK, OLEKSANDR SOBCHUK

Abstract. We prove the result on Baire classification of mappings f: X XY — Z
which are continuous with respect to the first variable and belongs to a Baire
class with respect to the second one, where X is a PP-space, Y is a topological
space and Z is a strongly o-metrizable space with additional properties. We show
that for any topological space X, special equiconnected space Z and a mapping
g : X — Z of the (n — 1)-th Baire class there exists a strongly separately
continuous mapping f : X" — Z with the diagonal g. For wide classes of
spaces X and Z we prove that diagonals of separately continuous mappings
f+X™ — Z are exactly the functions of the (n — 1)-th Baire class. An example
of equiconnected space Z and a Baire-one mapping g : [0,1] — Z, which is not
a diagonal of any separately continuous mapping f : [0,1]2 — Z, is constructed.
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Classification: Primary 54C08, 54C05; Secondary 26B05

1. Introduction

Let f: X™ — Y be a mapping. Then the mapping g : X — Y defined by
g(x) = f(x,...,x) is called a diagonal of f.

Investigations of diagonals of separately continuous functions f : X™ — R were
started in classical works of R. Baire [1], H. Lebesgue [14], [15] and H. Hahn [6].
They showed that diagonals of separately continuous functions of n real variables
are exactly the functions of the (n — 1)-th Baire class. Baire classification of
separately continuous functions and their analogs is intensively studied by many
mathematicians (see [17], [21], [25], [16], [2],[3], [9])-

In [16] the problem on a construction of separately continuous functions of n
variables with a given diagonal of the (n — 1)-th Baire class was solved. It was
proved in [18] that for any topological space X and a function g : X — R of the
(n — 1)-th Baire class there exists a separately continuous function f : X™ — R
with the diagonal g. Further development of these investigations deals with the
changing of the range space R by a more general space, in particular, by a metriz-
able space. Notice that conditions on spaces similar to the arcwise connectedness
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(i.e., the equiconnectedness) serve as a convenient tool in a construction of sepa-
rately continuous mappings (see [10, 20]).

In the given paper we study mappings f : X" — Z with values in a space Z
from a wide class of spaces which contains metrizable equiconnected spaces and
strict inductive limits of sequences of closed locally convex metrizable subspaces.
We first generalize a result from [10] concerning mappings of two variables with
values in a metrizable equiconnected space to the case of mappings of n variables
with values in spaces from wider class. Namely, we prove a theorem on the ex-
istence of a separately continuous mapping f : X" — Z with the given diagonal
g : X — Z of the (n — 1)-th Baire class in case X is a topological space and
(Z, ) is a strongly o-metrizable equiconnected space with a perfect stratification
(Zy)72, assigned with a mapping A (Theorem 6). We also obtain a result on a
Baire classification of separately continuous mappings and their analogs defined
on a product of a PP-space and a topological space and with values in a strongly
o-metrizable space with some additional properties (Theorem 15). In order to
prove this theorem we apply the technics of o-discrete mappings introduced in
[7] and developed in [5], [26]. For PP-spaces X using Theorem 15 we general-
ize Theorem 3.3 from [10] and get a characterization of diagonals of separately
continuous mappings f : X™ — Z (Theorem 16). Finally, we give an example of
an equiconnected space Z and a Baire-one mapping g : [0,1] — Z which is not a
diagonal of any separately continuous mapping f : [0,1]?> — Z (Proposition 18).

2. Preliminaries

Let X, Y be topological spaces and C(X,Y) = Bo(X,Y) be the collection of
all continuous mappings between X and Y. For n > 1 we say that a mapping
f X — Y belongs to the n-th Baire class if f is a pointwise limit of a sequence
(fx)72, of mappings fr : X — Y from the (n — 1)-th Baire class. By B,(X,Y)
we denote the collection of all mappings f : X — Y of the n-th Baire class.

For a mapping f : X XY — Z and a point (z,y) € X x Y we write f*(y) =
fy(@) = f(z,y). By CBn(X xY,Z) we denote the collection of all mappings
f+ X xY — Z which are continuous with respect to the first variable and
belongs to the n-th Baire class with respect to the second one. If n = 0, then we
use the symbol CC(X x Y, Z) for the class of all separately continuous mappings.
Now let CCo(X xY,Z) = CC(X xY,Z) and for n > 1 let CC, (X x Y, Z) be the
class of all mappings f : X x Y — Z which are pointwise limits of a sequence of
mappings from CC,_1(X x Y, Z).

For a metric space X with a metric |- —-|x, aset @ # A C X and a point
xo € X we write |xg — Alx = inf{|zg —alx : a € A}. If § > 0, then we put
B(A§) ={z e X :jJxr—Alx <d} and B[A§] ={zr e X : |[xr — A|lx < d}. If
A =1, then B(A4,6) = B[A,d] = 0.

Let X be a set and n € N. We denote A,, = {(z,...,2) €e X" :z € X}.

Let X be a topological space and A = Ay = {(z,z) :x € X}. Aset ACX
is called equiconnected in X if there exists a continuous mapping A : ((X x X) U
A) x [0,1] — X such that A(A x A x [0,1]) C A4, XNz,y,0) = A(y,z,1) = =z
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for all z,y € A and A(z,x,t) = z for all z € X and t € [0,1]. A space is
equiconnected if it is equiconnected in itself. Notice that any topological vector
space is equiconnected, where a mapping A is defined by A(z,y,t) = (1 —t)z + ty.
If (X, ) is an equiconnected space, then we denote A\; = A and for every n > 2
we define a continuous function A, : X**! x [0,1]" — X,

(1) )\n(l‘l, . ,.’L‘n+1,f1, e ,fn) = )\(xl,)\n_l(xg, . ,.’L‘n+1,f2, e ,fn),fl).

A topological space X is called strongly o-metrizable if there exists an increasing
sequence (X,,)5%; of closed metrizable subspaces X, of X such that X = J;; X,
and for any convergent sequence (z,,)22; in X there exists a number m € N such
that {z, : n € N} C X,,,; the sequence (X,)52; is called a stratification of X.

