Diagonals of separately continuous functions of nvariables with values in strongly σ -metrizable spaces

Olena Karlova, Volodymyr Mykhaylyuk, Oleksandr Sobchuk

Abstract. We prove the result on Baire classification of mappings $f: X \times Y \to Z$ which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where X is a *PP*-space, Y is a topological space and Z is a strongly σ -metrizable space with additional properties. We show that for any topological space X, special equiconnected space Z and a mapping $g: X \to Z$ of the (n-1)-th Baire class there exists a strongly separately continuous mapping $f: X^n \to Z$ with the diagonal g. For wide classes of spaces X and Z we prove that diagonals of separately continuous mappings $f: X^n \to Z$ are exactly the functions of the (n-1)-th Baire class. An example of equiconnected space Z and a Baire-one mapping $g: [0,1] \to Z$, which is not a diagonal of any separately continuous mapping $f: [0,1]^2 \to Z$, is constructed.

Keywords: diagonal of a mapping; separately continuous mapping; Baire-one mapping; equiconnected space; strongly σ -metrizable space

Classification: Primary 54C08, 54C05; Secondary 26B05

1. Introduction

Let $f : X^n \to Y$ be a mapping. Then the mapping $g : X \to Y$ defined by $g(x) = f(x, \ldots, x)$ is called a *diagonal of* f.

Investigations of diagonals of separately continuous functions $f: X^n \to \mathbb{R}$ were started in classical works of R. Baire [1], H. Lebesgue [14], [15] and H. Hahn [6]. They showed that diagonals of separately continuous functions of n real variables are exactly the functions of the (n - 1)-th Baire class. Baire classification of separately continuous functions and their analogs is intensively studied by many mathematicians (see [17], [21], [25], [16], [2], [3], [9]).

In [16] the problem on a construction of separately continuous functions of n variables with a given diagonal of the (n-1)-th Baire class was solved. It was proved in [18] that for any topological space X and a function $g: X \to \mathbb{R}$ of the (n-1)-th Baire class there exists a separately continuous function $f: X^n \to \mathbb{R}$ with the diagonal g. Further development of these investigations deals with the changing of the range space \mathbb{R} by a more general space, in particular, by a metrizable space. Notice that conditions on spaces similar to the arcwise connectedness

DOI 10.14712/1213-7243.2015.152

(i.e., the equiconnectedness) serve as a convenient tool in a construction of separately continuous mappings (see [10, 20]).

In the given paper we study mappings $f: X^n \to Z$ with values in a space Z from a wide class of spaces which contains metrizable equiconnected spaces and strict inductive limits of sequences of closed locally convex metrizable subspaces. We first generalize a result from [10] concerning mappings of two variables with values in a metrizable equiconnected space to the case of mappings of n variables with values in spaces from wider class. Namely, we prove a theorem on the existence of a separately continuous mapping $f: X^n \to Z$ with the given diagonal $g: X \to Z$ of the (n-1)-th Baire class in case X is a topological space and (Z, λ) is a strongly σ -metrizable equiconnected space with a perfect stratification $(Z_k)_{k=1}^{\infty}$ assigned with a mapping λ (Theorem 6). We also obtain a result on a Baire classification of separately continuous mappings and their analogs defined on a product of a *PP*-space and a topological space and with values in a strongly σ -metrizable space with some additional properties (Theorem 15). In order to prove this theorem we apply the technics of σ -discrete mappings introduced in [7] and developed in [5], [26]. For PP-spaces X using Theorem 15 we generalize Theorem 3.3 from [10] and get a characterization of diagonals of separately continuous mappings $f: X^n \to Z$ (Theorem 16). Finally, we give an example of an equiconnected space Z and a Baire-one mapping $g:[0,1] \to Z$ which is not a diagonal of any separately continuous mapping $f: [0,1]^2 \to Z$ (Proposition 18).

2. Preliminaries

Let X, Y be topological spaces and $C(X,Y) = B_0(X,Y)$ be the collection of all continuous mappings between X and Y. For $n \ge 1$ we say that a mapping $f: X \to Y$ belongs to the n-th Baire class if f is a pointwise limit of a sequence $(f_k)_{k=1}^{\infty}$ of mappings $f_k: X \to Y$ from the (n-1)-th Baire class. By $B_n(X,Y)$ we denote the collection of all mappings $f: X \to Y$ of the n-th Baire class.

For a mapping $f: X \times Y \to Z$ and a point $(x, y) \in X \times Y$ we write $f^x(y) = f_y(x) = f(x, y)$. By $CB_n(X \times Y, Z)$ we denote the collection of all mappings $f: X \times Y \to Z$ which are continuous with respect to the first variable and belongs to the *n*-th Baire class with respect to the second one. If n = 0, then we use the symbol $CC(X \times Y, Z)$ for the class of all separately continuous mappings. Now let $CC_0(X \times Y, Z) = CC(X \times Y, Z)$ and for $n \ge 1$ let $CC_n(X \times Y, Z)$ be the class of all mappings $f: X \times Y \to Z$ which are pointwise limits of a sequence of mappings from $CC_{n-1}(X \times Y, Z)$.

For a metric space X with a metric $|\cdot - \cdot|_X$, a set $\emptyset \neq A \subseteq X$ and a point $x_0 \in X$ we write $|x_0 - A|_X = \inf\{|x_0 - a|_X : a \in A\}$. If $\delta > 0$, then we put $B(A, \delta) = \{x \in X : |x - A|_X < \delta\}$ and $B[A, \delta] = \{x \in X : |x - A|_X \le \delta\}$. If $A = \emptyset$, then $B(A, \delta) = B[A, \delta] = \emptyset$.

Let X be a set and $n \in \mathbb{N}$. We denote $\Delta_n = \{(x, \ldots, x) \in X^n : x \in X\}.$

Let X be a topological space and $\Delta = \Delta_2 = \{(x, x) : x \in X\}$. A set $A \subseteq X$ is called *equiconnected in* X if there exists a continuous mapping $\lambda : ((X \times X) \cup \Delta) \times [0, 1] \to X$ such that $\lambda(A \times A \times [0, 1]) \subseteq A$, $\lambda(x, y, 0) = \lambda(y, x, 1) = x$ for all $x, y \in A$ and $\lambda(x, x, t) = x$ for all $x \in X$ and $t \in [0, 1]$. A space is equiconnected if it is equiconnected in itself. Notice that any topological vector space is equiconnected, where a mapping λ is defined by $\lambda(x, y, t) = (1-t)x + ty$. If (X, λ) is an equiconnected space, then we denote $\lambda_1 = \lambda$ and for every $n \geq 2$ we define a continuous function $\lambda_n : X^{n+1} \times [0, 1]^n \to X$,

(1)
$$\lambda_n(x_1, \dots, x_{n+1}, t_1, \dots, t_n) = \lambda(x_1, \lambda_{n-1}(x_2, \dots, x_{n+1}, t_2, \dots, t_n), t_1).$$

A topological space X is called *strongly* σ -*metrizable* if there exists an increasing sequence $(X_n)_{n=1}^{\infty}$ of closed metrizable subspaces X_n of X such that $X = \bigcup_{n=1}^{\infty} X_n$ and for any convergent sequence $(x_n)_{n=1}^{\infty}$ in X there exists a number $m \in \mathbb{N}$ such that $\{x_n : n \in \mathbb{N}\} \subseteq X_m$; the sequence $(X_n)_{n=1}^{\infty}$ is called a *stratification of* X.

We say that a family $\mathcal{A} = (A_i : i \in I)$ of sets A_i refines a family $\mathcal{B} = (B_j : j \in J)$ of sets B_j and denote it by $\mathcal{A} \prec \mathcal{B}$ if for every $i \in I$ there exists $j \in J$ such that $A_i \subseteq B_j$. By $\cup \mathcal{A}$ we denote the set $\bigcup_{i \in I} A_i$.

The following notion was introduced in [23]. A space X is said to be a PPspace if there exists a sequence $((h_{n,i}: i \in I_n))_{n=1}^{\infty}$ of locally finite partitions of unity $(h_{n,i}: i \in I_n)$ on X and sequence $(\alpha_n)_{n=1}^{\infty}$ of families $\alpha_n = (x_{n,i}: i \in I_n)$ of points $x_{n,i} \in X$ such that for any $x \in X$ and a neighborhood U of x there exists $n_0 \in \mathbb{N}$ such that $x_{n,i} \in U$ if $n \geq n_0$ and $x \in \text{supp } h_{n,i}$, where $\text{supp } h = \{x \in X : h(x) \neq 0\}$. Notice that the notion of a PP-space is close to the notion of a quarter-stratifiable space introduced in [2]. In particular, Hausdorff PP-spaces are exactly metrically quarter-stratifiable spaces [19].

Let \mathcal{A} be a family of functionally closed subsets of a topological space X. Define classes \mathcal{F}_{α} and \mathcal{G}_{α} as the following: $\mathcal{F}_{0} = \mathcal{A}, \mathcal{G}_{0} = \{X \setminus A : A \in \mathcal{A}\}$ and for all $1 \leq \alpha < \omega_{1}$ we put $\mathcal{F}_{\alpha} = \{\bigcap_{n=1}^{\infty} A_{n} : A_{n} \in \bigcup_{\beta < \alpha} \mathcal{G}_{\beta}, n = 1, 2, ...\}$, $\mathcal{G}_{\alpha} = \{\bigcup_{n=1}^{\infty} A_{n} : A_{n} \in \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}, n = 1, 2, ...\}$. Element of families \mathcal{F}_{α} and \mathcal{G}_{α} are called sets of the functionally multiplicative class α or sets of the functionally additive class α , respectively; elements of the family $\mathcal{F}_{\alpha} \cap \mathcal{G}_{\alpha}$ are called functionally ambiguous sets of the class α .

