Notes on strongly Whyburn spaces

MASAMI SAKAI

Abstract. We introduce the notion of a strongly Whyburn space, and show that a space X is strongly Whyburn if and only if $X \times (\omega + 1)$ is Whyburn. We also show that if $X \times Y$ is Whyburn for any Whyburn space Y, then X is discrete.

Keywords: Whyburn; strongly Whyburn; Fréchet-Urysohn

Classification: 54A25; 54D55

1. Introduction

Throughout this paper, all spaces are assumed to be T_2 , unless a specific separation axiom is indicated.

A space X is said to be *Fréchet-Urysohn* if $A \,\subset X$ and $p \in \overline{A}$ imply that there is a sequence $\{p_n : n \in \omega\} \subset A$ converging to p. A space X is said to be strongly Fréchet-Urysohn [14] (or, countably bi-sequential [9]) if for a decreasing sequence $\{A_n : n \in \omega\}$ of subsets of $X, p \in \bigcap \{\overline{A}_n : n \in \omega\}$ implies that there are points $p_n \in A_n$ converging to p. Every strongly Fréchet-Urysohn space is Fréchet-Urysohn. Michael [9, Proposition 4.D.5] showed that a space X is strongly Fréchet-Urysohn if and only if $X \times \mathbb{I}$ is Fréchet-Urysohn, where \mathbb{I} is the closed unit interval. In this result, \mathbb{I} can be replaced by the convergent sequence $\omega + 1$: see the proof of [9, Proposition 4.D.5].

According to recent literature (e.g., [4], [12]), a space X is said to be Whyburn if $A \subset X$ and $p \in \overline{A} \setminus A$ imply that there is a subset $B \subset A$ such that $\overline{B} = \{p\} \cup B$. Every Fréchet-Urysohn space is Whyburn, because the convergent sequence is closed in a T_2 -space. This notion was considered in Whyburn [16], and was called property H. Whyburn showed in [16, Corollary 1] that every quotient map onto a T_1 -space Y having property H is pseudo-open (=hereditarily quotient). Later, introducing the notion of an accessibility space [17] which is weaker than property H, he sharpened this result. He showed that for a T_1 -space Y, every quotient map onto Y is pseudo-open if and only if Y is an accessibility space. A space having property H is always an accessibility space, and conversely a regular accessibility space has property H. A Whyburn space is sometimes called an AP-space according to [13].

DOI 10.14712/1213-7243.2015.139

The author was supported by JSPS KAKENHI Grant Number 25400213.

Sakai M.

Even if a space X is Whyburn, $X \times (\omega + 1)$ need not be Whyburn. Such examples are given in Bella and Yaschenko [5]. Aull [3, Theorem 11] showed that a T_2 -space X is a k-space and an accessibility space if and only if it is Fréchet-Urysohn.¹ Hence we have:

Proposition 1.1. For a k-space $X, X \times (\omega + 1)$ is Whyburn if and only if X is strongly Fréchet-Urysohn.

PROOF: Assume that $X \times (\omega + 1)$ is Whyburn. Since $X \times (\omega + 1)$ is a k-space [6, Theorem 3.3.27], by Aull's result, $X \times (\omega + 1)$ is Fréchet-Urysohn. Thus X is strongly Fréchet-Urysohn by Michael's result. The converse immediately follows from Michael's result mentioned above.

Let S_{ω} be the space obtained by identifying the limits of countably many convergent sequences. This space is Fréchet-Urysohn (hence, a k-space), but not strongly Fréchet-Urysohn. Therefore, $S_{\omega} \times (\omega + 1)$ is not Whyburn by the preceding proposition. One purpose of this paper is to make clear when $X \times (\omega+1)$ is Whyburn. Another topic is when $X \times Y$ is Whyburn for any Whyburn space Y.

2. Strongly Whyburn spaces

Definition 2.1. A space X is strongly Whyburn if for any sequence $\{A_n : n \in \omega\}$ of subsets in X and a point $p \in X \setminus \bigcup \{A_n : n \in \omega\}$, $p \in \bigcap \{\overline{\bigcup_{m \ge n} A_m} : n \in \omega\}$ implies that there is a sequence $\{B_n : n \in \omega\}$ of closed subsets in X such that $B_n \subset A_n$ and $\{p\} = \bigcap \{\overline{\bigcup_{m \ge n} B_m} : n \in \omega\}$.