We say that a family A = (A; : ¢ € I) of sets A; refines a family B= (B, : j €
J) of sets B; and denote it by A < B if for every ¢ € I there exists j € J such
that A; C B;. By UA we denote the set | J;c; Ai.

The following notion was introduced in [23]. A space X is said to be a PP-
space if there exists a sequence ((hn 4 € Iy)) -, of locally finite partitions of
unity (hp,; ¢ € I,) on X and sequence ()5 of families oy, = (2 1 ¢ € I,) of
points z, ; € X such that for any € X and a neighborhood U of x there exists
no € N such that z,,;, € U if n > ng and = € supp hy,;, where supph = {z €
X : h(z) # 0}. Notice that the notion of a PP-space is close to the notion of
a quarter-stratifiable space introduced in [2]. In particular, Hausdorff P P-spaces
are exactly metrically quarter-stratifiable spaces [19].

Let A be a family of functionally closed subsets of a topological space X.
Define classes F, and G, as the following: Fo = A, Go = {X \ A : A € A}
and for all 1 < a < wy we put Fo = {72, An : An € Ugn G5, n=1,2,...},
Go ={U 1 4n : Ay € U6<u Fp, n=1,2,...}. Element of families F,, and G,
are called sets of the functionally multiplicative class o or sets of the functionally
additive class a, respectively; elements of the family F,NG, are called functionally
ambiguous sets of the class a.

A family A = (4; : i € I) of subsets of a topological space X is called: strongly
functionally discrete if there exists a discrete family (U; : ¢ € I) of functionally
open subsets of X such that A; C U; for every i € I; o-strongly functionally
discrete if there exists a sequence of strongly functionally discrete families A,
such that A = |, A,; a base for a mapping f : X — Y if the preimage f~*(V)
of any open set V in Y is a union of sets from A. By £/ (X,Y) we denote the
collection of all mappings between X and Y with o-strongly functionally discrete
bases which consist of functionally ambiguous sets of the class a in X.

3. A construction of functions with a given diagonal

A general construction of separately continuous mapping of two variables with
a given diagonal can be found in [20]:

Theorem 1. Let X be a topological space, Z be a Hausdorff space, (Z1,\) be
an equiconnected subspace of Z, g : X — Z, (G)>, and (F,,)5, be sequences
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of functionally open sets Gy, and functionally closed sets F,, in X?, let (¢,)3
be a sequence of separately continuous functions ¢, : X2 — [0,1], (gn)3%, be a
sequence of continuous mappings g, : X — Zi satisfying the conditions

1) Go=Fy=X?and A = {(z,2) :2 € X} C Gpy1 C F, C G, for every
n € N;

2) X2\ G, C,1(0) and F,, C ¢,;}(1) for every n € N;

3) limy,— o0 A(gn(2n), gnt1(Tn), tn) = g(x) for arbitrary x € X, any sequence
(xn)52, of points z, € X with (zy,x) € F,_1 for all n € N, and any
sequence (t,)%2 , of points t,, € [0, 1].

Then the mapping f : X? — Z,

(2) f(l‘, y) _ { ;‘((57)1,(1‘)7 gn+1(l‘), ©n (l‘, y)); E;: zg g g";laf?:"l e

is separately continuous.

Let X be a strongly o-metrizable space. A stratification (X,,)%2 ; of a space X
is said to be perfect if for every n € N there exists a continuous mapping m,, : X —
X, with 7, () = z for every z € X,,. A stratification (X,,)22, of an equicon-
nected strongly o-metrizable space X is assigned with X if A(X,, x X, x[0,1]) C X,,
for every n € N. It follows from the Dieudonne-Schwartz Theorem (see [24, Propo-
sition I1.6.5]) that a strict inductive limit of a sequence of locally convex metriz-
able spaces X,,, such that X,, is closed in X, 41, is strongly o-metrizable space
with the perfect stratification (X,,)5 ; assigned with an equiconnected function
Mz, y,t) = (1 —t)z + ty.

Proposition 2. Let X be a topological space, (Z,\) be a strongly o-metrizable
space with a perfect stratification (Z,)3°, assigned with a mapping A,m € N
and f € B,,(X,Z). Then there exists a sequence (f,)>2, of mappings f, €
B,,-1(X, Z,,) such that lim,,_,o fn(z) = f(x) for every z € X.

Proor: It is sufficient to put f, = m, o gn, where (m,)52; is a sequence of
retractions m, : Z — Z, and (g,)52, is a sequence of mappings g, € By,—-1(X, Z)
which is pointwise convergent to f. (I

Proposition 3. Let X be a metrizable space, (Z,\) be a strongly o-metrizable
equiconnected space with a perfect stratification (Z,)52 ; assigned with a mapping
Xand g € B1(X,Z). Then there exists a sequence (g, )22, of continuous mappings
gn : X — Z, and a sequence (W,,)22_; of open sets W, C X2 such that
1) Ay C W, for every n € N;
2) limp— o0 gn(Tn) = g(z) for every x € X and for any sequence (x,)22, of
points z,, € X such that (x,,z) € W,, for alln € N.

PROOF: Let (h,,)22; be a sequence of continuous mappings h, : X — Z which
is pointwise convergent to g on X. For every n € N we put f, = 7, o h,, where
(7)., is a sequence of retractions m, : Z — Z,. Clearly, f, € C(X,Z,).
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Since Z is a strongly o-metrizable space with the stratification (Z,)22 1, fn — ¢
pointwise on X.
For every n € N we set

Ap ={z € X : fu(z) € Z, Yk € N}.

Since every fi is continuous and Z,, is closed in Z, A,, is closed in X for every n.
Moreover, X = J;2, A, since Z is strongly o-metrizable.