A family $\mathcal{A} = (A_i : i \in I)$ of subsets of a topological space X is called: strongly functionally discrete if there exists a discrete family $(U_i : i \in I)$ of functionally open subsets of X such that $\overline{A_i} \subseteq U_i$ for every $i \in I$; σ -strongly functionally discrete if there exists a sequence of strongly functionally discrete families \mathcal{A}_n such that $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{A}_n$; a base for a mapping $f : X \to Y$ if the preimage $f^{-1}(V)$ of any open set V in Y is a union of sets from \mathcal{A} . By $\Sigma_{\alpha}^f(X, Y)$ we denote the collection of all mappings between X and Y with σ -strongly functionally discrete bases which consist of functionally ambiguous sets of the class α in X.

3. A construction of functions with a given diagonal

A general construction of separately continuous mapping of two variables with a given diagonal can be found in [20]:

Theorem 1. Let X be a topological space, Z be a Hausdorff space, (Z_1, λ) be an equiconnected subspace of Z, $g: X \to Z$, $(G_n)_{n=0}^{\infty}$ and $(F_n)_{n=0}^{\infty}$ be sequences of functionally open sets G_n and functionally closed sets F_n in X^2 , let $(\varphi_n)_{n=1}^{\infty}$ be a sequence of separately continuous functions $\varphi_n : X^2 \to [0,1], (g_n)_{n=1}^{\infty}$ be a sequence of continuous mappings $g_n : X \to Z_1$ satisfying the conditions

- 1) $G_0 = F_0 = X^2$ and $\Delta = \{(x, x) : x \in X\} \subseteq G_{n+1} \subseteq F_n \subseteq G_n$ for every $n \in \mathbb{N}$;
- 2) $X^2 \setminus G_n \subseteq \varphi_n^{-1}(0)$ and $F_n \subseteq \varphi_n^{-1}(1)$ for every $n \in \mathbb{N}$;
- 3) $\lim_{n\to\infty} \lambda(g_n(x_n), g_{n+1}(x_n), t_n) = g(x)$ for arbitrary $x \in X$, any sequence $(x_n)_{n=1}^{\infty}$ of points $x_n \in X$ with $(x_n, x) \in F_{n-1}$ for all $n \in \mathbb{N}$, and any sequence $(t_n)_{n=1}^{\infty}$ of points $t_n \in [0, 1]$.

Then the mapping $f: X^2 \to Z$,

(2)
$$f(x,y) = \begin{cases} \lambda(g_n(x), g_{n+1}(x), \varphi_n(x,y)), & (x,y) \in F_{n-1} \setminus F_n \\ g(x), & (x,y) \in E = \bigcap_{n=1}^{\infty} G_n \end{cases}$$

is separately continuous.

Let X be a strongly σ -metrizable space. A stratification $(X_n)_{n=1}^{\infty}$ of a space X is said to be *perfect* if for every $n \in \mathbb{N}$ there exists a continuous mapping $\pi_n : X \to X_n$ with $\pi_n(x) = x$ for every $x \in X_n$. A stratification $(X_n)_{n=1}^{\infty}$ of an equiconnected strongly σ -metrizable space X is assigned with λ if $\lambda(X_n \times X_n \times [0, 1]) \subseteq X_n$ for every $n \in \mathbb{N}$. It follows from the Dieudonne-Schwartz Theorem (see [24, Proposition II.6.5]) that a strict inductive limit of a sequence of locally convex metrizable spaces X_n , such that X_n is closed in X_{n+1} , is strongly σ -metrizable space with the perfect stratification $(X_n)_{n=1}^{\infty}$ assigned with an equiconnected function $\lambda(x, y, t) = (1 - t)x + ty$.

Proposition 2. Let X be a topological space, (Z, λ) be a strongly σ -metrizable space with a perfect stratification $(Z_n)_{n=1}^{\infty}$ assigned with a mapping $\lambda, m \in \mathbb{N}$ and $f \in B_m(X, Z)$. Then there exists a sequence $(f_n)_{n=1}^{\infty}$ of mappings $f_n \in B_{m-1}(X, Z_n)$ such that $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in X$.

PROOF: It is sufficient to put $f_n = \pi_n \circ g_n$, where $(\pi_n)_{n=1}^{\infty}$ is a sequence of retractions $\pi_n : Z \to Z_n$ and $(g_n)_{n=1}^{\infty}$ is a sequence of mappings $g_n \in B_{m-1}(X, Z)$ which is pointwise convergent to f.

Proposition 3. Let X be a metrizable space, (Z, λ) be a strongly σ -metrizable equiconnected space with a perfect stratification $(Z_n)_{n=1}^{\infty}$ assigned with a mapping λ and $g \in B_1(X, Z)$. Then there exists a sequence $(g_n)_{n=1}^{\infty}$ of continuous mappings $g_n : X \to Z_n$ and a sequence $(W_n)_{n=1}^{\infty}$ of open sets $W_n \subseteq X^2$ such that

- 1) $\Delta_2 \subseteq W_n$ for every $n \in \mathbb{N}$;
- 2) $\lim_{n\to\infty} g_n(x_n) = g(x)$ for every $x \in X$ and for any sequence $(x_n)_{n=1}^{\infty}$ of points $x_n \in X$ such that $(x_n, x) \in W_n$ for all $n \in \mathbb{N}$.

PROOF: Let $(h_n)_{n=1}^{\infty}$ be a sequence of continuous mappings $h_n : X \to Z$ which is pointwise convergent to g on X. For every $n \in \mathbb{N}$ we put $f_n = \pi_n \circ h_n$, where $(\pi_n)_{n=1}^{\infty}$ is a sequence of retractions $\pi_n : Z \to Z_n$. Clearly, $f_n \in C(X, Z_n)$. Since Z is a strongly σ -metrizable space with the stratification $(Z_n)_{n=1}^{\infty}, f_n \to g$ pointwise on X.

For every $n \in \mathbb{N}$ we set

$$A_n = \{ x \in X : f_k(x) \in Z_n \ \forall k \in \mathbb{N} \}.$$

Since every f_k is continuous and Z_n is closed in Z, A_n is closed in X for every n. Moreover, $X = \bigcup_{n=1}^{\infty} A_n$, since Z is strongly σ -metrizable.

We firstly construct a sequence $(g_n)_{n=1}^{\infty}$ of continuous mappings $g_n : X \to Z$ and an increasing sequence $(C_n)_{n=1}^{\infty}$ of closed sets $C_n \subseteq A_n$ such that $(g_n)_{n=1}^{\infty}$ pointwise converges to g on $X, X = \bigcup_{n=1}^{\infty} C_n$ and

(3)
$$(\forall n, k \in \mathbb{N}) (\forall x \in C_k) (\exists U \in \mathcal{U}_x) | (g_n(U) \subseteq Z_k),$$

where by \mathcal{U}_x we denote a system of all neighborhoods of x in X.

Let $n \in \mathbb{N}$. Define $A_0 = C_0 = \emptyset$, $F_{k,n} = A_k \setminus B\left(A_{k-1}, \frac{1}{n}\right)$ for every $k \in \{1, \ldots, n\}$ and $C_n = \bigcup_{k=1}^n F_{k,n}$. Observe that every set $F_{k,n}$ is closed, for every n the sets $F_{1,n}, \ldots, F_{n,n}$ are disjoint, every set C_n is closed, $C_n \subseteq A_n \cap C_{n+1}$ for every n and

$$\bigcup_{n=1}^{\infty} C_n = \bigcup_{k=1}^{\infty} \bigcup_{n=k}^{\infty} F_{k,n} = \bigcup_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_k \setminus B\left(A_{k-1}, \frac{1}{n}\right) = \bigcup_{k=1}^{\infty} A_k \setminus A_{k-1} = X.$$

For every $n \in \mathbb{N}$ we choose a family $(G_{k,n} : 1 \leq k \leq n)$ of open sets such that $F_{k,n} \subseteq G_{k,n}$ and sets $\overline{G}_{1,n}, \ldots, \overline{G}_{n,n}$ are mutually disjoint. Moreover, we take a family $(\varphi_{k,n} : 1 \leq k \leq n)$ of continuous mappings $\varphi_{k,n} : X \to [0,1]$ such that $\varphi_{k,n}(G_{k,n}) \subseteq \{0\}$ and $\varphi_{k,n}(G_{i,n}) \subseteq \{1\}$ for $i \neq k$. Let

$$g_n(x) = \lambda_{n-1}(\pi_1(f_n(x)), \dots, \pi_n(f_n(x)), \varphi_1(x), \dots, \varphi_{n-1}(x)).$$

Notice that every g_n is continuous and $g_n \in C(X, Z_n)$ since the stratification $(Z_k)_{k=1}^{\infty}$ is assigned with λ . Moreover, $g_n(G_{k,n}) = \pi_k(f_n(G_{k,n})) \subseteq Z_k$ for all $n \in \mathbb{N}$ and $k \in \{1, \ldots, n-1\}$. Since $C_k = \bigcup_{i=1}^k F_{i,k} \subseteq \bigcup_{i=1}^k F_{i,n} \subseteq \bigcup_{i=1}^k G_{i,n}$ and $g_n(\bigcup_{i=1}^k G_{i,n}) \subseteq Z_k$ for every $1 \leq k \leq n$, $(g_n)_{n=1}^{\infty}$ satisfies (3).

Now we show that $g_n \to g$ pointwise on X. Let $x_0 \in X$. Choose $k_0, n_0 \in \mathbb{N}$ such that $x_0 \in A_{k_0} \setminus A_{k_0-1}$ and $x_0 \notin B(A_{k_0-1}, \frac{1}{n_0})$. For every $n \ge \max\{k_0, n_0\}$ we have $x_0 \in F_{k_0,n}$ and $g_n(x_0) = f_n(x_0)$. In particular, $\lim_{n\to\infty} g_n(x_0) = \lim_{n\to\infty} f_n(x_0) = g(x_0)$.