In the definition above, some B_n may be empty, and note that the condition $\{p\} = \bigcap \{\overline{\bigcup_{m \ge n} B_m} : n \in \omega\}$ holds if and only if (a) the closed family $\{B_n : n \in \omega\}$ in X is locally finite at any point in $X \setminus \{p\}$, and (b) $p \in \overline{\bigcup \{B_n : n \in \omega\}}$ holds. If all A_n 's are identical with a set A, there is an F_{σ} -subset $F \subset A$ in X such that $\overline{F} = \{p\} \cup F$. Therefore, every strongly Whyburn space is Whyburn. Moreover, we can easily observe that every strongly Fréchet-Urysohn space is strongly Whyburn. Thus we have the implications below.

$$\begin{array}{rccc} {\rm strongly \ Fr\'echet-Urysohn} & \to & {\rm Fr\'echet-Urysohn} \\ & \downarrow & & \downarrow \\ {\rm strongly \ Whyburn} & \to & {\rm Whyburn} \end{array}$$

Theorem 2.2. For a space X, the following are equivalent:

(1) X is strongly Whyburn,

(2) $X \times (\omega + 1)$ is Whyburn.

PROOF: (1) \rightarrow (2) We have only to check the Whyburn property at a point $(p, \omega) \in X \times (\omega + 1)$. Let $A \subset X \times (\omega + 1)$ and assume $(p, \omega) \in \overline{A} \setminus A$. If $(p, \omega) \in \overline{A \cap (X \times \{\omega\})}$, using the Whyburn property of X, we can take a subset $B \subset X \cap (X \times \{\omega\})$.

¹In particular, every compact T_2 Whyburn space is Fréchet-Urysohn. This fact was given in [1, Proposition 1 and Theorem 1] and [8, Theorem 1].

 $A \cap (X \times \{\omega\}) \text{ such that } \overline{B} = \{(p, \omega)\} \cup B. \text{ Therefore, we may put } A = \bigcup \{A_n \times \{n\} : n \in \omega\} \text{ for some } A_n \subset X. \text{ If } p \in A_n \text{ for infinitely many } n \in \omega, \text{ then we can take a sequence in } A \text{ converging to } (p, \omega). \text{ Therefore, we may assume } p \notin \bigcup \{A_n : n \in \omega\}. \text{ The condition } (p, \omega) \in \overline{A} \text{ implies } p \in \bigcap \{\overline{\bigcup_{m \ge n} A_m} : n \in \omega\}, \text{ so there are closed subsets } B_n \text{ in } X \text{ such that } B_n \subset A_n \text{ and } \{p\} = \bigcap \{\overline{\bigcup_{m \ge n} B_m} : n \in \omega\}. \text{ Let } B = \bigcup \{B_n \times \{n\} : n \in \omega\}. \text{ The condition } p \in \bigcap \{\overline{\bigcup_{m \ge n} B_m} : n \in \omega\} \text{ obviously implies } (p, \omega) \in \overline{B}. \text{ We observe that } \{(p, \omega)\} \cup B \text{ is closed. Let } q \in X \setminus \{p\}. \text{ By } \{p\} = \bigcap \{\overline{\bigcup_{m \ge n} B_m} : n \in \omega\}, \text{ there are a neighborhood } U \text{ of } q \text{ and some } n \in \omega \text{ such that } U \cap (\bigcup \{B_m : m \ge n\}) = \emptyset. \text{ Then we have } (U \times [n, \omega]) \cap B = \emptyset. \text{ Thus } (q, \omega) \notin \overline{B}. \text{ } \end{bmatrix}$