We firstly construct a sequence (g,,)32; of continuous mappings g, : X — Z
and an increasing sequence (C,,)5; of closed sets C,, C A, such that (g,)22,
pointwise converges to g on X, X =J,°; Cy, and

(3) (Vn, k € N)(Vz € Cp)BU € Uy)|(gn(U) C Z),

where by U, we denote a system of all neighborhoods of = in X.
Let n € N. Define Ag = Co = 0, Fn = Ak\B(Ak L ) for every k €

{1,...,n} and C,, = U;_; Fr,n. Observe that every set F,, is closed, for every
n the sets F p, ..., F, , are disjoint, every set C,, is closed, C,, C A,, N Cp4; for
every n and

D :GG k\B<Ak 1,— ) LJ/lk\A;c =X

For every n € N we choose a family (Gk,n : 1 < k < n) of open sets such that
Fyn C Gi,n and sets Em, e ,én,n are mutually disjoint. Moreover, we take a
family (prn : 1 < k < n) of continuous mappings ¢, : X — [0,1] such that
©kon(Grn) € {0} and g n(Gin) C {1} for i # k. Let

gn(T) = A1 (1 (fu (@), - s T (fu (), p1(2), - oo Pn—1()).

Notice that every g, is continuous and g, € C(X,Z,) since the stratification
(Zr)72, is assigned with A. Moreover, gn(Gk n) = T(fn(Grn)) C Zi for all
ne€Nand ke {1,...,n—1}. Since Cy = Ui:1 Fir C Ule Ei., C Ule G; and
gn(Uf:1 Gin) C Zy, for every 1 <k < n, (gn)52, satisfies (3).

Now we show that g, — g pointwise on X. Let xo9 € X. Choose kg,ng € N
such that zg € Ay, \ Agy—1 and x¢ € B(Agy—1, — - L), For every n > max{kq,no}
we have zg € Fi,n and gn(ro) = fo(zo). In particular, lim, .o gn(zo) =

By the Hausdorff Theorem on extension of metric [4, 4.5.20(c)] we choose a
metric | - — - |z on Z such that the restriction of this metric on every space Z,
generates its topology. Fix n € N. According to (3) for every z € Cj \ Cr_1 we
find an open neighborhood U,, , of  in X such that

(a) UnJ NCr_1 = @;
(b) gn(u) € Zy, for every u € U, 4;
(€) |gn(u) — gn(x)|z < L for every u € Uy, 5.

H
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Set Wi, = U,ex (Unz X Une). Clearly, (Wy)p, satisfies the condition 1). We
verify 2). Let z € Cy \ Cx—1 and (z,)52; be a sequence of points z,, € X such
that (x,,z) € W, for every n € N. We choose u, € X such that (z,,z) €
Unu, X Upu,, 1€ @2, € Uy, for every n € N. It follows from (a) that
un € Cj and the condition (b) implies that g,(z,) € Zx. Moreover, by (¢) we
have |gn(2n) — gn(x)|z < 2. Hence, limy, oo [gn(@n) — gn(x)|z = 0. It remains to
observe that the restriction of |-—-|z on Zj generates its topological structure. O

A schema of the proof of the following theorem was proposed by H. Hahn for
functions of n real variables and was applied in [16, Theorem 3.24] for mappings
f:X"—R

Theorem 4. Let X be a metrizable space, (Z,\) be a strongly o-metrizable
equiconnected space with a perfect stratification (Zy)7° | assigned with X\, n € N
and g € B,_1(X,Z). Then there exists a separately continuous mapping f :
X" — Z with the diagonal g.

PROOF: Let |- —-|x be a metric on X which generates its topological structure.

We will argue by the induction on n. Let n = 2. By Proposition 3 there
exists a sequence (g,)22 ; of continuous mappings g, : X — Z and a sequence
(W,)22, of open sets W,, € X? which satisfy conditions 1) and 2) of Proposition
3. Now we choose sequences (G,)52, and (F,,)%2, of functionally open sets G,
and functionally closed sets F,, in X2, and a sequence (¢,)2°; of continuous
functions ¢, : X? — [0,1] which satisfy the first two conditions of Theorem 1
and F,,_1 C W, N W,,41 for every n > 2. It remains to check the condition 3) of
Theorem 1.

Let € X, (2,)52,; be a sequence of points x,, € X such that (z,,z) € F,,_1
for every n € N and (£,)5°; be a sequence of points ¢,, € [0,1]. Denote zg = g(z)
and fix a neighborhood Wy of zp in Z. Since A is continuous and A(zg, 20,t) = 2o
for every t € [0, 1], there exists a neighborhood W of 2z such that A(z1, z9,t) € W
for any 21,22 € W and t € [0, 1]. By the condition 2) of Proposition 3 the equality
limy, o0 gn(2n) = limy, o0 gnt1(2n) = 2o holds. Hence, there exists ng € N such
that gn(xn), gnt1(zn) € W for every n > ng. Therefore, A(gn(2n), Gnt1(@n), tn) €
Wo and limy, o0 A(gn(2n), gn+1(2n), tn) = g(z). The theorem is proved for n = 2.

Now assume that n > 3 and suppose that the theorem is true for mappings of
(n—1) variables with diagonals of the (n —2) — th Baire class. We will prove that
the theorem is true for mappings of n variables with diagonals of the (n — 1) — th
Baire class.

Take a sequence (gx)72, of mappings gr € Bn—2(X,Z) such that gp — g
pointwise on X. By the inductive assumption for every k£ € N there exists a
separately continuous mapping fi : X® ! — Z with the diagonal g;. We put
Go = Fy = X",

1
G :{x ey XTp) €X™ . max |x; — x4 <—}
k ( 1, ) 71) 1<ij<n 1 J|X k
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and

1
= {(acl,...,acn) eX": 1;1112%(”@1 —zj|lx < k—Jrl}

Notice that every Gy, is open, every Fj is closed,
Fr CGr CGr C Frx

for every k € N and (o Fr = i Gk = A,. Moreover, we choose a sequence
(¢r)52, of continuous mappings ¢y : X™ — [0,1] such that X"\ Gy C ¢, '(0)
and Fy C ¢, '(1) for every k € N.

Fix i€ {l,...,n}. For any z = (x1,...,z,) € X" we put

Zi = (T1, .y Tie1, Tig 1, oo, T
Denote

D, = {l‘ eX":1; € An—l}’-
Notice that a function #; : X™ \ A, — [0, 1] defined by

max{|z; —zi|x 11 <j<k<mn,jk#i}
max{|r; —zx|x : 1 <j<k<n}

’L/)i(l'l,. ZL‘n) =

is continuous, ¢;(z) =0 if x € D; \ A, and ¢;(z) =1if x € D; \ A, for j # 1.
Consider a mapping h; : X" — Z,

(1) hi@):{ M@ fen@) @) 2 Fo\Be

It is easy to see that

(5) hi(z) = MA(fe (%), frt1(Zi), or (@), frer2(Ti), pri1(z))

foral ke Nand « € Fy_1 \ F41.