By the Hausdorff Theorem on extension of metric [4, 4.5.20(c)] we choose a metric $|\cdot - \cdot|_Z$ on Z such that the restriction of this metric on every space Z_n generates its topology. Fix $n \in \mathbb{N}$. According to (3) for every $x \in C_k \setminus C_{k-1}$ we find an open neighborhood $U_{n,x}$ of x in X such that

(a)
$$U_{n,x} \cap C_{k-1} = \emptyset$$

- (b) $g_n(u) \in Z_k$ for every $u \in U_{n,x}$;
- (c) $|g_n(u) g_n(x)|_Z < \frac{1}{n}$ for every $u \in U_{n,x}$.

Set $W_n = \bigcup_{x \in X} (U_{n,x} \times U_{n,x})$. Clearly, $(W_n)_{n=1}^{\infty}$ satisfies the condition 1). We verify 2). Let $x \in C_k \setminus C_{k-1}$ and $(x_n)_{n=1}^{\infty}$ be a sequence of points $x_n \in X$ such that $(x_n, x) \in W_n$ for every $n \in \mathbb{N}$. We choose $u_n \in X$ such that $(x_n, x) \in U_{n,u_n} \times U_{n,u_n}$, i.e. $x, x_n \in U_{n,u_n}$ for every $n \in \mathbb{N}$. It follows from (a) that $u_n \in C_k$ and the condition (b) implies that $g_n(x_n) \in Z_k$. Moreover, by (c) we have $|g_n(x_n) - g_n(x)|_Z < \frac{2}{n}$. Hence, $\lim_{n \to \infty} |g_n(x_n) - g_n(x)|_Z = 0$. It remains to observe that the restriction of $|\cdot - \cdot|_Z$ on Z_k generates its topological structure. \Box

A schema of the proof of the following theorem was proposed by H. Hahn for functions of n real variables and was applied in [16, Theorem 3.24] for mappings $f: X^n \to \mathbb{R}$.

Theorem 4. Let X be a metrizable space, (Z, λ) be a strongly σ -metrizable equiconnected space with a perfect stratification $(Z_k)_{k=1}^{\infty}$ assigned with $\lambda, n \in \mathbb{N}$ and $g \in B_{n-1}(X, Z)$. Then there exists a separately continuous mapping $f : X^n \to Z$ with the diagonal g.

PROOF: Let $|\cdot - \cdot|_X$ be a metric on X which generates its topological structure.

We will argue by the induction on n. Let n = 2. By Proposition 3 there exists a sequence $(g_n)_{n=1}^{\infty}$ of continuous mappings $g_n : X \to Z$ and a sequence $(W_n)_{n=1}^{\infty}$ of open sets $W_n \subseteq X^2$ which satisfy conditions 1) and 2) of Proposition 3. Now we choose sequences $(G_n)_{n=0}^{\infty}$ and $(F_n)_{n=0}^{\infty}$ of functionally open sets G_n and functionally closed sets F_n in X^2 , and a sequence $(\varphi_n)_{n=1}^{\infty}$ of continuous functions $\varphi_n : X^2 \to [0, 1]$ which satisfy the first two conditions of Theorem 1 and $F_{n-1} \subseteq W_n \cap W_{n+1}$ for every $n \ge 2$. It remains to check the condition 3) of Theorem 1.

Let $x \in X$, $(x_n)_{n=1}^{\infty}$ be a sequence of points $x_n \in X$ such that $(x_n, x) \in F_{n-1}$ for every $n \in \mathbb{N}$ and $(t_n)_{n=1}^{\infty}$ be a sequence of points $t_n \in [0, 1]$. Denote $z_0 = g(x)$ and fix a neighborhood W_0 of z_0 in Z. Since λ is continuous and $\lambda(z_0, z_0, t) = z_0$ for every $t \in [0, 1]$, there exists a neighborhood W of z_0 such that $\lambda(z_1, z_2, t) \in W_0$ for any $z_1, z_2 \in W$ and $t \in [0, 1]$. By the condition 2) of Proposition 3 the equality $\lim_{n\to\infty} g_n(x_n) = \lim_{n\to\infty} g_{n+1}(x_n) = z_0$ holds. Hence, there exists $n_0 \in \mathbb{N}$ such that $g_n(x_n), g_{n+1}(x_n) \in W$ for every $n \ge n_0$. Therefore, $\lambda(g_n(x_n), g_{n+1}(x_n), t_n) \in$ W_0 and $\lim_{n\to\infty} \lambda(g_n(x_n), g_{n+1}(x_n), t_n) = g(x)$. The theorem is proved for n = 2.

Now assume that $n \ge 3$ and suppose that the theorem is true for mappings of (n-1) variables with diagonals of the (n-2) – th Baire class. We will prove that the theorem is true for mappings of n variables with diagonals of the (n-1) – th Baire class.

Take a sequence $(g_k)_{k=1}^{\infty}$ of mappings $g_k \in B_{n-2}(X, Z)$ such that $g_k \to g$ pointwise on X. By the inductive assumption for every $k \in \mathbb{N}$ there exists a separately continuous mapping $f_k : X^{n-1} \to Z$ with the diagonal g_k . We put $G_0 = F_0 = X^n$,

$$G_{k} = \left\{ (x_{1}, \dots, x_{n}) \in X^{n} : \max_{1 \le i, j \le n} |x_{i} - x_{j}|_{X} < \frac{1}{k} \right\}$$

and

$$F_k = \left\{ (x_1, \dots, x_n) \in X^n : \max_{1 \le i, j \le n} |x_i - x_j|_X \le \frac{1}{k+1} \right\}.$$

Notice that every G_k is open, every F_k is closed,

$$F_k \subseteq G_k \subseteq \overline{G_k} \subseteq F_{k-1}$$

for every $k \in \mathbb{N}$ and $\bigcap_{k=0}^{\infty} F_k = \bigcap_{k=0}^{\infty} G_k = \Delta_n$. Moreover, we choose a sequence $(\varphi_k)_{k=1}^{\infty}$ of continuous mappings $\varphi_k : X^n \to [0,1]$ such that $X^n \setminus G_k \subseteq \varphi_k^{-1}(0)$ and $F_k \subseteq \varphi_k^{-1}(1)$ for every $k \in \mathbb{N}$.

Fix $i \in \{1, \ldots, n\}$. For any $x = (x_1, \ldots, x_n) \in X^n$ we put

$$\tilde{x}_i = (x_1, ..., x_{i-1}, x_{i+1}, ..., x_n).$$

Denote

$$D_i = \{ x \in X^n : \tilde{x}_i \in \Delta_{n-1} \}.$$

Notice that a function $\psi_i: X^n \setminus \Delta_n \to [0, 1]$ defined by

$$\psi_i(x_1, \dots, x_n) = \frac{\max\{|x_j - x_k|_X : 1 \le j < k \le n, \ j, k \ne i\}}{\max\{|x_j - x_k|_X : 1 \le j < k \le n\}}$$

is continuous, $\psi_i(x) = 0$ if $x \in D_i \setminus \Delta_n$ and $\psi_i(x) = 1$ if $x \in D_j \setminus \Delta_n$ for $j \neq i$. Consider a mapping $h_i: X^n \to Z$,

(4)
$$h_i(x) = \begin{cases} \lambda(f_k(\tilde{x}_i), f_{k+1}(\tilde{x}_i), \varphi_k(x)), & x \in F_{k-1} \setminus F_k \\ g(u), & x = (u, \dots, u) \in \Delta_n. \end{cases}$$

It is easy to see that

(5)
$$h_i(x) = \lambda(\lambda(f_k(\tilde{x}_i), f_{k+1}(\tilde{x}_i), \varphi_k(x)), f_{k+2}(\tilde{x}_i), \varphi_{k+1}(x))$$

for all $k \in \mathbb{N}$ and $x \in F_{k-1} \setminus F_{k+1}$.

Since the mappings λ , φ_k and φ_{k+1} are continuous and the mappings f_k , f_{k+1} and f_{k+2} are separately continuous, we get that h_i is separately continuous on the open set $G_k \setminus F_{k+1}$ for every $k \in \mathbb{N}$. Moreover, h_i is separately continuous on the open set $G_0 \setminus F_1 = F_0 \setminus F_1$. Then h_i is separately continuous on the open set $X^n \setminus \Delta_n = \bigcup_{k=1}^{\infty} (G_{k-1} \setminus F_k)$.

We show that the mapping h_i is continuous with respect to the *i*-th variable at every point of the set Δ_n . Let $u \in X$, $x = (u, \ldots, u) \in \Delta_n$, $z_0 = h_i(x) = g(u)$ and W_0 be a neighborhood of z_0 in Z. Since λ is continuous and $\lambda(z_0, z_0, t) = z_0$ for every $t \in [0, 1]$, there exists a neighborhood W of z_0 such that $\lambda(z_1, z_2, t) \in W_0$ for any $z_1, z_2 \in W$ and $t \in [0, 1]$. Taking into consideration that $\lim_{k \to \infty} g_k(u) =$ $g(u) = z_0$ we obtain that there exists a number k_0 such that $g_k(u) \in W$ for every $k \geq k_0$. Now we take any $v \in X$ such that $v \neq u, y = (x_1, \ldots, x_n) \in F_{k_0-1}$, where $x_j = u$ for $j \neq i$ and $x_i = v$. Choose $k \geq k_0$ with $y \in F_{k-1} \setminus F_k$. Then

$$h_i(y) = \lambda(f_k(\tilde{y}_i), f_{k+1}(\tilde{y}_i), \varphi_k(y)) = \lambda(g_k(u), g_{k+1}(u), \varphi_k(y)) \in W_0.$$

Consider a mapping $f: X^n \to Z$,

(6)

$$f(x) = \begin{cases} \lambda_{n-1}(h_1(x), \dots, h_n(x), \psi_1(x), \dots, \psi_{n-1}(x)), & x \in X^n \setminus \Delta_n \\ g(u), & x = (u, \dots, u) \in \Delta_n. \end{cases}$$

Since the mappings h_1, \ldots, h_n are separately continuous and the mappings λ_{n-1} , $\psi_1, \ldots, \psi_{n-1}$ are continuous, the mapping f is separately continuous on the set $X^n \setminus \Delta_n$. It remains to prove that f is continuous with respect to every variable x_i at each point of Δ_n .