(2) \rightarrow (1) Assume that $A_n \subset X$, $p \in X \setminus \bigcup \{A_n : n \in \omega\}$ and $p \in \bigcap \{\overline{\bigcup_{m \ge n} A_m} : n \in \omega\}$. Let $A = \bigcup \{A_n \times \{n\} : n \in \omega\}$. Then obviously $(p, \omega) \in \overline{A}$. Since $X \times (\omega + 1)$ is Whyburn, there is a subset $B \subset A$ such that $\overline{B} = \{(p, \omega)\} \cup B$. We can put $B = \bigcup \{B_n \times \{n\} : n \in \omega\}$ for some $B_n \subset A_n$. Then each B_n is closed in X, and the condition $(p, \omega) \in \overline{B}$ implies $p \in \bigcap \{\overline{\bigcup_{m \ge n} B_m} : n \in \omega\}$. Let $q \in X \setminus \{p\}$. By the condition $(q, \omega) \notin \overline{B}$, there are a neighborhood U of q and some $n \in \omega$ such that $(U \times [n, \omega]) \cap B = \emptyset$. Hence we have $q \notin \bigcup \{B_m : m \ge n\}$. Consequently we have $\{p\} = \bigcap \{\overline{\bigcup_{m \ge n} B_m} : n \in \omega\}$.

Corollary 2.3. For a k-space X, X is strongly Whyburn if and only if it is strongly Fréchet-Urysohn.

Unfortunately, the author does not know if for a strongly Whyburn space X, $X \times \mathbb{I}$ is Whyburn. A space X is said to have *countable fan-tightness* [2] if whenever $A_n \subset X$ and $p \in \bigcap \{\overline{A}_n : n \in \omega\}$, there are finite subsets $F_n \subset A_n$ such that $p \in \bigcup \{F_n : n \in \omega\}$. It is known [5, Corollary 3.4] that if a regular space X has countable fan-tightness and every point of X is a G_{δ} -set, then X is Whyburn. Note that if a space X has countable fan-tightness, so does $X \times Y$ for any first-countable space Y. Therefore we can say that if a regular space X has countable fan-tightness and every point of X is a G_{δ} -set, then $X \times Y$ is Whyburn for any first-countable space Y (in particular, X is strongly Whyburn).

A space is said to be *submaximal* if every dense subset is open (equivalently, every subset with the empty interior is closed and discrete). Every regular submaximal space is Whyburn [5, Proposition 1.3], but if X is a countable dense-initself submaximal space, $X \times (\omega + 1)$ is not Whyburn [5, Theorem 2.3]. Hence, a countable submaximal dense-in-itself space cannot be strongly Whyburn. It looks interesting to give a direct proof of this fact, using the definition of the strong Whyburn property. Our idea owes to Bella and Yaschenko [5].

Proposition 2.4. If a space X is countable, dense-in-itself and submaximal, then it is not strongly Whyburn.

PROOF: Fix a point $p \in X$, and let $X \setminus \{p\} = \{x_n : n \in \omega\}$. Let $A_n = \{x_n\}$ for each $n \in \omega$. Then obviously $p \in \bigcap \{\overline{\bigcup_{m>n} A_m} : n \in \omega\}$. Assume that there is

Sakai M.

a sequence $\{B_n : n \in \omega\}$ of closed subsets in X such that $B_n \subset A_n$ and $\{p\} = \bigcap\{\overline{\bigcup_{m \ge n} B_m} : n \in \omega\}$. Then $B_n = \emptyset$, or $B_n = \{x_n\}$. Let $I = \{n \in \omega : B_n \neq \emptyset\}$. Since the family $\{B_n : n \in I\}$ is locally finite at each point in $X \setminus \{p\}$, the set $C = \{x_n : n \in I\}$ is a discrete subspace of X, so C has the empty interior. Hence C is closed in X. This is a contradiction, because of $p \in \overline{C}$.

We give one application of Theorem 2.2. For a Tychonoff space X, we denote by $C_p(X)$ the space of all real-valued continuous functions with the topology of pointwise convergence.

Lemma 2.5 ([11, Theorem 2.10]). If $X \times Y$ contains a homeomorphic copy of S_{ω} and X is first-countable, then Y contains a homeomorphic copy of S_{ω} .

Proposition 2.6. If $C_p(X)$ is Whyburn, then S_{ω} cannot be embedded into $C_p(X)$.

PROOF: Fix a point $x \in X$. Note that $C_p(X)$ is homeomorphic to $C_p(X, x) \times \mathbb{R}$, where $C_p(X, x) = \{f \in C_p(X) : f(x) = 0\}$ and \mathbb{R} is the real line. Since $C_p(X)$ is Whyburn, $C_p(X, x) \times (\omega + 1)$ is also Whyburn, so $C_p(X, x)$ is strongly Whyburn. If $C_p(X)$ has a homeomorphic copy of S_{ω} , by the preceding lemma, $C_p(X, x)$ has a homeomorphic copy of S_{ω} . This is a contradiction.

