Some results on spaces with \aleph_1 -calibre

WEI-FENG XUAN, WEI-XUE SHI

Abstract. We prove that, assuming CH, if X is a space with \aleph_1 -calibre and a zeroset diagonal, then X is submetrizable. This gives a consistent positive answer to the question of Buzyakova in Observations on spaces with zeroset or regular G_{δ} -diagonals, Comment. Math. Univ. Carolin. **46** (2005), no. 3, 469–473. We also make some observations on spaces with \aleph_1 -calibre.

Keywords: \aleph_1 -calibre; star countable; zeroset diagonal

Classification: Primary 54D20; Secondary 54E35

1. Introduction

H. Martin in [6] proved that a separable space with a zeroset diagonal is submetrizability. However, having a zeroset diagonal does not guarantee submetrizable. Recall that a space has \aleph_1 -calibre if every uncountable family of open sets contains an uncountable subfamily with non-emptyset intersection. It is clear that every separable space has \aleph_1 -calibre. Naturally, Buzyakova in [1] posted the following question.

Question 1.1. Let X have \aleph_1 -calibre and a zeroset diagonal. Is X submetrizable?

In this paper, we prove that, assuming CH, if X is a space with \aleph_1 -calibre and a zeroset diagonal, then X is submetrizable. This gives a consistent positive answer to the Question 1.1. We also make some observations on spaces with \aleph_1 -calibre.

2. Notation and terminology

All the spaces are assumed to be Hausdorff unless otherwise stated.

Definition 2.1. A space X has a zeroset diagonal if there is a continuous mapping $f: X^2 \to [0,1]$ with $\Delta_X = f^{-1}(0)$, where $\Delta_X = \{(x,x) : x \in X\}$.

Definition 2.2. A space X is called submetrizable if there exists a continuous injection of X into a metrizable space.

Clearly, every submetrizable space has a zeroset diagonal. Note that there is a space which has a zeroset diagonal but not submetrizable [7].

DOI 10.14712/1213-7243.2015.154

The authors are supported by NSFC project 11271178.

Definition 2.3. A space X is star countable if whenever \mathcal{U} is an open cover of X, there is a countable subset A of X such that $\operatorname{St}(A, \mathcal{U}) = X$, where $\operatorname{St}(A, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap A \neq \emptyset \}$.

This notation was first introduced and studied by S. Ikenaga in [5]. Sometimes a star countable space is also called that it has countable weak extent.

Lemma 2.4. Δ -system Lemma states that every uncountable collection of finite sets contains an uncountable Δ -system, i.e., a collection of sets whose pairwise intersection is constant.

All notation and terminology not explained here is given in [4].

3. Results

Theorem 3.1. Assume CH. If X is a space with \aleph_1 -calibre and a zeroset diagonal, then X is submetrizable.

PROOF: In [3], it has been proved that if X has a zeroset diagonal and X^2 is star countable, then X is submetrizable. So, it is sufficient to prove that X^2 is star countable. Notice that a space with \aleph_1 -calibre has countable Souslin number and a zeroset diagonal implies a regular G_{δ} -diagonal. We can apply a known result from [2] that the cardinality of a space with a regular G_{δ} -diagonal and countable Souslin number is at most \mathfrak{c} to conclude that $|X| \leq \mathfrak{c}$. Clearly, $|X^2| \leq \mathfrak{c}$, and hence $|X^2| \leq \aleph_1$ since CH. Assume $|X^2| = \aleph_1$. Enumerate X^2 as $\{x_\alpha : \alpha < \aleph_1\}$.