Fix $i \in \{1, ..., n\}$ and take any $x \in D_i \setminus \Delta_n$. Since $\psi_i(x) = 0$ and $\psi_j(x) = 1$ for $j \neq i$, properties (i) and (ii) of the function λ and the definition (1) of the functions λ_k imply the equality

$$f(x) = \lambda_{n-1}(h_1(x), \dots, h_n(x), \psi_1(x), \dots, \psi_{n-1}(x)) = h_i(x).$$

Hence, $f|_{D_i} = h_i|_{D_i}$. Therefore, the continuity of f with respect to the *i*-th variable at every point of Δ_n follows from the similar property of the mapping h_i .

Theorem 5. Let X be a metrizable space, (Z, λ) be a strongly σ -metrizable equiconnected space with a perfect stratification $(Z_k)_{k=1}^{\infty}$ assigned with λ , $n \in \mathbb{N}$ and $g \in B_n(X, Z)$. Then there exists a mapping $f \in CB_{n-1}(X \times X, Z) \cap CC_{n-1}(X \times X, Z)$ with the diagonal g.

PROOF: For a multi-index $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}^m$ we denote $|\alpha| = \alpha_1 + \cdots + \alpha_m$. For n = 1 the theorem is a particular case of Theorem 4.

Assume $n \ge 2$. Inductively for m = 1, ..., n-1 we choose families $(g_{\alpha} : \alpha \in \mathbb{N}^m)$ of mappings $g_{\alpha} \in B_{n-m}(X, Z)$ such that

(7)
$$g_{\alpha}(x) = \lim_{k \to \infty} g_{\alpha,k}(x)$$

for all $x \in X$, $0 \leq m \leq n-2$ and $\alpha \in \mathbb{N}^m$. Notice that according to [16, Lemma 3.27] these families can be chosen such that

(8)
$$g_{\alpha} = g_{\beta},$$

if $\alpha = (\alpha_1, \dots, \alpha_{m-2}, \alpha_{m-1}, \alpha_m) \in \mathbb{N}^m$ and $\beta = (\alpha_1, \dots, \alpha_{m-2}, \alpha_m, \alpha_{m-1})$.

For every $\alpha \in \mathbb{N}^{n-1}$ by Proposition 3 we take sequences $(\tilde{g}_{\alpha,k})_{k=1}^{\infty}$ of continuous mappings $\tilde{g}_{\alpha,k} : X \to Z_k$ and $(W_{\alpha,k})_{k=1}^{\infty}$ of open neighborhoods of the diagonal Δ_2 which satisfy the condition 2) of Proposition 3 which we will denote by (2_{α}) . For every $\alpha = (\alpha_1, \ldots, \alpha_{m-2}, \alpha_{m-1}, \alpha_m) \in \mathbb{N}^m$ we put $g_{\alpha} = \tilde{g}_{\alpha}$ if $\alpha_m \ge \alpha_{m-1}$, and $g_{\alpha} = \tilde{g}_{\beta}$, where $\beta = (\alpha_1, \ldots, \alpha_{m-2}, \alpha_m, \alpha_{m-1})$ if $\alpha_m < \alpha_{m-1}$. Notice that the family $(g_{\alpha} : \alpha \in \mathbb{N}^n)$ satisfies (8), and the sequences $(g_{\alpha,k})_{k=1}^{\infty}$ satisfy (2_{α}) . Moreover, $g_{\alpha}(X) \subseteq Z_k$, where $k = \max\{\alpha_{m-1}, \alpha_m\}$ for $\alpha = (\alpha_1, \ldots, \alpha_{m-2}, \alpha_{m-1}, \alpha_m) \in \mathbb{N}^m$.

Let $|\cdot - \cdot|_X$ be a metric on X which generates its topological structure.

For every $\alpha \in \mathbb{N}^n$ we choose a closed neighborhood $V_\alpha \subseteq W_\alpha$ of Δ_2 . Put $G_0 = F_0 = X^2$. Inductively for $k \in \mathbb{N}$ we put

$$G_k = \{(x,y) \in X^2 : |x-y|_X < \frac{1}{k}\} \cap \operatorname{int}(F_{k-1}) \cap \bigcap_{\alpha \in \mathbb{N}^n, |\alpha| \le 2k} \{(x,y) : (y,x) \in W_\alpha\}$$

and choose a closed neighborhood F_k of \triangle in X^2 such that

$$F_k \subseteq \{(x,y) \in X^2 : |x-y|_X \le \frac{1}{k+1}\} \cap \bigcap_{\alpha \in \mathbb{N}^n, \ |\alpha| \le 2k} \{(x,y) : (y,x) \in V_\alpha\} \cap G_k.$$

Every set G_k is open and

$$F_k \subseteq G_k \subseteq \overline{G_k} \subseteq F_{k-1}$$

for every $k \in \mathbb{N}$ and $\bigcap_{k=0}^{\infty} F_k = \bigcap_{k=0}^{\infty} G_k = \Delta_2$. Similarly as in the proof of Theorem 4 we choose a sequence $(\varphi_k)_{k=1}^{\infty}$ of continuous functions $\varphi_k : X^2 \to [0, 1]$ such that $X^2 \setminus G_k \subseteq \varphi_k^{-1}(0)$ and $F_k \subseteq \varphi_k^{-1}(1)$ for every $k \in \mathbb{N}$.

For any $m \in \{0, 1, \dots, n-1\}$ and $\alpha \in \mathbb{N}^m$ we consider a mapping $f_\alpha : X^2 \to Z$,

(9)
$$f_{\alpha}(x,y) = \begin{cases} \lambda(g_{\alpha,k}(y), g_{\alpha,k+1}(y), \varphi_k(x,y)), & (x,y) \in F_{k-1} \setminus F_k \\ g_{\alpha}(x), & (x,y) \in \Delta_2. \end{cases}$$

In the same manner as in the proof of the continuity of h_i with respect to the *i*-th variable in Theorem 4, by condition (7) and by the continuity of λ and φ_k , we obtain that every f_{α} is continuous with respect to the first variable. For $\alpha \in \mathbb{N}^{n-1}$ we observe that every f_{α} is continuous with respect to the second variable on the set $X^2 \setminus \Delta_2$, since $g_{\alpha,k}$ is continuous with respect to the second variable.

Let $0 \le m \le n-2$, $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}^m$ and $l \in \mathbb{N}$. It follows from (8) that

$$f_{\alpha,l}(x,y) = \begin{cases} \lambda(g_{\alpha,k,l}(y), g_{\alpha,k+1,l}(y), \varphi_k(x,y)), & (x,y) \in F_{k-1} \setminus F_k \\ g_{\alpha,l}(x), & (x,y) \in \Delta_2. \end{cases}$$

Letting $l \to \infty$, applying continuity of λ and conditions (7), (9), we get

$$f_{\alpha}(x,y) = \lim_{l \to \infty} f_{\alpha,l}(x,y).$$

It remains to check that the mappings $f_{\alpha}, \alpha \in \mathbb{N}^{n-1}$, are continuous with respect to the second variable on the set Δ_2 . Fix $\alpha \in \mathbb{N}^{n-1}$ and $x \in X$. Let $z_0 = g_{\alpha}(x)$ and W_0 be a neighborhood of z_0 in Z. Since $\lambda(z_0, z_0, t) = z_0$ for every $t \in [0, 1]$ and the mapping λ is continuous, there exists a neighborhood W of z_0 such that $\lambda(z_1, z_2, t) \in W_0$ for any $z_1, z_2 \in W$ and $t \in [0, 1]$. We show that there exists $k_0 \in \mathbb{N}$ such that $\lambda(g_{\alpha,k}(y), g_{\alpha,k+1}(y), \varphi_k(x, y)) \in W_0$ for all $y \in X$ with $(x, y) \in F_{k-1} \setminus F_k$ for $k \geq k_0$. It is sufficient to prove that $g_{\alpha,k}(y), g_{\alpha,k+1}(y) \in W$ for all $y \in X$ with $(x, y) \in F_{k-1} \setminus F_k$ for $k \geq k_0$.

Assume the contrary. Then there exists a strictly increasing sequence $(k_i)_{i=1}^{\infty}$ of numbers k_i and a sequence $(y_i)_{i=1}^{\infty}$ of points $y_i \in X$ such that $(x, y_i) \in F_{k_i-1} \setminus F_{k_i}$,

 $g_{\alpha,k_i}(y_i) \notin W$ or $g_{\alpha,k_i+1}(y_i) \notin W$ for all $i \in \mathbb{N}$. Let $g_{\alpha,k_i}(y_i) \notin W$ for all $i \in \mathbb{N}$. We choose $i_0 \in \mathbb{N}$ such that $|\alpha, k_i| \leq 2(k_i - 1)$ for all $i \geq i_0$. Since $(x, y_i) \in F_{k_i-1}$, by the definition of F_{k_i-1} it follows that $(y_i, x) \in V_{\alpha,k_i} \subseteq W_{\alpha,k_i}$. Then by condition (2_α) we have $\lim_{i\to\infty} g_{\alpha,k_i}(y_i) = g_\alpha(x) = z_0$, which contradicts to the condition $g_{\alpha,k_i}(y_i) \notin W$ for all $i \in \mathbb{N}$. We apply this argument again when $g_{\alpha,k_i+1}(y_i) \notin W$ for all $i \in \mathbb{N}$.