The Whyburn property for $C_p(X)$ were investigated in [5], [10] and [15]. So far the author knows, there is no precise characterization (in terms of X) for $C_p(X)$ to be Whyburn.

Let \mathcal{F} be a filter on a set. Then \mathcal{F} is said to be *free* if $\bigcap \mathcal{F} = \emptyset$ holds, and have the *countable intersection property* if for each countable subfamily $\mathcal{G} \subset \mathcal{F}$, $\bigcap \mathcal{G} \neq \emptyset$ holds. If \mathcal{F} is an ultrafilter, then $\bigcap \mathcal{G} \neq \emptyset$ is equivalent to $\bigcap \mathcal{G} \in \mathcal{F}$. For the discrete space $D(\kappa)$ of cardinality $\kappa \geq \omega$, let $p \in \beta D(\kappa) \setminus D(\kappa)$, where $\beta D(\kappa)$ is the Stone-Čech compactification of $D(\kappa)$ (i.e., p is a free ultrafilter on $D(\kappa)$). Let $X(p) = \{p\} \cup D(\kappa)$ be the subspace of $\beta D(\kappa)$. We examine whether X(p) is strongly Whyburn.

A space is said to be a *P*-space if every G_{δ} -subset is open. There are many nondiscrete Whyburn *P*-spaces, for example, consider the one-point Lindelöfication of the discrete space of cardinality ω_1 . In contrast with this fact, we have the following.

Lemma 2.7. Every strongly Whyburn P-space is discrete.

PROOF: Let X be a strongly Whyburn space and assume that there is a nonisolated point $p \in X$. Then $p \in \overline{X \setminus \{p\}}$, so there is an F_{σ} -subset $F \subset X \setminus \{p\}$ in X such that $p \in \overline{F}$. This implies that X is not a P-space.

Theorem 2.8. Let $p \in \beta D(\kappa) \setminus D(\kappa)$. Then the following assertions are equivalent:

- (1) X(p) is strongly Whyburn,
- (2) p does not have the countable intersection property,
- (3) $X(p) \times Y$ is Whyburn for any first-countable space Y.

PROOF: (1) \rightarrow (2) If p has the countable intersection property, then X(p) is obviously a P-space. By Lemma 2.7, X(p) is not strongly Whyburn.

 $(3) \rightarrow (1)$ is trivial.

 $(2) \rightarrow (3)$ We have only to check the Whyburn property at $(p, y) \in X(p) \times Y$. Suppose $(p, y) \in \overline{A} \setminus A$ for some subset $A \subset X(p) \times Y$. Without loss of generality, we may assume $A \subset D(\kappa) \times Y$. We put $A = \bigcup \{\{\alpha\} \times A_{\alpha} : \alpha < \kappa\}$, where $A_{\alpha} \subset Y$ and some A_{α} may be empty. Let $\{U_n : n \in \omega\}$ be an open neighborhood base at y such that $U_n \supset U_{n+1}$. For each $n \in \omega$, we put $P_n = \{\alpha < \kappa : A_{\alpha} \cap U_n \neq \emptyset\}$. Then $P_n \supset P_{n+1}$, and $P_n \in p$ by the condition $(p, y) \in \overline{A}$. Using (2), we can take subsets $Q_n \subset P_n$ such that $Q_n \in p$, $Q_n \supset Q_{n+1}$ and $\bigcap \{Q_n : n \in \omega\} = \emptyset$. For each $n \in \omega$ and $\alpha \in Q_n \setminus Q_{n+1}$, take a point $y_{n,\alpha} \in U_n \cap A_{\alpha}$. We define a subset $B \subset A$ as follows:

$$B = \{ (\alpha, y_{n,\alpha}) : n \in \omega, \alpha \in Q_n \setminus Q_{n+1} \}.$$