Since the mappings A, pr and g1 are continuous and the mappings fi, fr+1
and fiyo are separately continuous, we get that h; is separately continuous on
the open set Gy, \ Fiy1 for every k € N. Moreover, h; is separately continuous on
the open set Go \ F1 = Fy \ F1. Then h; is separately continuous on the open set
X"\ Ay = Uil (Gro1 \ Fr).

We show that the mapping h; is continuous with respect to the —th variable at
every point of the set A,,. Let u € X, 2 = (u,...,u) € Ay, 2o = hi(x) = g(u) and
Wo be a neighborhood of zp in Z. Since A is continuous and A(zo, 20, t) = 2¢ for
every t € [0,1], there exists a neighborhood W of zy such that A(z1, 22,t) € Wy
for any 21,20 € W and t € [0,1]. Taking into consideration that limy_, o gix(u) =
g(u) = zo we obtain that there exists a number kg such that gi(u) € W for every
k > ko. Now we take any v € X such that v # u, y = (21,...,2,) € Fj,—1, where
xj =u for j # i and x; = v. Choose k > ko with y € Fj_1 \ Fy. Then

hi(y) = M fr (i), fer1(Fi), o1 (y)) = Mgk (), grr1(u), pr(y)) € Wo.
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Consider a mapping f : X™ — Z,
(6)
@) = { An—1(h1(x), ... hp(z), Y1 (2), ..., hp_1(x)), z€ X"\ A,

g(u), x=(u,...,u) € A,.
Since the mappings h1, ..., h, are separately continuous and the mappings A,_1,
Y1,...,¥y_1 are continuous, the mapping f is separately continuous on the set

X™\ A,. Tt remains to prove that f is continuous with respect to every variable
x; at each point of A,,.

Fix i € {1,...,n} and take any x € D; \ A,. Since ¢;(x) = 0 and ¢;(z) =1
for j # 4, properties (i) and (i¢) of the function A and the definition (1) of the
functions A imply the equality

f(l‘) = Anfl(hl(x)v sy hn(z)ﬂ (1 (IL‘), s 7"l)n71(x)) = hz(z)

Hence, f|p, = hi|p,.- Therefore, the continuity of f with respect to the i—th
variable at every point of A,, follows from the similar property of the mapping h;.
[l

Theorem 5. Let X be a metrizable space, (Z,\) be a strongly o-metrizable
equiconnected space with a perfect stratification (Zi)32, assigned with A\, n €
N and g € B,(X,Z). Then there exists a mapping f € CB,_1(X x X,Z) N
CC,-1(X x X, Z) with the diagonal g.

PRrROOF: For a multi-index a = (a1, ..., ) € N™ we denote |a| = ag + -+ -+ app.
For n = 1 the theorem is a particular case of Theorem 4.
Assume n > 2. Inductively for m = 1,...,n — 1 we choose families (g, : o €

N™) of mappings g, € Bn—m (X, Z) such that
(7) ga(l‘) = klggo ga,k(‘r)

forall z € X, 0 < m < n—2and o € N™. Notice that according to [16,
Lemma 3.27] these families can be chosen such that

(8) Ja = 9p;

ifa=(ar,...,m-2,m-1,0n) € N"and 0 = (a1,...,Q¢m—2, @m, Cm—_1).

For every o € N"~! by Proposition 3 we take sequences (ga,x)7, of con-
tinuous mappings go,kx : X — Zj and (Wa,k),;”;l of open neighborhoods of the
diagonal Ay which satisfy the condition 2) of Proposition 3 which we will de-
note by (24). For every @ = (aa,...,Qm—2,0m—1,0m) € N™ we put go = Ju
if ap > am—1, and go = gg, where 8 = (01,...,Qm—2,0m, Om—1) if am <
am—1. Notice that the family (g, : a € N") satisfies (8), and the sequences
(Ga,k)72, satisfy (24). Moreover, go(X) C Zji, where k = max{o,—1,a,,} for
o = (041; sy 2,01, anb) € N™,

Let |- — - |x be a metric on X which generates its topological structure.
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For every @ € N™ we choose a closed neighborhood V,, C W, of As;. Put
Go = Fy = X2, Inductively for k € N we put

Gr=A{(z,9) e X?: |z —y|x < %}ﬁint(Fk,l)ﬁ ﬂ {(z,y) : (y,z) € Wy}

aEN™, |a| <2k

and choose a closed neighborhood Fj, of A in X? such that

FC{mne X o—ylx s g0 () (@) (o) € VNG

a€N™, |a|<2k
Every set G, is open and
Fr CGr CGr C Frx

for every k € N and (N,—o Fr = (o Gk = Ag. Similarly as in the proof of
Theorem 4 we choose a sequence ()52, of continuous functions ¢y : X% — [0,1]
such that X2\ Gy, C ¢, '(0) and Fy, C ¢, '(1) for every k € N.

For any m € {0,1,...n— 1} and o € N™ we consider a mapping f, : X? — Z,

) falzy) = { ;‘C(fé;,)li(y%ga,kﬂ(y),wk(x,y)), Eizg g ik; \ By

In the same manner as in the proof of the continuity of h; with respect to the i—th
variable in Theorem 4, by condition (7) and by the continuity of A and ¢y, we
obtain that every f, is continuous with respect to the first variable. For o € N*~1
we observe that every f, is continuous with respect to the second variable on the
set X2\ Ay, since Ja.k is continuous with respect to the second variable.

Let 0<m<n—2,a=(ar,...,an) € N and | € N. Tt follows from (8) that

_ Mok W) Gakr1,0(W), ek(z,y), (2,y) € Fro1 \ Fx
fa,l(l';y) { ga,l(-r)y * (.Z',y) c Ag.

Letting | — oo, applying continuity of A and conditions (7), (9), we get
falz,y) = lm fo(z,y).