Hence, f_{α} is continuous with respect to the second variable at the point (x, x), which completes the proof.

The following theorem generalizes Corollary 3.2 from [10] and Theorem 3.28 from [16].

Theorem 6. Let X be a topological space, (Z, λ) be a strongly σ -metrizable equiconnected space with a perfect stratification $(Z_k)_{k=1}^{\infty}$ assigned with λ , $n \in \mathbb{N}$ and $g \in B_n(X, Z)$. Then there exists a separately continuous mapping $f : X^{n+1} \to Z$ with the diagonal g and a mapping $\tilde{f} \in CB_{n-1}(X \times X, Z) \cap CC_{n-1}(X \times X, Z)$ with the diagonal g.

PROOF: Let $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}^m$ and $\alpha_{m+1} \in \mathbb{N}$. Then we will identify the multi-index $(\alpha_1, \ldots, \alpha_{m+1}) \in \mathbb{N}^{m+1}$ with the pair α, α_{m+1} . For m = 0 we suppose that $\mathbb{N}^0 = \{\emptyset\}$ and $h_\alpha = h$ for any mapping h and $\alpha \in \mathbb{N}^0$.

Successively for m = 1, ..., n we choose families $(g_{\alpha} : \alpha \in \mathbb{N}^m)$ of mappings $g_{\alpha} \in B_{n-m}(X, Z)$ such that

(10)
$$g_{\alpha}(x) = \lim_{k \to \infty} g_{\alpha,k}(x)$$

for all $x \in X$, $0 \leq i \leq n-1$ and $\alpha \in \mathbb{N}^i$. According to Proposition 2 we may assume without loss of generality that $g_{\alpha,k} \in C(X, Z_k)$ for any $\alpha \in \mathbb{N}^{n-1}$ and $k \in \mathbb{N}$.

Consider a continuous mapping

$$\varphi = \mathop{\Delta}_{\alpha \in \mathbb{N}^n} g_\alpha : X \to Z^{\mathbb{N}^n},$$

 $\varphi(x) = (g_{\alpha}(x))_{\alpha \in \mathbb{N}^{n}}$. Denote $Y = \varphi(X)$. Since $g_{\alpha}(X)$ is a metrizable subspace of Z for every $\alpha \in \mathbb{N}^{n}$, Y is metrizable. For every $\alpha \in \mathbb{N}^{n}$ we consider a continuous mapping $h_{\alpha}: Y \to Z$, $h_{\alpha}(y) = g_{\alpha}(x)$, where $y = \varphi(x)$, i.e.,

(11)
$$h_{\alpha}(\varphi(x)) = g_{\alpha}(x).$$

Passaging to the limit in the last equality and using (10) we obtain for m = 1, ..., n families $(h_{\alpha} : \alpha \in \mathbb{N}^m)$ of mappings $h_{\alpha} \in B_{n-m}(Y, Z)$ such that

(12)
$$h_{\alpha}(y) = \lim_{k \to \infty} h_{\alpha,k}(y)$$

and

(13)
$$h_{\alpha}(\varphi(x)) = g_{\alpha}(x)$$

for all $x \in X$, $y \in Y$, $0 \le i \le n-1$ and $\alpha \in \mathbb{N}^i$.

In particular, $h \in B_n(Y,Z)$. By Theorem 4 there exists a separately continuous mapping $\tilde{h} : Y^{n+1} \to Z$ with the diagonal h. Now it remains to put $f(x_1, \ldots, x_{n+1}) = \tilde{h}(\varphi(x_1), \ldots, \varphi(x_{n+1})).$

The existence of \tilde{f} can be proved similarly using Theorem 5.

Corollary 7. Let X be a topological space, (Z, λ) be a metrizable equiconnected space, $n \in \mathbb{N}$ and $g \in B_{n-1}(X, Z)$. Then there exists a separately continuous mapping $f : X^n \to Z$ with the diagonal g and a mapping $h \in CB_{n-1}(X \times X, Z) \cap CC_{n-1}(X \times X, Z)$ with the diagonal g.

4. Baire classification of CB_n -mappings

Proposition 8. Let X, Y be topological spaces and $(f_i)_{i \in I}$ be at most countable family of continuous mappings $f_i : X \to Y$ such that each space $f_i(X)$ is metrizable. Then there exists a metrizable space Z, a continuous surjective mapping $\varphi : X \to Z$ and a family $(g_i)_{i \in I}$ of continuous mappings $g_i : Z \to Y$ such that $f_i(x) = g_i(\varphi(x))$ for all $i \in I$ and $x \in X$.

PROOF: Consider a continuous mapping

$$\varphi = \mathop{\Delta}_{i \in I} f_i : X \to Y^I,$$

 $\varphi(x) = (f_i(x))_{i \in I}$, and denote $Z = \varphi(X)$. Since each space $f_i(X)$ is metrizable, Z is metrizable. It remains to put $g_i(z) = z_i$, where $z = (z_i)_{i \in I} \in Z$.

Proposition 9. Let X be a topological space and Y be a metrizable space. Then

$$B_n(X,Y) \subseteq \Sigma_n^f(X,Y)$$

for every $n \in \mathbb{N}$.

PROOF: Consider a mapping $f \in B_n(X, Y)$ and let $(f_{k_1k_2...k_n} : k_1, k_2, ..., k_n \in \mathbb{N})$ be a family of continuous mappings $f_{k_1k_2...k_n} : X \to Y$ such that

$$\lim_{k_1 \to \infty} \lim_{k_2 \to \infty} \dots \lim_{k_n \to \infty} f_{k_1 k_2 \dots k_n}(x) = f(x)$$

for every $x \in X$. According to Proposition 8 we choose a metrizable space Z, a continuous surjective mapping $\varphi : X \to Z$ and a family $(g_{k_1k_2...k_n} : k_1, k_2, ..., k_n \in \mathbb{N})$ of continuous mappings $g_{k_1k_2...k_n} : Z \to Y$ such that

$$f_{k_1k_2\dots k_n}(x) = g_{k_1k_2\dots k_n}(\varphi(x))$$

for all $x \in X$ and $k_1, \ldots, k_n \in \mathbb{N}$. Now for every $z = \varphi(x) \in Z$ we put

$$g(z) = \lim_{k_1 \to \infty} \lim_{k_2 \to \infty} \dots \lim_{k_n \to \infty} g_{k_1 k_2 \dots k_n}(z)$$
$$= \lim_{k_1 \to \infty} \lim_{k_2 \to \infty} \dots \lim_{k_n \to \infty} f_{k_1 k_2 \dots k_n}(x) = f(x).$$

Hence, $g \in B_n(Z, Y)$. If follows from [8] that $g \in \Sigma_n^f(Z, Y)$. Since φ is continuous, $f \in \Sigma_n^f(X, Y)$.

Proposition 10. Let X be a PP-space, Y be a topological space, Z be a metrizable space and $n \in \mathbb{N} \cup \{0\}$. Then

$$CB_n(X \times Y, Z) \subseteq \Sigma_{n+1}^f(X \times Y, Z).$$

PROOF: Let $f \in CB_n(X \times Y, Z)$. Consider a homeomorphic embedding $\psi : Z \to \ell_{\infty}$ and denote $g = \psi \circ f$. Then $g \in CB_n(X \times Y, \psi(Z)) \subseteq B_{n+1}(X \times Y, \ell_{\infty})$ by [22, Theorem 1]. Applying Proposition 9 we obtain that $g \in \Sigma_{n+1}^f(X \times Y, \psi(Z))$. Since $\psi : Z \to \psi(Z)$ is a homeomorphism, $f \in \Sigma_{n+1}^f(X \times Y, Z)$.

Proposition 11. Let X be a topological space, $(Y, |\cdot - \cdot|_Y)$ be a metric arcwise connected space, $f : X \to Y$ be a mapping, $(\mathcal{F}_k : 1 \leq k \leq n)$ be a family of strongly functionally discrete families $\mathcal{F}_k = (F_{i,k} : i \in I_k)$ of functionally closed sets $F_{i,k}$ in X such that $\mathcal{F}_{k+1} \prec \mathcal{F}_k$ and for every $i \in I_k$ and $x_1, x_2 \in F_{i,k}$ there exists a continuous mapping $\gamma : [0,1] \to Y$ with $\gamma(0) = f(x_1), \gamma(1) = f(x_2)$ and diam $(\gamma([0,1])) < \frac{1}{2^{k+2}}$ for every k. Then there exists a continuous mapping $g : X \to Y$ such that the inclusion $x \in \cup \mathcal{F}_k$ for $k = 1, \ldots, n$ implies

(14)
$$|f(x) - g(x)|_Y < \frac{1}{2^k}.$$

PROOF: Take a discrete family $(U_{i,1}: i \in I_1)$ of functionally open sets in X such that $F_{i,1} \subseteq U_{i,1}, F_{i,1} = \varphi_{i,1}^{-1}(0)$ and $X \setminus U_{i,1} = \varphi_{i,1}^{-1}(1)$, where $\varphi_{i,1}: X \to [0,1]$ is a continuous function, and put $V_{i,1} = \varphi_{i,1}^{-1}([0,\frac{1}{2}))$ for every $i \in I_1$. Then $F_{i,1} \subseteq \overline{V_{i,1}} \subseteq U_{i,1}$. Now choose a discrete family $(G_{i,2}: i \in I_2)$ of functionally open sets such that $F_{i,2} \subseteq G_{i,2}$ for every $i \in I_2$. Since $\mathcal{F}_2 \prec \mathcal{F}_1$, for every $i \in I_2$ we fix a unique $j \in I_1$ such that $F_{i,2} \subseteq F_{j,1}$. Let $U_{i,2} = G_{i,2} \cap V_{j,1}$. Then $F_{i,2} = \varphi_{i,2}^{-1}(0)$ and $X \setminus U_{i,1} = \varphi_{i,2}^{-1}(1)$ for some continuous function $\varphi_{i,2}: X \to [0,1]$. Denote $V_{i,2} = \varphi_{i,2}^{-1}([0,\frac{1}{2}])$. Then $F_{i,2} \subseteq \overline{V_{i,2}} \subseteq U_{i,2} \subseteq V_{j,1}$. Proceeding analogously we get discrete families $(U_{i,k}: i \in I_k)$ and $(V_{i,k}: i \in I_k)$ of functionally open subsets of X for $k = 1, \ldots, n$ such that for every $k = 1, \ldots, n-1$ and $i \in I_{k+1}$ there is a unique $j = j_k(i) \in I_k$ with

(15)
$$F_{i,k+1} \subseteq \overline{V_{i,k+1}} \subseteq U_{i,k+1} \subseteq V_{j,k}.$$

For every k we put

$$U_k = \bigcup_{i \in I_k} U_{i,k}$$

and observe that the sets

$$H_k = \bigcup_{i \in I_k} \varphi_{i,k}^{-1}([0, \frac{1}{2}]) \quad \text{and} \quad E_k = X \setminus U_k$$

are disjoint and functionally closed in X. Take a continuous function $h_k : X \to [0,1]$ such that $H_k = h_k^{-1}(1)$ and $E_k = h_k^{-1}(0)$.

