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Normability of gamma spaces

FiLip SOUDSKY

Abstract. We give a full characterization of normability of Lorentz spaces I'}.
This result is in fact known since it can be derived from Kaminska A., Ma-
ligranda L., On Lorentz spaces, Israel J. Funct. Anal. 140 (2004), 285-318. In
this paper we present an alternative and more direct proof.
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1. Introduction and the main result

In this paper we present a complete characterization of those parameters p
and w, where p € (0,1) and w is a nonnegative measurable function (weight), for
which the corresponding classical Lorentz space I'?, (the precise definition is given
below) is normable. By this we mean that the functional || - ||r» is equivalent to
a norm. We in fact prove two characterizations, quite different in nature. One of
them is a certain integrability condition on the weight while the other states that
the corresponding space coincides with the space L' 4+ L>°. The proofs are based
on a combination of discretization and weighted norm inequalities.

This result is in fact known as it can be derived from Theorem 2.1 in [4]
characterizing isomorphic copies of [P in the space I'.  We present here a new
elementary proof which does not go beyond the scope of the classical Lorentz
spaces.

We recall that classical Lorentz spaces of type A were first introduced by
Lorentz in 1951 ([5]) while their modification of type I" was developed first in
1990 by Sawyer ([6]) in connection with their crucial duality properties. These
spaces proved to be extremely useful for a wide range of applications and have
been studied ever since by many authors (e.g., [1], [3], [8], [7]). Normability of
spaces of type A has been characterized long time ago (see [6] and [2]).

The result is a contribution to the long-standing research of functional pro-
perties such as linearity, (quasi)-normability etc., of classical Lorentz spaces of
various types (see, e.g. [5], [1], [6], [3]).

During the whole paper, the underlying measure space (R, x) is always non-
atomic and o-finite with p(R) = oco. We shall also use the symbol M(R) for
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the set of all real-valued measurable functions defined on R. For a measurable,

real-valued function f on such a space, a non-increasing rearrangement of f is
defined by

fr@) = inf{s: p({[f] > s}) <t},

while the mazimal function of f is given by

U =1 / £ (5)ds.

Throughout all of this paper the expression weight will always be used for positive,
measurable function defined on (0, 00).

Definition 1. Let 0 < p < co and let w be a weight. Set

AL = {f e M) s Il = [ f*(s)pw(s)ds)% < oo}
and
I, {f e MER) ke = ([ 7 @rutas)” < oo}.

Furthermore in the following text we shall use notation X :=1I'?. In order to
avoid the technical difficulties, we shall assume that w is locally integrable and

(11) | wtsrs s <o,

for all a > 0. We may also assume this without loss of generality, since if w ¢ L{

or (1.1) is not satisfied, then I'’, = {0}. In the following text function W will be
defined as

W(t) = /Otw(s)ds.

We recall that the space L' 4+ L* consists of all functions f € M(R) for which
there exists a decomposition f = g + h such that ¢ € L! and f € L, and it is
equipped with the norm

1
1l g 1= / £(5)ds.

Let us also recall the definition of norm in weighted Lebesgue space on (0, 00)
which shall be also used in the proof, namely

1

= ([ ruteas)”
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Remark 1. The equivalence of condition (ii) and (iii) in the following theorem
can be obtained from [4, Proposition 1.4], while the equivalence of (i) and (iii)
from [4, Theorem 2.1].

Theorem 1. Let 0 < p < 1 and let w be a weight. Then the following conditions
are equivalent.

(i) The space I'? is normable.
(ii) Both w(s) and w(s)s™P are integrable on (0, 00).
(iii) The identity

It =L'+ L™
holds in the sense of equivalent norms.
2. Proof of Theorem 1

Lemma 1. Let X be a linear vector space. Let o : X — [0,00) be a positively
homogenous functional. Then the following conditions are equivalent:

(i) o is equivalent to a norm;
(ii) there exists a constant C, independent on N, such that

N N
o (Z n) <CY olfr),
k=1 k=1

for all f, € X.

PrROOF OF LEMMA 1: First let us suppose that (i) holds. Denote the equivalent
norm by o. Then we have

N N N N
o (ka> <Cop <ka> < CZQ(fk) < ng(fk)'
=1 =1 =1 k=1

Now, suppose that (2) holds. Denote

N
o(f) := inf (Zo(m) :

k=1

where the infimum on the right-hand side is taken over all finite decompositions
of f,ie.,

N
(2.1) ka:f
=1

Then obviously
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for all f € X. On the other hand, for all fj satisfying (2.1) we have

¢ <Za(fk)> > o(f).

k=1
Passing to the infimum on the left-hand side gives

Co(f) = a(f).
Now, take fi, fo € X. Let

Ny Ny
Yorfi=FH Y fR=by
k=1 k=1

then

N1 No
o(fr+f2) <Y o(fi)+ D alfd).
k=1 k=1

By passing to the infimum on the right-hand side we obtain the triangle inequality
for o. O

PROOF OF THEOREM 1: Let us first prove that (i) implies (ii). We shall give an
indirect proof. Suppose that (ii) is not true. Then either

(2.2) /000 w(s)ds = oo

(2.3) /000 s Pw(s)ds = oo.