It remains to check that the mappings f., @ € N*~! are continuous with respect
to the second variable on the set Ay. Fix o € N*~! and z € X. Let 29 = ga(z)
and Wy be a neighborhood of z in Z. Since A(zo, 20,t) = 2o for every ¢ € [0, 1]
and the mapping A is continuous, there exists a neighborhood W of zy such
that A(z1,22,t) € Wy for any 21,20 € W and ¢t € [0,1]. We show that there
exists ko € N such that A(ga.x(¥), Ja.k+1(y), vr(x,y)) € Wy for all y € X with
(z,y) € Fy_1 \ Iy, for k > ko. It is sufficient to prove that g 1 (y), ga,k+1(y) € W
for all y € X with (z,y) € Fr—1 \ F) for k > ko.

Assume the contrary. Then there exists a strictly increasing sequence (k;)52, of
numbers k; and a sequence (y;)52; of points y; € X such that (z,y;) € Fy,—1\ Fk,,
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ok (Yi) & W oor ga+1(ys) € W for all i € N. Let gak,(yi) ¢ W for all
i € N. We choose i9p € N such that |a, k;| < 2(k; — 1) for all ¢ > ig. Since
(x,y;) € Fy,—1, by the definition of Fj,_; it follows that (y;,z) € Var, € Wak,-
Then by condition (2,) we have lim;_oo ga.k; (¥i) = ga(x) = 20, which contradicts
to the condition go k; (yi) ¢ W for all i € N. We apply this argument again when
Joki+1(yi) € W for all 4 € N.

Hence, f, is continuous with respect to the second variable at the point (z, ),
which completes the proof. Il

The following theorem generalizes Corollary 3.2 from [10] and Theorem 3.28
from [16].

Theorem 6. Let X be a topological space, (Z,\) be a strongly o-metrizable
equiconnected space with a perfect stratification (Zy)72, assigned with A\, n €
N and g € B,(X,Z). Then there exists a separately continuous mapping f :
X"t1 — Z with the diagonal g and a mapping f € CB,_1(XxX, Z)NCC),_1(X x
X, Z) with the diagonal g.

PrOOF: Let a = (a1,...,a4,) € N™ and a;,+1 € N. Then we will identify the

multi-index (aq, ..., Q1) € N with the pair o, a1 1. For m = 0 we suppose
that NY = {(} and h, = h for any mapping h and o € N°.
Successively for m = 1,...,n we choose families (g, : @ € N™) of mappings

Ja € Bn—nL(X, Z) such that
(10) ga(z) = lim gak(z)

forallz € X,0<i<n-—1and a € N. According to Proposition 2 we may
assume without loss of generality that g, x € C(X, Zy) for any o € N*~! and
keN.

Consider a continuous mapping

o= A go:X -2V,
aeNn

©(x) = (ga(x))aenn. Denote Y = ¢(X). Since go(X) is a metrizable subspace of
Z for every a € N", Y is metrizable. For every o € N we consider a continuous
mapping hq 1 Y — Z, ha(y) = ga(l‘)a where y = (p($), Le.,

(11) ha(p(2)) = ga().

Passaging to the limit in the last equality and using (10) we obtain for m =
1,...,n families (hy : a € N™) of mappings hy € By,—n (Y, Z) such that

(12) ha(y) = Hm hak(y)

and

(13) ha(p(z)) = ga(z)
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forallz € X,y€Y,0<i<n-—1and a € N

In particular, h € B,(Y,Z). By Theorem 4 there exists a separately con-
tinuous mapping jz : Yt — Z with the diagonal h. Now it remains to put
f(@1, .o zng1) = he(1), - p(Tng1))-

The existence of f can be proved similarly using Theorem 5. O

Corollary 7. Let X be a topological space, (Z, ) be a metrizable equiconnected
space, n € N and g € B,—1(X,Z). Then there exists a separately continuous
mapping f : X™ — Z with the diagonal g and a mapping h € CB,_1(X X
X,Z)NCCL_1(X x X, Z) with the diagonal g.

4. Baire classification of C'B,-mappings

Proposition 8. Let X, Y be topological spaces and (f;)ic1 be at most countable
family of continuous mappings f; : X — Y such that each space f;(X) is metriz-
able. Then there exists a metrizable space Z, a continuous surjective mapping
¢ : X — Z and a family (g;):c; of continuous mappings g; : Z — Y such that
fi(z) = gi(p(x)) for alli € I and z € X.

PRrROOF: Consider a continuous mapping

Y= Afi:Xg’Yla
i€l

o(x) = (fi(x))ier, and denote Z = ¢(X). Since each space f;(X) is metrizable,

Z is metrizable. It remains to put g;(z) = z;, where z = (2;)jer € Z. O
Proposition 9. Let X be a topological space and Y be a metrizable space. Then
B,(X,Y) C S (X,Y)

for every n € N.
ProoF: Counsider a mapping f € B,(X,Y) and let (fx,k,.. &, : k1,k2,...,kn € N)

be a family of continuous mappings fi,k,.. .k, : X — Y such that

li li AU | =
klgnoo kzgnoo kn,inoo fkl k2..-kn (x) f(x)

for every x € X. According to Proposition 8 we choose a metrizable space Z, a
continuous surjective mapping ¢ : X — Z and a family (gr, ky.. k., : k1, k2, ..., kn €
N) of continuous mappings gk, ...k, : Z — Y such that

Trako. kn (T) = Ghiko.. ke, (0(2))

for all z € X and k1, ...k, € N. Now for every z = ¢(x) € Z we put

g(z)= lim lim ... im g, .k, (2)

k1 —00 kg —00 k,, —o00

= lim lim ... lim fg k. &, (z) = f(2).

k1—00 ka—00 ky,—o00

113
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Hence, g € B,(Z,Y). If follows from [8] that g € 3/ (Z,Y). Since ¢ is continuous,
fexi(X)Y). O

Proposition 10. Let X be a PP-space, Y be a topological space, Z be a metriz-
able space and n € NU {0}. Then

CB.(X xY,Z) C %) (X xY,2).