Fix arbitrary points $y_0 \in f(X)$ and $y_{i,k} \in f(F_{i,k})$ for every k and $i \in I_k$, and for all $x \in X$ put $g_0(x) = y_0$. Since Y is arcwise connected, for every $i \in I_1$ there exists a continuous function $\gamma_{i,1} : [0,1] \to Y$ such that $\gamma_{i,1}(0) = y_0$ and $\gamma_{i,1}(1) = y_{i,1}$. Now for every $1 < k \leq n$ and $i \in I_k$ there exists a continuous function $\gamma_{i,k} : [0,1] \to Y$ such that $\gamma_{i,k}(0) = y_{j,k-1}$, where $j \in I_{k-1}$ satisfies $F_{i,k} \subseteq F_{j,k-1}, \gamma_{i,k}(1) = y_{i,k}$ and

(16)
$$\operatorname{diam}(\gamma_{i,k}([0,1])) < \frac{1}{2^{k+1}}$$

Inductively for $k = 0, \ldots n - 1$ we define a continuous mapping $g_{k+1} : X \to Y$,

$$g_{k+1}(x) = \begin{cases} g_k(x), & x \in E_{k+1}, \\ \gamma_{i,k+1}(h_{k+1}(x)), & i \in I_{k+1}, x \in U_{i,k+1}. \end{cases}$$

Notice that $g_{k+1}(x) = y_{i,k+1}$ for all $x \in \overline{V_{i,k+1}}$ and $i \in I_{k+1}$.

We show that for all $x \in X$ the inequality

(17)
$$|g_{k+1}(x) - g_k(x)|_Y < \frac{1}{2^{k+2}}$$

holds for $k \ge 1$. Clearly, (17) is valid if $x \in E_{k+1}$. Let $x \in U_{i,k+1}$ for $i \in I_{k+1}$. Then $g_{k+1}(x) = \gamma_{i,k+1}(h_{k+1}(x))$ and $g_k(x) = y_{j,k} = \gamma_{i,k+1}(0)$, since $x \in V_{j,k}$ for $j = j_k(i) \in I_k$. Taking into account (16) we obtain (17).

We put $g = g_n$. Let $1 \le k \le n$ and $x \in \bigcup \mathcal{F}_k$. Then $x \in F_{i,k}$ for some $i \in I_k$. It follows that $g_k(x) = y_{i,k} \in f(F_{i,k})$. Then $|f(x) - g_k(x)|_Y \le \frac{1}{2^{k+1}}$. The inequality (17) implies that

$$|f(x) - g(x)|_Y \le |f(x) - g_k(x)|_Y + \sum_{i=k}^{n-1} |g_i(x) - g_{i+1}(x)|_Y < \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = \frac{1}{2^k}.$$

The similar result to the following theorem was obtained also in [13, Theorem 4.1], but we include its proof for the sake of completeness.

Theorem 12. Let X be a topological space, Y be a metrizable arcwise connected and locally arcwise connected space. Then $\Sigma_1^f(X,Y) \subseteq B_1(X,Y)$.

PROOF: Fix a metric $|\cdot - \cdot|_Y$ on Y which generates its topological structure. For every $k \in \mathbb{N}$ and $y \in Y$ we take an open neighborhood $U_k(y)$ of y such that any points from $U_k(y)$ can be joined with an arc of a diameter $< \frac{1}{2^{k+1}}$.

Let $f \in \Sigma_1^f(X, Y)$. It is easy to see that f has a σ -strongly functionally discrete base \mathcal{B} which consists of functionally closed sets in X. For every $k \in \mathbb{N}$ we put

$$\mathcal{B}_k = (B \in \mathcal{B} : \exists y \in Y \mid B \subseteq f^{-1}(U_k(y))).$$

Then \mathcal{B}_k is a σ -strongly functionally discrete family and $X = \bigcup \mathcal{B}_k$ for every k. According to [12, Lemma 13] for every $k \in \mathbb{N}$ there exists a sequence $(\mathcal{B}_{k,n})_{n=1}^{\infty}$ of strongly functionally discrete families $\mathcal{B}_{k,n} = (B_{k,n,i} : i \in I_{k,n})$ of functionally closed subsets of X such that $\mathcal{B}_{k,n} \prec \mathcal{B}_k$ and $\mathcal{B}_{k,n} \prec \mathcal{B}_{k,n+1}$ for every $n \in \mathbb{N}$ and $\bigcup_{n=1}^{\infty} \bigcup \mathcal{B}_{k,n} = X$. For all $k, n \in \mathbb{N}$ we put

$$\mathcal{F}_{k,n} = (B_{1,n,i_1} \cap \cdots \cap B_{k,n,i_k} : i_m \in I_{m,n}, 1 \le m \le k).$$

Notice that every family $\mathcal{F}_{k,n}$ is strongly functionally discrete, consists of functionally closed sets and

(a) $\mathcal{F}_{k+1,n} \prec \mathcal{F}_{k,n}$, (b) $\mathcal{F}_{k,n} \prec \mathcal{F}_{k,n+1}$, (c) $\bigcup_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \mathcal{F}_{k,n} = X$.

For every $n \in \mathbb{N}$ we apply Proposition 11 to the function f and the families $\mathcal{F}_{1,n}$, $\mathcal{F}_{2,n}, \ldots, \mathcal{F}_{n,n}$. We obtain a sequence of continuous mappings $g_n : X \to Y$ such that

$$|f(x) - g_n(x)|_Y < \frac{1}{2^k}$$

if $x \in \mathcal{F}_{k,n}$ for $k \leq n$.

Now conditions (b) and (c) imply that $g_n \to f$ pointwise on X. Hence, $f \in B_1(X, Y)$.

Let Z be a topological space and $(Z_k)_{k=1}^{\infty}$ be a sequence of sets $Z_k \subseteq Z$ such that $Z = \bigcup_{k=1}^{\infty} Z_k$. We say that the pair $(Z, (Z_k)_{k=1}^{\infty})$ has the property (*) if for every convergent sequence $(x_m)_{m=1}^{\infty}$ in Z there exists a number k such that $\{x_m : m \in \mathbb{N}\} \subseteq Z_k$.

Proposition 13. Let X be a PP-space, Y be a topological space, $n \in \mathbb{N} \cup \{0\}, (Z, (Z_k)_{k=1}^{\infty})$ have the property (*), Z_k be functionally closed in Z and $f \in CB_n(X \times Y, Z)$. Then there exists a sequence $(B_k)_{k=1}^{\infty}$ of sets of the functionally multiplicative class n in $X \times Y$ such that $\bigcup_{k=1}^{\infty} B_k = X \times Y$ and $f(B_k) \subseteq Z_k$ for every $k \in \mathbb{N}$.

PROOF: Take a sequence $(\mathcal{U}_m = (U_{i,m} : i \in I_m))_{m=1}^{\infty}$ of locally finite functionally open coverings of X and a sequence $((x_{i,m} : i \in I_m))_{m=1}^{\infty}$ of families of points from X such that

(18)
$$(\forall x \in X)((\forall m \in \mathbb{N} \ x \in U_{i_m,m}) \Longrightarrow (x_{i_m,m} \to x)).$$

By [19, Corollary 3.1] there exists a weaker metrizable topology \mathcal{T} on X in which every $U_{i,m}$ is open. Since (X, \mathcal{T}) is paracompact, for every m there exists a locally finite open covering $\mathcal{V}_m = (V_{s,m} : s \in S_m)$ which refines \mathcal{U}_m . It follows from [4, Theorem 1.5.18] that for every m there exists a locally finite closed covering $(F_{s,m} : s \in S_m)$ of (X, \mathcal{T}) such that $F_{s,m} \subseteq V_{s,m}$ for every $s \in S_m$. Now for every $s \in S_m$ we choose $i_m(s) \in I_m$ such that $F_{s,m} \subseteq U_{i_m(s),m}$.

For all $m, k \in \mathbb{N}$ and $s \in S_m$ we denote $i = i_m(s)$ and put

$$A_{s,m,k} = (f^{x_{i,m}})^{-1}(Z_k), \quad B_{m,k} = \bigcup_{s \in S_m} (F_{s,m} \times A_{s,m,k}), \quad B_k = \bigcap_{m=1}^{\infty} B_{m,k}$$

Since f belongs to the n-th Baire class with respect to the second variable, for every k the set $A_{s,m,k}$ is of the functionally multiplicative class n in Y for all $m \in \mathbb{N}$ and $s \in S_m$. Then the set $B_{m,k}$ is of the functionally multiplicative class n in $(X, \mathcal{T}) \times Y$ as a locally finite union of sets of the n-th functionally multiplicative class. Hence, B_k is of the n-th functionally multiplicative class in $(X, \mathcal{T}) \times Y$, and, consequently, in $X \times Y$ for every k.