First we observe $(p, y) \in \overline{B}$. Let N be a neighborhood of (p, y) in $X(p) \times Y$. Take $R \in p$ and $n \in \omega$ satisfying $(\{p\} \cup R) \times U_n \subset N$. Since $R \cap Q_n \neq \emptyset$ and $\bigcap \{Q_k : k \in \omega\} = \emptyset$, there is some $k \geq n$ such that $R \cap (Q_k \setminus Q_{k+1}) \neq \emptyset$. If $\alpha \in R \cap (Q_k \setminus Q_{k+1})$, then $(\alpha, y_{k,\alpha}) \in B \cap ((\{p\} \cup R) \times U_n) \subset B \cap N$. Thus we have $(p, y) \in \overline{B}$. Next we observe $\overline{B} = B \cup \{(p, y)\}$. For a point $y' \in Y \setminus \{y\}$, we see $(p, y') \notin \overline{B}$. Since Y is T_2 , there are an open neighborhood V of y' and $n \in \omega$ such that $V \cap U_n = \emptyset$. We consider the open neighborhood $(\{p\} \cup Q_n) \times V$ of (p, y'). Suppose $((\{p\} \cup Q_n) \times V) \cap B \neq \emptyset$. Then there are some $k \in \omega$ and $\alpha \in Q_k \setminus Q_{k+1}$ such that $(\alpha, y_{k,\alpha}) \in (\{p\} \cup Q_n) \times V$. The conditions $\alpha \notin Q_{k+1}$ and $\alpha \in Q_n$ imply $n \leq k$. On the other hand, $y_{k,\alpha} \in U_k$ and $y_{k,\alpha} \notin U_n$ (because, $y_{k,\alpha} \in V$) imply k < n. This is a contradiction. Thus we have $(p, y') \notin \overline{B}$. Therefore $X(p) \times Y$ is Whyburn.

We refer to [7, Chapter 12] on measurable and non-measurable cardinals. What we have to recall is that for a set X, every ultrafilter p on X with the countable intersection property satisfies $\bigcap p \neq \emptyset$ if and only if the cardinality of X is non-measurable [7, 12.2]. By Theorem 2.8, we have the following.

Corollary 2.9. The following assertions hold.

- (1) If \mathfrak{m} is a measurable cardinal and p is a free ultrafilter on $D(\mathfrak{m})$ with the countable intersection property, then X(p) is not strongly Whyburn.
- (2) If n is a non-measurable cardinal and p is a free ultrafilter on D(n), then X(p) is strongly Whyburn.

3. κ -Whyburn spaces

Finally, in this section, we investigate when $X \times Y$ is Whyburn for any Whyburn space Y. If $X \times Y$ is Fréchet-Urysohn for any Fréchet-Urysohn space Y, then Y is discrete. Because, if X is not discrete, then X contains the convergent sequence $\omega + 1$, so the product $X \times S_{\omega}$ is not Fréchet-Urysohn.

Sakai M.

Temporarily, for an infinite cardinal κ , a space X is said to be κ -Whyburn if $A \subset X$, $|A| \leq \kappa$ and $p \in \overline{A} \setminus A$ imply that there is a subset $B \subset A$ such that $\overline{B} = \{p\} \cup B$. Obviously a space is Whyburn if and only if it is κ -Whyburn for each infinite cardinal κ .

Theorem 3.1. For an infinite cardinal κ and a space X, the following assertions are equivalent:

- (1) every subset $A \subset X$ with $|A| \leq \kappa$ is closed (equivalently, closed and discrete) in X,
- (2) $X \times Y$ is κ -Whyburn for any κ -Whyburn space Y,
- (3) $X \times Y$ is κ -Whyburn for any Whyburn space Y.

PROOF: (1) \rightarrow (2) Let Y be a κ -Whyburn space, and assume that $A \subset X \times Y$, $|A| \leq \kappa$ and $(p,q) \in \overline{A} \setminus A$. Let $\pi_X : X \times Y \to X$ be the projection. Since the set $\pi_X(A \setminus (\{p\} \times Y))$ is closed in X, we have $(p,q) \in \overline{A \cap (\{p\} \times Y)}$. Applying the κ -Whyburn property of Y, we can take a subset $B \subset A$ such that $\overline{B} = \{(p,q)\} \cup B$. (2) \rightarrow (3) is trivial.