First, note that if w € By, then || - ||x = || - ||sz,. Since the functional || - [[» is not
normable for p < 1 (as was shown in [2]), neither is || - || x. This allows us to focus
on the case when w ¢ B,. Therefore we may suppose that there exists a sequence
{an}22, such that

(2.4) ab /Oo w(s)s™Pds > 2" W (ay,).

Now let us define
P [ w(s)sPds

(2.5) H(t) : oo

Since H is continuous on (0, 00) and therefore bounded on every [c,d] C (0, 00),
we may without loss of generality (by choosing appropriate sub-sequence) assume
that either a, | 0 or a,, T co. Now, let us consider three cases:

(1) an T oo;
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(2) apn | 0 and (2.3) holds;
(3) an | 0, (2.2) holds and sup,-; H(t) < oo (We can assume this otherwise
it is in fact Case 1).

Case 1. Now, if a, T 0o, we may again without loss of generality suppose that
oo 1 oo
(2.6) / w(s)s™Pds < —/ w(s)s™Pds.
Ant1 2 an

Fix N € N. Pick {fx}2_,, such that

(1) supp(fr+1) C supp(fx),
(2) fi(s) = qrX(0,ar)> Where

o = (o [ m(eeoras)

1
P

Then (2.6) gives

(2.7) [usras < [T wosras

n n

Note that

i (s) = qx (X(O,ak) + akle(ak,oo)) .
Now, by (2.4) we have

I fellx = aw (W(ak) +afy /00 w(s)spds) ’

(2:8) N
< q (Zaﬁ/ w(s)spds) s
a
Calculate
N N
Z fk > Z f;:*X(ak,akJrl)
k=1 X k=1 LY

I
x>
I MZ
9
N3
S
>3
T
S
—
»
N—
)
3
o,
»
~———
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The third inequality follows from (2.7), while the next one from (2.4). Therefore
by Lemma 1 we obtain that || - || x cannot be equivalently normed.

Case 2. Suppose (2.3) holds. If a,, | 0, define ag = co. We may without loss of
generality suppose that

(2.9) Lm«wwfﬂwz2/mw@wﬂﬂ&

n+1 an

Fix N € N. Now, let us pick { fk}ivzl with the following properties

(1) supp(fx+1) C supp(fr),
(2) f; = axX(0,ay)> Where

o = (o [ w(o)eoras)

The same calculation as in (2.8) gives

B =

[ full < 27.

Now, by (2.9), we have

(2.10) [ wtesras= 3 [T wsras

Qp 41 An+1
Calculate
N N-1
sk
ka 2 Z fk+1X(ak+1,LLk)
k=1 X k=1 Lﬁ,
1
N—-1 ak P
_ p . p —p
- Z qk+1ak+1/ w(s)s™Pds
k=1 Ak+1

00 p

N—-1
_1

22> (Z q;llc)Jrla;ZJrl/
k=1 @

1

N—-1 P
1 1
=27 (Z 1) ~ N7,

k=1

w(s)s_pds>

k+1

where the third inequality follows from (2.10). Therefore, by Lemma 1, the func-
tional is not normable.

Case 3. Now, suppose that the condition (2.2) holds. Again, if we can choose
{a,}22; satisfying (2.4) and such that a,, T co, we may use the same calculation
as in the previous one. Now if there is no such sequence, then the function H(t)
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(where H is defined in (2.5)) is bounded on [1,00). Set

C:=1+supH(t).
t>1

Fix N € N. Since w is not in L', we may choose {a;}?2, such that
(2.11) Wiakt1) > 2W (ay),

and a; > 1. Observe that

(2.12) /ak w(s)ds > %W(ak),

Ak —1

for k=1,...,N. Find a sequence {f;}~_, such that

(1) supp(fx) C supp(fe+1)s 1
(2) fi(8) = brX(0,a5), Where by = W™ 7 (ag).

For technical reasons, set ag := 0. We have

el = W ) (W(ak) +ax /aoo w(s)s—pds)%

k

< W) [ W+ s )| =

t>1

Calculate

N

>k

k=1

N

Z X(ak—lyak)bk

k=1

Y

X L%

()

X N P
> P <Z biW(a;ﬁ)

k=1
1
1 N ? 1
-2 <21> =Nv7.
k=1

The third inequality follows from (2.12).

P

Now, let us prove that (ii) implies (iii). We shall prove that if (ii) is satisfied
then

1 1
(2.13) BlfwﬂmsmngAf%ma
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where
1 S d %
A= / (s)sPds |1+ floow(s) i
0 Ji w(s)ds
and
1 b
B:= (/ w(s)ds)
0
We have

1

1715 = f“@ww@ms+/mf“@ww@ws:ﬂ+u
0 1

Let us first estimate the second term by the first one

ﬁmf”wﬁw( ‘@ A <€i f;s>
)/f** Yu(s

< fr

1 s P

p *

/0 i / (/0 f (z)dz) ds
1 p

—Pq *(2)d
/ )s s </0 f (z) z)
Due to this two estimates we have

|m&sm(lvmm§5

On the other hand note that

(A{F@M%p=f“ﬂV=(42M@®)

1
<pr [ rrulsds < B
0

Now estimate

IN

-1

ﬁmwfw@w

Therefore the desired equivalence (2.13) holds. (]
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