We show that $f(B_k) \subseteq Z_k$ for every k. Fix $k \in \mathbb{N}$ and $(x, y) \in B_k$. Take a sequence $(s_m)_{m=1}^{\infty}$ of indexes $s_m \in S_m$ such that $x \in F_{s_m,m} \subseteq U_{i_m(s_m),m}$ and $f(x_{i_m(s_m),m}, y) \in Z_k$. Then $x_{i_m(s_m),m} \to_{m\to\infty} x$. Since f is continuous with respect to the first variable, $f(x_{i_m(s_m),m}, y) \to_{m\to\infty} f(x, y)$. Since Z_k is closed, $f(x, y) \in Z_k$.

It remains to show that $\bigcup_{k=1}^{\infty} B_k = X \times Y$. Let $(x, y) \in X \times Y$. Then there exists a sequence $(s_m)_{m=1}^{\infty}$ such that $s_m \in S_m$ and $x \in F_{s_m,m} \subseteq U_{i_m(s_m),m}$. Notice that $f(x_{i_m(s_m),m}, y) \to_{m\to\infty} f(x, y)$. Since $(Z, (Z_k)_{k=1}^{\infty})$ satisfies (*), there exists a number k such that the set $\{f(x_{i_m(s_m),m}, y) : m \in \mathbb{N}\}$ is contained in Z_k , i.e. $y \in A_{s_m,m,k}$ for every $m \in \mathbb{N}$. Hence, $(x, y) \in B_k$.

The following result will be useful (see [11, Proposition 5.2]).

Proposition 14. Let $0 < \alpha < \omega_1$, X be a topological space, $Z = \bigcup_{k=1}^{\infty} Z_k$ be a contractible space, $f: X \to Z$ be a mapping, $(X_k)_{k=1}^{\infty}$ be a sequence of sets of the α -th functionally additive class in X such that $X = \bigcup_{k=1}^{\infty} X_k$, $f(X_k) \subseteq Z_k$ and assume that there exists a function $f_k \in B_{\alpha}(X, Z_k)$ with $f_k|_{X_k} = f|_{X_k}$ for every $k \in \mathbb{N}$. Then $f \in B_{\alpha}(X, Z)$.

Theorem 15. Let $n \in \mathbb{N}$, X be a PP-space, Y be a topological space and Z be a contractible space. Then

$$CB_n(X \times Y, Z) \subseteq B_{n+1}(X \times Y, Z).$$

If, moreover, Z is a strongly σ -metrizable space with a perfect stratification $(Z_k)_{k=1}^{\infty}$, where every Z_k is an arcwise connected and locally arcwise connected subspace of Z, then

$$CC(X \times Y, Z) \subseteq B_1(X \times Y, Z).$$

PROOF: By the definition of a *PP*-space we choose a sequence $((h_{n,i}: i \in I_n))_{n=1}^{\infty}$ of locally finite partitions of unity $(h_{n,i}: i \in I_n)$ on X and a sequence $(\alpha_n)_{n=1}^{\infty}$ of families $\alpha_n = (x_{n,i}: i \in I_n)$ of points $x_{n,i} \in X$ such that for any $x \in X$ the condition $x \in \text{supp}h_{n,i}$ implies that $x_{n,i} \to x$. According to [19, Proposition 3.2] there exists a continuous pseudo-metric p on X such that each function $h_{n,i}$ is continuous with respect to p. Then the first inclusion $CB_n(X \times Y, Z) \subseteq B_{n+1}(X \times$ Karlova O., Mykhayluk V., Sobchuk O.

Y, Z) in fact was proved in [2, Theorem 5.3], where X is a metrically quarterstratifiable space (i.e., Hausdorff PP-space [19]). Another proof of this inclusion can be obtained analogously to the proof of Theorem 6.6 from [9].

Now we prove the second inclusion. Let $f \in CC(X \times Y, Z)$. For every $k \in \mathbb{N}$ we consider a retraction $\pi_k : Z \to Z_k$. Notice that every subspace Z_k is functionally closed in Z as the preimage of closed set under a continuous mapping $\varphi : Z \to \prod_{k=1}^{\infty} Z_k$, $\varphi(z) = (\pi_k(z))_{k=1}^{\infty}$. By Proposition 13 we take a sequence $(B_k)_{k=1}^{\infty}$ of functionally closed subsets of $X \times Y$ such that $\bigcup_{k=1}^{\infty} B_k = X \times Y$ and $f(B_k) \subseteq Z_k$ for every $k \in \mathbb{N}$. Observe that

$$f_k = \pi_k \circ f \in CC(X \times Y, Z_k) \subseteq \Sigma_1^f(X \times Y, Z_k)$$

by Proposition 10. According to Theorem 12, $f_k \in B_1(X \times Y, Z_k)$. Moreover, $f_k|_{B_k} = f|_{B_k}$. It remains to notice that every set B_k belongs to the first functionally additive class in $X \times Y$ and to apply Proposition 14.

The following result generalizes Theorem 3.3 from [10] and gives a characterization of diagonals of separately continuous mappings.

Theorem 16. Let X be a topological space, (Z, λ) be a strongly σ -metrizable equiconnected space with a perfect stratification $(Z_k)_{k=1}^{\infty}$ assigned with $\lambda, n \in \mathbb{N}$, $g: X \to Z$ and at least one of the following conditions holds:

- (1) every separately continuous mapping $h: X^{n+1} \to Z$ belongs to the *n*-th Baire class;
- (2) X is a *PP*-space (in particular, X is a metrizable space).

Then the following conditions are equivalent:

- (i) $g \in B_n(X,Z);$
- (ii) there exists a separately continuous mapping $f : X^{n+1} \to Z$ with the diagonal g.

PROOF: In the case (1) the theorem is a corollary from Theorem 6.

In the case (2) the theorem follows from Theorem 15 and case (1). \Box

The following characterizations of diagonals of separately continuous mappings can be proved similarly.

Theorem 17. Let X be a topological space, (Z, λ) be a strongly σ -metrizable equiconnected space with a perfect stratification $(Z_k)_{k=1}^{\infty}$ assigned with $\lambda, n \in \mathbb{N}$, $g: X \to Z$ and at least one of the following conditions holds:

- (1) every separately continuous mapping $h: X^2 \to Z$ belongs to the first Baire class;
- (2) X is a *PP*-space (in particular, X is a metrizable space).

Then the following conditions are equivalent:

- (i) $g \in B_n(X,Z);$
- (ii) there exists a mapping $f \in CB_{n-1}(X \times X, Z) \cap CC_{n-1}(X \times X, Z)$ with the diagonal g.

5. Examples and questions

For a topological space Y by $\mathcal{F}(Y)$ we denote the space of all nonempty closed subsets of Y with the Vietoris topology.

A multi-valued mapping $f: X \to \mathcal{F}(Y)$ is said to be *upper (lower) continuous* at $x_0 \in X$ if for any open set $V \subseteq Y$ with $f(x_0) \subseteq V$ ($f(x_0) \cap V \neq \emptyset$) there exists a neighborhood U of x_0 in X such that $f(x) \subseteq V$ ($f(x) \cap V \neq \emptyset$) for every $x \in U$. If a multi-valued mapping f is upper and lower continuous at x_0 simultaneously, then it is called *continuous at* x_0 .

Proposition 18. There exists an equiconnected space (Z, λ) with a metrizable equiconnected subspace Z_1 and a mapping $g \in B_1([0, 1], Z)$ such that

- (1) there exists a sequence $(g_n)_{n=1}^{\infty}$ of continuous mappings $g_n : [0,1] \to Z_1$ which is pointwise convergent to g;
- (2) g is not a diagonal of any separately continuous mapping $f: [0,1]^2 \to Z$.

PROOF: Let $Y = [0, 1] \times [0, 1)$ and

$$Z = \{\{x\} \times [0, y] : x \in [0, 1], y \in [0, 1)\} \cup \{\{x\} \times [0, 1) : x \in [0, 1]\}$$

be a subspace of $\mathcal{F}(Y)$. Notice that $Z_1 = \{\{x\} \times [0, y] : x \in [0, 1], y \in [0, 1)\}$ is dense metrizable subspace of Z, since Z_1 consists of compacts subsets of a metrizable space Y.

We show that Z is equiconnected. Firstly we consider the space $Q = [0, 1]^2$. For $q_1 = (x_1, y_1), q_2 = (x_2, y_2) \in Q$ we set

$$\theta(q_1, q_2) = \min\{y_1, y_2, 1 - |x_1 - x_2|\},\$$

 $\begin{aligned} &\alpha_1(q_1, q_2) = y_1 - \theta(q_1, q_2), \ \alpha_2(q_1, q_2) = |x_1 - x_2|, \ \alpha_3(q_1, q_2) = y_2 - \theta(q_1, q_2) \\ &\text{and} \ \alpha(q_1, q_2) = \alpha_1(q_1, q_2) + \alpha_2(q_1, q_2) + \alpha_3(q_1, q_2). \end{aligned} \\ \text{We denote } \theta = \theta(q_1, q_2), \\ &\alpha_1 = \alpha_1(q_1, q_2), \ \alpha_2 = \alpha_2(q_1, q_2), \ \alpha_3 = \alpha_3(q_1, q_2), \ \alpha = \alpha(q_1, q_2) \end{aligned} \\ \text{and set}$ (19)

$$\mu(q_1, q_2, t) = \begin{cases} (x_1, y_1 - t\alpha), & q_1 \neq q_2, t \in [0, \frac{\alpha_1}{\alpha}];\\ (x_1 + (t\alpha - \alpha_1) \text{sign}(x_2 - x_1), \theta), & q_1 \neq q_2, t \in [\frac{\alpha_1}{\alpha}, \frac{\alpha_1 + \alpha_2}{\alpha}];\\ (x_2, \theta + t\alpha - \alpha_1 - \alpha_2), & q_1 \neq q_2, t \in [\frac{\alpha_1 + \alpha_2}{\alpha}, \frac{\alpha_1 + \alpha_2 + \alpha_3}{\alpha}];\\ q_1, & q_1 = q_2, t \in [0, 1]. \end{cases}$$

The function $\mu:Q^2\times[0,1]\to Q$ is continuous and the space (Q,μ) is equiconnected.