PRrROOF: Let f € CB,(X xY,Z). Consider a homeomorphic embedding v : Z —
ls and denote g = o f. Then g € OB, (X x Y, ¢¥(Z)) C Bypt1(X x Y, ls) by
[22, Theorem 1]. Applying Proposition 9 we obtain that g € 2£+1(X x Y, ¥(Z)).
Since ¢ : Z — (Z) is a homeomorphism, f € Ef;H(X xY,Z). O

Proposition 11. Let X be a topological space, (Y,|- — - |y) be a metric arcwise
connected space, f : X — Y be a mapping, (Fr : 1 < k < n) be a family of
strongly functionally discrete families Fj, = (Fy : @ € Ix) of functionally closed
sets Fy in X such that Fi1 < Fj, and for every ¢ € I, and x1,22 € Fj . there
exists a continuous mapping v : [0,1] — Y with v(0) = f(z1), v(1) = f(z2)
and diam(y([0,1])) < = for every k. Then there exists a continuous mapping
g : X — Y such that the inclusion x € UFy for k =1,...,n implies

(14) F@) — g(@)ly < 5
PRrROOF: Take a discrete family (U; 1 : ¢ € I1) of functionally open sets in X such
that Fi71 Q Ui71, Fi71 = (,0;11(0) and X \ Ui,l = (,0;11(1), where ©i,1 - X — [O, 1]
is a continuous function, and put V;; = @;11([0, %)) for every ¢ € I;. Then
Fiq C m C U;,;1. Now choose a discrete family (G, 2 : ¢ € I3) of functionally
open sets such that F; o C G, o for every i € I5. Since F» < Fq, for every i € I we
fix auniquej € I such that Fi,2 - Fj71. Let Ui,2 = Gi720‘/j71. Then Fi,2 = (,0;21 (0)
and X\ U;1 = @;21(1) for some continuous function ;2 : X — [0,1]. Denote
Vie = @;21([0, %)) Then F; 5 C m C U; 2 C Vj1. Proceeding analogously we
get discrete families (U 1, : @ € Ii,) and (Vi : @ € Iy) of functionally open subsets
of X for k =1,...,n such that for every k =1,...,n — 1 and ¢ € I34; thereis a
unique j = j(i) € I}, with

(15) Fik1 € Vigs1 CUipsr C Vi

For every k we put

Up = U Ui i
i€l
and observe that the sets

Hy = U cpi_,li([oa %]) and Ej = X\ Uy

i€y
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are disjoint and functionally closed in X. Take a continuous function hy : X —
[0,1] such that Hy, = h;'(1) and Ey = h;*(0).

Fix arbitrary points yo € f(X) and y;x € f(F; ) for every k and i € I, and
for all x € X put go(x) = yo. Since Y is arcwise connected, for every i € I
there exists a continuous function ~; 1 : [0,1] — Y such that «; 1(0) = yo and
7i,1(1) = yi1. Now for every 1 < k < n and ¢ € I; there exists a continuous
function v;x : [0,1] — Y such that v; x(0) = y;x—1, where j € I;_; satisfies
Fip € Fjr-1, vix(1) = yix and

(16) diom(,(10,1) < -

Inductively for £ = 0,...n — 1 we define a continuous mapping git+1 : X — Y,

gna() = { 2 Lo
* Yiktr1(Prs1(z)), i€ Iny1, 0 € Uy g1

Notice that ggt1(z) = yi k1 for all @ € V; 41 and i € Ty
We show that for all x € X the inequality

a7) 9601 () ~ 9@y < 5755

holds for £ > 1. Clearly, (17) is valid if € Ejy1. Let x € U; g4 for i € Ijyq.
Then giy1(x) = Yikt1(hrt1(x)) and gr(z) = Yk = 7ik41(0), since z € Vj for
J = jr(i) € I). Taking into account (16) we obtain (17).

We put g = gp. Let 1 <k <nandx € UF;. TheanEkforsomeiEIk. It
follows that gi(z) = ik € f(Fik). Then |f(x) — gr(2)ly < 5. The inequality
(17) implies that

1 1 1
[f(@) = g9(@)ly < |f(x) = gr(@)ly + Z 19i(2) = gir1(@)ly < 553 + 507 = o

O

The similar result to the following theorem was obtained also in [13, Theo-
rem 4.1], but we include its proof for the sake of completeness.

Theorem 12. Let X be a topological space, Y be a metrizable arcwise connected
and locally arcwise connected space. Then ${ (X,Y) C By(X,Y).

PRrOOF: Fix a metric |- —- |y on Y which generates its topological structure. For
every k € N and y € Y we take an open neighborhood Uy (y) of y such that any
points from U (y) can be joined with an arc of a diameter < Qk%

Let f € Z{ (X,Y). It is easy to see that f has a o-strongly functionally discrete
base B which consists of functionally closed sets in X. For every k € N we put

By=(BeB:3yeY | BC f Y U(y))).
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Then By is a o-strongly functionally discrete family and X = UBj for every k.
According to [12, Lemma 13] for every k € N there exists a sequence (Bg,n)oe,
of strongly functionally discrete families By, = (Bgn,i : @ € Ign) of functionally
closed subsets of X such that By, < By and By, < Bgny1 for every n € N and
Uo— 1 UBkyn = X. For all k,n € N we put

fk,n = (Bl,n,il N---N Bk,n,ik Yl € Imyn,l <m< k)

Notice that every family Fj , is strongly functionally discrete, consists of func-
tionally closed sets and

(a) karl,n =< fk,na
() Frn < Frnt1s
(©) Unti UFkn = X.
For every n € N we apply Proposition 11 to the function f and the families Fi ,,

Fom,- - Fnn We obtain a sequence of continuous mappings g, : X — Y such
that

[f (@) = gn(0)ly < o

ifx € Fp for k <n.
Now conditions (b) and (c) imply that g, — f pointwise on X. Hence,
feBIX,Y). O

Let Z be a topological space and (Z;)32, be a sequence of sets Z; C Z such
that Z = (Jpo; Zk. We say that the pair (Z,(Zx)32,) has the property () if
for every convergent sequence (z,,)5°_; in Z there exists a number k such that
{xm :m e N} C Z.