Suppose that X^2 is not star countable. Then there exists an open cover \mathcal{U} of X^2 such that for any countable subset A of X^2 , $X^2 \setminus \operatorname{St}(A, \mathcal{U}) \neq \emptyset$. It is clear that $\overline{A} \subset \operatorname{St}(A, \mathcal{U})$. In fact, for any $x \in \overline{A}$, there exists an open set $U \in \mathcal{U}$ which contains x, satisfying that $U \cap A \neq \emptyset$, and hence $x \in U \subset \operatorname{St}(A, \mathcal{U})$. So, $X^2 \setminus \overline{A} \neq \emptyset$. For each $\alpha < \aleph_1$, let $U_\alpha = X^2 \setminus \overline{\{x_\beta : \beta < \alpha\}}$. Then $\{U_\alpha : \alpha < \aleph_1\}$ is an uncountable decreasing family of non-empty open sets of X^2 and $\bigcap\{U_\alpha : \alpha < \aleph_1\} = \emptyset$. However, since X has \aleph_1 -calibre hence X^2 also has \aleph_1 -calibre [4, p. 116], which implies that $\bigcap\{U_\alpha : \alpha < \aleph_1\} \neq \emptyset$. This is a contradiction!

Theorem 3.1 gives a consistent positive answer to the Question 1.1. A natural question then arises: Assume \neg CH. Let X have \aleph_1 -calibre and $|X| \leq \mathfrak{c}$. Is X^2 star countable? The answer to this question is negative. The following examples will show that we cannot drop the assumption of CH.

Example 3.2. Assume $2^{\aleph_1} = \mathfrak{c}$. There is a space X having \aleph_1 -calibre and $|X| = \mathfrak{c}$, however, X^2 is not star countable.

PROOF: Let $X = \{x \in D^{\mathfrak{c}} : 0 < |\{\alpha < \mathfrak{c} : x(\alpha) = 1\}| \leq \aleph_1\}$, where $D = \{0, 1\}$. Clearly, since $2^{\aleph_1} = \mathfrak{c}$, then $|X| = \mathfrak{c}^{\aleph_1} = (2^{\aleph_1})^{\aleph_1} = 2^{\aleph_1} = \mathfrak{c}$.

We firstly prove that X has \aleph_1 -calibre. For any finite partial function $\varphi : \mathfrak{c} \to D$, let $B(\varphi) = \{x \in X : x |_{\operatorname{dom} \varphi} = \varphi\}$; then the sets $B(\varphi)$ are a base of X. Let $\mathcal{U} = \{U_\alpha : \alpha < \aleph_1\}$ be a family of open sets in X. For $\alpha < \aleph_1$ let φ_α be a finite partial function from \mathfrak{c} to D such that $B(\varphi_\alpha) \subset U_\alpha$, and let $S_\alpha = \operatorname{dom} \varphi_\alpha$. By

the Δ -system Lemma, there is an uncountable subset $\Lambda \subset \aleph_1$ and a finite $S \subset \mathfrak{c}$ such that $S_{\xi} \cap S_{\eta} = S$ whenever $\xi, \eta \in \Lambda$ and $\xi \neq \eta$. Since S is finite, there is an uncountable $\Lambda_0 \subset \Lambda$ such that $\varphi_{\xi}|_S = \varphi_{\eta}|_S$ whenever $\xi, \eta \in \Lambda_0$, and hence $\bigcap_{\alpha \in \Lambda_0} U_{\alpha} \supset \bigcap_{\alpha \in \Lambda_0} B(\varphi_{\alpha}) \neq \emptyset$. Thus, X has \aleph_1 -calibre.