Consider the continuous bijection $\varphi: Z \to Q$,

(20)
$$\varphi(z) = \begin{cases} (x, y), & z = x \times [0, y]; \\ (x, 1), & z = x \times [0, 1). \end{cases}$$

Note that the inverse mapping $\psi = \varphi^{-1} : Q \to Z$ is lower continuous on Q and continuous on $[0,1] \times [0,1)$. For every $z_1, z_2 \in Z$ and $t \in [0,1]$ we set

$$\lambda(z_1, z_2, t) = \psi\left(\mu(\varphi(z_1), \varphi(z_2), t)\right).$$

Obviously, the mapping $\lambda : Z^2 \times [0,1] \to Z$ is lower continuous and continuous at a point (z_1, z_2, t) if $\lambda(z_1, z_2, t) \in Z_1$.

We show that λ is upper continuous at a point (z_1, z_2, t) if $\lambda(z_1, z_2, t) \in Z \setminus Z_1$. Let $\lambda(z_1, z_2, t_0) \in Z \setminus Z_1$. Then $\lambda(z_1, z_2, t_0) = z_1$ or $\lambda(z_1, z_2, t_0) = z_2$. Suppose that $\lambda(z_1, z_2, t_0) = z_1 = x_1 \times [0, 1)$ and $z_2 \subseteq x_2 \times [0, 1)$. Fix a set G open in Y such that $z_1 \subseteq G$.

Let $x_1 \neq x_2$. Note that $t_0 = 0$. Choose a neighborhood U_1 of z_1 , a neighborhood U_2 of z_2 and $\delta > 0$ such that $z \subseteq G$ for every $z \in U_1$ and

$$\frac{\alpha_1(\varphi(z'),\varphi(z''))}{\alpha(\varphi(z'),\varphi(z''))} \ge \delta$$

for every $z' \in U_1$ and $z'' \in U_2$. According to (19), $\lambda(z', z'', t) \subseteq G$ for every $z' \in U_1, z'' \in U_2$ and $t \in [0, \delta)$.

Now let $x_1 = x_2$. Choose a set G_0 open in Y such that $z_1 \subseteq G_0 \subseteq G$ and if $(x', y), (x'', y) \in G_0$ then $(\{x'\} \times [0, y]) \cup ([x', x''] \times \{y\}) \subseteq G_0$. It follows from (19) that $\lambda(z', z'', t) \subseteq G_0$ for every $z', z'' \subseteq G_0$ and $t \in [0, 1]$.

In the case of $\lambda(z_1, z_2, t_0) = z_2 = x_2 \times [0, 1)$ we argue analogously. Thus the mapping λ is continuous and, consequently, (Z, λ) is equiconnected. Moreover, $\lambda(Z_1 \times Z_1 \times [0, 1]) \subseteq Z_1$. Hence, Z_1 is an equiconnected subspace of Z.

We define a mapping $g: [0,1] \to Z$,

$$g(x) = \{x\} \times [0,1)$$

and for every $n \in \mathbb{N}$ we consider a continuous mapping $g_n : [0,1] \to Z_1$,

$$g_n(x) = \{x\} \times \left[0, 1 - \frac{1}{n}\right].$$

It is easy to see that $\lim_{n\to\infty} g_n(x) = g(x)$ for every $x \in [0, 1]$, i.e. the condition (1) of the proposition holds.

Now we verify (2). Assume to the contrary that there exists a separately continuous mapping $f : [0,1]^2 \to Z$ such that f(x,x) = g(x) for every $x \in X$. Since f is separately upper continuous on the set $\Delta = \{(x,x) : x \in [0,1]\}$, for every $x \in [0,1]$ there exists $\delta_x \in (0,1)$ such that

$$(f(x,y) \cup f(y,x)) \cap ([0,1] \times [1-\delta_x,1)) \subseteq g(x)$$

for every $y \in [0, 1]$ with $|x - y| < \delta_x$.

Take $\delta > 0$, an open nonempty set $U \subseteq [0,1]$ and a set A dense in U such that $\delta_x \geq \delta$ for every $x \in A$. Without loss of generality we may suppose that

120

 $\operatorname{diam}(U) < \delta$. Then

$$f(x,y) \cap ([0,1] \times [1-\delta,1)) \subseteq g(x) \cap g(y)$$

for any $x, y \in A$. Since $g(x) \cap g(y) = \emptyset$ for any distinct $x, y \in [0, 1]$, $f(x, y) \subseteq [0, 1] \times [0, 1 - \delta]$ for any distinct $x, y \in A$. Since f is separately lower continuous and A is dense in U, $f(x, y) \subseteq [0, 1] \times [0, 1 - \delta]$ for any $x, y \in U$, which leads to a contradiction, provided g is a diagonal of f.

Question 1. Let Z be a topological vector space and $g \in B_1([0,1],Z)$. Does there exist a separately continuous mapping $f : [0,1]^2 \to Z$ with the diagonal g?

Acknowledgment. The authors would like to thank the reviewer for his helpful comments that greatly contributed to improving the final version of the paper.

References

- Baire R., Sur les fonctions de variables reélles, Ann. Mat. Pura Appl., ser. 3 (1899), no. 3, 1–123.
- [2] Banakh T., (Metrically) Quater-stratifable spaces and their applications in the theory of separately continuous functions, Topology Appl. 157 (2010), no. 1, 10–28.
- [3] Burke M., Borel measurability of separately continuous functions, Topology Appl. 129 (2003), no. 1, 29–65.
- [4] Engelking R., General Topology, revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [5] Fosgerau M., When are Borel functions Baire functions?, Fund. Math. 143 (1993), 137– 152.
- [6] Hahn H., Theorie der reellen Funktionen. 1. Band, Springer, Berlin, 1921.
- [7] Hansell R.W., Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161 (1971), 145–169.
- [8] Hansell R.W., On Borel mappings and Baire functions, Trans. Amer. Math. Soc. 194 (1974), 145–169.
- Karlova O., Maslyuchenko V., Mykhaylyuk V., Equiconnected spaces and Baire classification of separately continuous functions and their analogs, Cent. Eur. J. Math., 10 (2012), no. 3, 1042–1053.
- [10] Karlova O., Mykhaylyuk V., Sobchuk O., Diagonals of separately continuous functions and their analogs, Topology Appl. 160 (2013), 1–8.
- [11] Karlova O., Classification of separately continuous functions with values in sigmametrizable spaces, Applied Gen. Top. 13 (2012), no. 2, 167–178.
- [12] Karlova O., Functionally σ -discrete mappings and a generalization of Banach's theorem, Topology Appl. **189** (2015), 92–106.
- [13] Karlova O., On Baire classification of mappings with values in connected spaces, Eur. J. Math., DOI: 10.1007/s40879-015-0076-y.
- [14] Lebesgue H., Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287.
- [15] Lebesgue H., Sur les fonctions respresentables analytiquement, Journ. de Math. 2 (1905), no. 1, 139–216.
- [16] Maslyuchenko O., Maslyuchenko V., Mykhaylyuk V., Sobchuk O., Paracompactness and separately continuous mappings, General Topology in Banach Spaces, Nova Sci. Publ., Huntington, New York, 2001, pp. 147–169.
- [17] Moran W., Separate continuity and support of measures, J. London. Math. Soc. 44 (1969), 320–324.
- [18] Mykhaylyuk V., Construction of separately continuous functions of n variables with the given restriction, Ukr. Math. Bull. 3 (2006), no. 3, 374–381 (in Ukrainian).

- [19] Mykhaylyuk V., Baire classification of separately continuous functions and Namioka property, Ukr. Math. Bull. 5 (2008), no. 2, 203–218 (in Ukrainian).
- [20] Mykhaylyuk V., Sobchuk O., Fotij O., Diagonals of separately continuous multivalued mappings, Mat. Stud. 39 (2013), no. 1, 93–98 (in Ukrainian).
- [21] Rudin W., Lebesgue's first theorem, Math. Analysis and Applications, Part B. Adv. in Math. Supplem. Studies, 7B (1981), 741–747.
- [22] Sobchuk O., Baire classification and Lebesgue spaces, Sci. Bull. Chernivtsi Univ. 111 (2001), 110–112 (in Ukrainian).
- [23] Sobchuk O., PP-spaces and Baire classification, Int. Conf. on Funct. Analysis and its Appl. Dedic. to the 110-th ann. of Stefan Banach (May 28-31, Lviv) (2002), p. 189.
- [24] Schaefer H., Topological Vector Spaces, Macmillan, 1966.
- [25] Vera G., Baire measurability of separately continuous functions, Quart. J. Math. Oxford. 39 (1988), no. 153, 109–116.
- [26] Veselý L., Characterization of Baire-one functions between topological spaces, Acta Univ. Carol., Math. Phys. 33 (1992), no. 2, 143–156.

DEPARTMENT OF MATHEMATICAL ANALYSIS, FACULTY OF MATHEMATICS AND INFOR-MATICS, CHERNIVTSI NATIONAL UNIVERSITY, KOTSYUBYNS'KOHO STR., 2, CHERNIVTSI, UKRAINE

E-mail: maslenizza.ua@gmail.com vmykhaylyuk@ukr.net ss220367@ukr.net

(Received March 18, 2015, revised October 15, 2015)