Proposition 13. Let X be a PP-space, Y be a topological space,
n € NU{0}, (Z,(Zk)32,) have the property (x), Zy be functionally closed in
Z and f € CB,(X xY,Z). Then there exists a sequence (By)>, of sets of the
functionally multiplicative class n in X x Y such that |J;—, By = X x Y and
f(Bk) € Zy, for every k € N.

PROOF: Take a sequence (U, = (Uim : 1 € In,))50_; of locally finite functionally
open coverings of X and a sequence ((%jm : ¢ € I,))°_; of families of points
from X such that

(18) Vxe X)(VmeN z € U;,, .m) = (xi,,,m — ).

By [19, Corollary 3.1] there exists a weaker metrizable topology 7 on X in
which every U; ,,, is open. Since (X, T) is paracompact, for every m there exists a
locally finite open covering V,,, = (Vi : 8 € Sy,) which refines U,,. It follows from
[4, Theorem 1.5.18] that for every m there exists a locally finite closed covering
(Fsm : s € Sp) of (X,T) such that Fy,, C Vs, for every s € S,,,. Now for every
s € Sy, we choose i,,(s) € I, such that Fj ,, C Ui, (s),m-
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For all m,k € N and s € Sy, we denote ¢ = i,,(s) and put

As,m,k = (fli'm)_l(zk)z Bnb,k = U (Fs,nb X As,nb,k); By = m Bm,k-

SESm m=1

Since f belongs to the n—th Baire class with respect to the second variable, for
every k the set A, is of the functionally multiplicative class n in Y for all
m € Nand s € Sp,. Then the set By, j is of the functionally multiplicative class n
in (X,7)xY as alocally finite union of sets of the n—th functionally multiplicative
class. Hence, By, is of the n—th functionally multiplicative class in (X,7) x Y,
and, consequently, in X x Y for every k.

We show that f(By) C Zj for every k. Fix k € N and (x,y) € By. Take
a sequence (8,)po—; of indexes s,, € Sy such that x € Fy .m € U;, (s,)m
and f(2;,,(s;n),m ¥) € Zr. Then x; (s, y.m —m—oo €. Since f is continuous with
respect to the first variable, f(x;  (s,.),m»¥) =m—oco f(2,y). Since Zj is closed,
f(z,y) € Z.

It remains to show that | J;—, Br = X x Y. Let (z,y) € X x Y. Then there
exists a sequence (s, )pe_; such that s, € S;, and z € Fy, | C U;, (s,.),m- Notice
that f(z;,,(s,),m>¥) —~m—oo [(x,y). Since (Z,(Zr)7Z,) satisfies (x), there exists
a number k such that the set {f(z;,,(s,.),m,¥y) : m € N} is contained in Z, i.e.
y € As,, .m,x for every m € N. Hence, (x,y) € By. O

The following result will be useful (see [11, Proposition 5.2]).

Proposition 14. Let 0 < a < w1, X be a topological space, Z = U;ozl Zy be a
contractible space, f : X — Z be a mapping, (Xx)2, be a sequence of sets of the
a-th functionally additive class in X such that X = Upe; Xk, f(Xk) C Zi, and
assume that there exists a function f, € Bo(X, Zy) with fr|x, = flx, for every
k € N. Then f € Bo(X, Z).

Theorem 15. Let n € N, X be a PP-space, Y be a topological space and Z be
a contractible space. Then

CBu(X xY,Z) C Bpy1(X x Y, 2).

If, moreover, Z is a strongly o-metrizable space with a perfect stratification
(Zr)72.,, where every Z, is an arcwise connected and locally arcwise connected
subspace of Z, then

CCO(X xY,Z)C Bi(X XY, 2Z).

PROOF: By the definition of a PP-space we choose a sequence ((hni : i € 1))~
of locally finite partitions of unity (h,; : ¢ € I,,) on X and a sequence ()2,

of families a,, = (2 : @ € I,) of points z,,; € X such that for any x € X the
condition x € supph,, ; implies that x, ; — z. According to [19, Proposition 3.2
there exists a continuous pseudo-metric p on X such that each function A, ; is
continuous with respect to p. Then the first inclusion CB, (X XY, Z) C Bj41(X x
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Y, Z) in fact was proved in [2, Theorem 5.3], where X is a metrically quarter-
stratifiable space (i.e., Hausdorff PP-space [19]). Another proof of this inclusion
can be obtained analogously to the proof of Theorem 6.6 from [9].

Now we prove the second inclusion. Let f € CC(X xY, Z). For every k € N we
consider a retraction 7 : Z — Zj. Notice that every subspace Zj is functionally
closed in Z as the preimage of closed set under a continuous mapping ¢ : Z —
IIoe Zk, ©(2) = (mk(2))32,. By Proposition 13 we take a sequence (Bj)72 of
functionally closed subsets of X x Y such that U/ii1 B, = X xY and f(By) C Zx
for every k € N. Observe that

fe=mrofeCC(X xY,2Z) CEI(X xY,Z)

by Proposition 10. According to Theorem 12, fi € B1(X x Y, Zy). Moreover,
frlB, = flB,- It remains to notice that every set By belongs to the first function-
ally additive class in X x Y and to apply Proposition 14. (I

The following result generalizes Theorem 3.3 from [10] and gives a characteri-
zation of diagonals of separately continuous mappings.

Theorem 16. Let X be a topological space, (Z,\) be a strongly o-metrizable
equiconnected space with a perfect stratification (Zy)7° | assigned with X\, n € N,
g: X — Z and at least one of the following conditions holds:
(1) every separately continuous mapping h : X"t — Z belongs to the n—th
Baire class;
(2) X is a PP-space (in particular, X is a metrizable space).
Then the following conditions are equivalent:
(i) g € Ba(X, 2);
(ii) there exists a separately continuous mapping f : X"tt — Z with the
diagonal g.

PROOF: In the case (1) the theorem is a corollary from Theorem 6.
In the case (2) the theorem follows from Theorem 15 and case (1). O

The following characterizations of diagonals of separately continuous mappings
can be proved similarly.