We show $(3) \to (1)$. Note that X is, at least, κ -Whyburn. Assume the contrary of (1). Then there is a subset $A \subset X$ such that A is not closed in X and $|A| \leq \kappa$. Let $|A| = \lambda \leq \kappa$, and let $p \in \overline{A} \setminus A$. The subspace $S = \{p\} \cup A$ of X is Whyburn, because of $|S| \leq \kappa$. For each $\alpha < \lambda$, let $Y_{\alpha} = \{p_{\alpha}\} \cup A_{\alpha}$ be a homeomorphic copy of S, where $p_{\alpha} = p$ and $A_{\alpha} = A$. Let $Y = \{\tilde{p}\} \cup (\bigcup_{\alpha < \lambda} A_{\alpha})$ be the quotient space of the topological sum of Y_{α} 's obtained by collapsing the set $\{p_{\alpha} : \alpha < \lambda\}$ to one point \tilde{p} . It is not difficult to check that Y is Whyburn. Since $|S \times Y| \leq \kappa$, we have only to see that $S \times Y$ is not Whyburn. Let $f : A \to \lambda$ be a bijection. We put $E = \bigcup\{\{x\} \times A_{f(x)} : x \in A\}$, then obviously $(p, \tilde{p}) \in \overline{E} \setminus E$. If $S \times Y$ is Whyburn, there is a subset $F \subset E$ such that $\overline{F} = \{(p, \tilde{p})\} \cup F$. The set F is of the form $F = \bigcup\{\{x\} \times B_{f(x)} : x \in A\}$, where $B_{f(x)} \subset A_{f(x)}$. Since $\{(p, \tilde{p})\} \cup F$ is closed, $\bigcup\{B_{f(x)} : x \in A\}$ is closed in Y. This is a contradiction, because of $(p, \tilde{p}) \in \overline{F}$. Thus $S \times Y$ is not Whyburn. \Box

Applying the preceding theorem, we immediately have:

Corollary 3.2. For a space $X, X \times Y$ is Whyburn for any Whyburn space Y if and only if X is discrete.

References

- Arhangel'skii A.V., A characterization of very k-spaces, Czechoslovak Math. J. 18 (1968), 392–395.
- [2] Arhangel'skii A.V., Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Math. Dokl. 33 (1986), 396–399.
- [3] Aull C.E., Accessibility spaces, k-spaces and initial topologies, Czechoslovak Math. J. 29 (1979), 178–186.
- Bella A., Costantini C., Spadaro S., P-spaces and the Whyburn property, Houston J. Math. 37 (2011), 995–1015.
- [5] Bella A., Yaschenko I.V., On AP and WAP spaces, Comment. Math. Univ. Carolin. 40 (1999), 531–536.

- [6] Engelking R., General Topology, revised and completed edition, Helderman Verlag, Berlin, 1989.
- [7] Gillman L., Jerison M., Rings of continuous functions, reprint of the 1960 edition, Graduate Texts in Mathematics, 43, Springer, New York-Heidelberg, 1976.
- [8] McMillan E.R., On continuity conditions for functions, Pacific J. Math. 32 (1970), 479– 494.
- [9] Michael E., A quintuple quotient quest, Gen. Topology Appl. 2 (1972), 91–138.
- [10] Murtinová E., On (weakly) Whyburn spaces, Topology Appl. 155 (2008), 2211–2215.
- [11] Nogura T., Tanaka Y., Spaces which contains a copy of S_ω or S₂ and their applications, Topology Appl. **30** (1988), 51–62.
- [12] Pelant J., Tkachenko M.G., Tkachuk V.V., Wilson R.G., Pseudocompact Whyburn spaces need not be Fréchet, Proc. Amer. Math. Soc. 131 (2002), 3257–3265.
- [13] Pultr A., Tozzi A., Equationally closed subframes and representations of quotient spaces, Cahiers de Topologie et Géom. Différentielle Catég. 34 (1993), 167–183.
- [14] Siwiec F., Sequence-covering and countably bi-quotient mappings, Gen. Topology Appl. 1 (1971), 143–154.
- [15] Tkachuk V.V., Yaschenko I.V., Almost closed sets and topologies they determine, Comment. Math. Univ. Carolin. 42 (2001), 395–405.
- [16] Whyburn G.T., Mappings on inverse sets, Duke Math. J. 23 (1956), 237–240.
- [17] Whyburn G.T., Accessibility spaces, Proc. Amer. Math. Soc. 24 (1970), 181-185.

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, HIRATSUKA 259-1293, JAPAN *E-mail:* sakaim01@kanagawa-u.ac.jp

(Received January 27, 2015)