Theorem 17. Let X be a topological space, (Z,)\) be a strongly o-metrizable
equiconnected space with a perfect stratification (Zy)72 , assigned with A\, n € N,
g: X — Z and at least one of the following conditions holds:
(1) every separately continuous mapping h : X2 — Z belongs to the first
Baire class;
(2) X is a PP-space (in particular, X is a metrizable space).
Then the following conditions are equivalent:
() g € Bu(X,2);
(ii) there exists a mapping f € CB,_1(X x X, Z)NCCp_1(X x X, Z) with
the diagonal g.
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5. Examples and questions

For a topological space Y by F(Y') we denote the space of all nonempty closed
subsets of Y with the Vietoris topology.

A multi-valued mapping f : X — F(Y) is said to be upper (lower) continuous
at zo € X if for any open set V C Y with f(zo) CV (f(zo) NV # 0) there exists
a neighborhood U of zg in X such that f(z) CV (f(z)NV #0) for every z € U.
If a multi-valued mapping f is upper and lower continuous at xg simultaneously,
then it is called continuous at x.

Proposition 18. There exists an equiconnected space (Z,\) with a metrizable
equiconnected subspace Z; and a mapping g € B1([0, 1], Z) such that

(1) there exists a sequence (g,,)22, of continuous mappings g, : [0,1] — Z;
which is pointwise convergent to g;
(2) g is not a diagonal of any separately continuous mapping f : [0,1]?> — Z.

PRrROOF: Let Y =[0,1] x [0,1) and
Z ={{x} x[0,y]:x € [0,1],y € [0, 1)} U{{x} x [0,1) : x € [0, 1]}

be a subspace of F(Y). Notice that Z; = {{z} x [0,y] : = € [0,1],y € [0,1)}
is dense metrizable subspace of Z, since Z; consists of compacts subsets of a
metrizable space Y.

We show that Z is equiconnected. Firstly we consider the space @ = [0, 1]%.
For ¢1 = (x1,41),¢2 = (x2,Y2) € Q we set

0(q1,q2) = min{yi, y2, 1 — |21 — 22|},

ai1(q1,q2) = y1 — 0(q1,q2), a2(q1,q2) = |z1 — 22|, a3(q1,q2) = y2 — 0(q1,q2)
and a(qi,q2) = aa(q1,q2) + a2(q1,92) + a3(qi,q2). We denote § = 6(q1, g2),
a; = a1(q1,q2), o2 = a2(q1,q2), a3 = az(q1,q2), @ = a(qi, q2) and set

(19)

(z1,91 — ta), Q1 # g2, t € [0, 25
(z1 + (ta — o )sign(za — 21),0), @ # g2, € [, 0‘110‘2],

(g1, q2,t) = (29,0 + ta — ar — az), G # go,t € [alzaz,%];
q1, @ = q2,t € [0,1].

The function p : Q2 x [0,1] — @ is continuous and the space (Q, ) is equicon-
nected.
Consider the continuous bijection ¢ : Z — @,

(20) o(2) = { Ex’y)’ S X [O,y];.
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Note that the inverse mapping ¢ = ¢~ ! : Q — Z is lower continuous on @ and
continuous on [0,1] x [0,1). For every 21,29 € Z and t € [0, 1] we set

A(z1; 22,8) = ¥ (u(p(21), p(22), 1)) -

Obviously, the mapping A : Z2 x [0,1] — Z is lower continuous and continuous at
a point (z1, zo,t) if M(z1, 22,t) € Z7.

We show that A is upper continuous at a point (21, 22, 1) if A(21, 22,t) € Z\ Z1.
Let A(z1,22,t0) € Z \ Z1. Then A(z1, 22,t9) = 21 or A(z1,22,t0) = z2. Suppose
that A(z1, 22,t0) = 21 = 21 X [0,1) and 23 C 23 x [0,1). Fix a set G open in Y
such that z; C G.

Let x1 # x2. Note that tg = 0. Choose a neighborhood U; of z1, a neighbor-
hood Us of z9 and 6 > 0 such that z C G for every z € U; and

o1 (p(), 9(2")
a(o(2), 0(2) =

for every 2z’ € Uy and 2" € Us. According to (19), A(2/,2",t) C G for every
2 eU, 2" € Uz and t € [0,9).

Now let z1 = x2. Choose a set GGy open in Y such that z; C Gy C G and if
(@', y), (",y) € Go then ({z'} x [0,y]) U ([',2"] x {y}) C Gy. It follows from
(19) that A(2',2",t) C Gg for every 2/, 2" C Gy and ¢ € [0, 1].

In the case of A(z1,22,t9) = 22 = 22 X [0,1) we argue analogously. Thus the
mapping A is continuous and, consequently, (Z,\) is equiconnected. Moreover,
MNZy x Z1 x [0,1]) C Z;. Hence, Z; is an equiconnected subspace of Z.

We define a mapping ¢ : [0,1] — Z,

g(x) = {z} x[0,1)

and for every n € N we consider a continuous mapping g, : [0, 1] — Z1,

gn(z) = {2} X {0, 1— %}

It is easy to see that lim, o gn(z) = g(z) for every z € [0,1], i.e. the condition
(1) of the proposition holds.

Now we verify (2). Assume to the contrary that there exists a separately
continuous mapping f : [0,1]2 — Z such that f(z,z) = g(z) for every x € X.
Since f is separately upper continuous on the set A = {(z,z) : z € [0,1]}, for
every z € [0, 1] there exists d, € (0,1) such that

(f(@,y) U fy,2)) N ([0,1] x [1 = d5,1)) € g(x)

for every y € [0,1] with |z — y| < d,.
Take 6 > 0, an open nonempty set U C [0,1] and a set A dense in U such
that §, > § for every x € A. Without loss of generality we may suppose that
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diam(U) < §. Then

[l y) 0 ([0,1] x [1 =6,1)) € g(x) Ng(y)

for any =,y € A. Since g(z) N g(y) = 0 for any distinct z,y € [0,1], f(z,y) C
[0,1] x [0,1 — ¢] for any distinct z,y € A. Since f is separately lower continuous
and A is dense in U, f(z,y) C [0,1] x [0,1 — 4] for any z,y € U, which leads to
a contradiction, provided g is a diagonal of f. (I

Question 1. Let Z be a topological vector space and g € B1([0,1],Z). Does
there exist a separately continuous mapping f : [0,1]> — Z with the diagonal g?
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