To show that X^2 is not star countable, we only need to prove that X is not star countable. For $\alpha < \mathfrak{c}$ let $\varphi_{\alpha} = \langle \alpha, 1 \rangle$ and $U_{\alpha} = B(\varphi_{\alpha})$; clearly $\mathcal{U} = \{U_{\alpha} : \alpha < \mathfrak{c}\}$ is an open cover of X. Let A be any countable subset of X, and let $S = \bigcup_{x \in A} \{\alpha < \mathfrak{c} : x(\alpha) = 1\}$. It is easy to see that $|S| \leq \aleph_1 < 2^{\aleph_1} = \mathfrak{c}$, so there is some $\gamma \in \mathfrak{c} \setminus S$. Let x be the unique point of X such that $x(\gamma) = 1$ and $x(\alpha) = 0$ for any other $\alpha < \mathfrak{c}$. Suppose that there exists U_{α} of \mathcal{U} such that $U_{\alpha} \cap A \neq \emptyset$ and $x \in U_{\alpha}$. Then $x(\alpha) = 1$ and hence $\alpha = \gamma \notin S$. However, let $y \in U_{\alpha} \cap A$; clearly, $y(\alpha) = 1$, and hence $\alpha \in S$. This is a contradiction. Thus $\operatorname{St}(A, \mathcal{U}) \neq X$. This shows X is not star countable.

Example 3.3. Assume MA+ \neg CH. There is a first countable space X with \aleph_1 -calibre, however, X^2 is not star countable.

PROOF: Let X be the space of all nonempty compact nowhere dense subsets of \mathbb{R} with the Pixley-Roy topology. A neighbourhood for $x \in X$ is obtained by taking a neighbourhood U of x on the real line and letting $[x, U] = \{y \in X : x \subset y \subset U\}$. Clearly, $|X| = \mathfrak{c}$. It is shown in [8] that X is a first countable space with \aleph_1 -calibre.

To show that X^2 is not star countable, we only need to prove that X is not star countable. Let $\mathcal{U} = \{[r, \mathbb{R}] : r \in \mathbb{R}\}$ be an open cover of X. Let A be any countable subset of X. It was established in Baire category theorem that a nonempty complete metric space is not the countable union of nowhere-dense closed sets so $\mathbb{R} \setminus \bigcup A \neq \emptyset$. We pick some $r_0 \in \mathbb{R} \setminus \bigcup A$. Hence, $r_0 \notin \text{St}(A, \mathcal{U})$, since $[r_0, \mathbb{R}]$ is the only element of \mathcal{U} containing r_0 and $[r_0, \mathbb{R}] \cap A = \emptyset$. This shows X is not star countable.

We say that X has countable tightness if $x \in \overline{A}$ for any A of X, then there exists a countable subset A_0 of A such that $x \in \overline{A_0}$; it is denoted by $t(X) = \aleph_0$.

Proposition 3.4. Let X be a space with \aleph_1 -calibre and $t(X) = \aleph_0$. If $d(X) \le \aleph_1$, then X is separable.

PROOF: Since $d(X) \leq \aleph_1$, there exists a dense subset A of X with $|A| \leq \aleph_1$. If $|A| < \aleph_1$, it is obvious that X is separable. We assume that $|A| = \aleph_1$. Enumerate A as $\{x_\alpha : \alpha < \aleph_1\}$ and let $F_\alpha = \overline{\{x_\beta \in A : \beta < \alpha\}}$ for each $\alpha < \aleph_1$. Then we have an \aleph_1 -sequence $\mathcal{F} = \{F_\alpha : \alpha < \aleph_1\}$ of increasing closed separable subsets of X. For any point $x \in X, x \in \overline{A}$. Since $t(X) = \aleph_0$, there exists a countable subset A_0 of A such that $x \in \overline{A_0}$, and hence there exists some F_α such that $x \in A_0 \subset F_\alpha$. Thus $\bigcup \mathcal{F} = X$. We prove that there exists some $F_\alpha = X$. If $F_\alpha \neq X$ for any $\alpha < \aleph_1$ then the family $\{X \setminus F_\alpha : \alpha < \aleph_1\}$ is point-countable and uncountable which is a contradiction. Therefore $F_\alpha = X$ for some $\alpha < \aleph_1$, and hence X is separable. \Box

Xuan W.-F., Shi W.-X.

References

- Buzyakova R.Z., Observations on spaces with zeroset or regular G_δ-diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473.
- Buzyakova R.Z., Cardinalities of ccc-spaces with regular G_δ-diagonals, Topology Appl. 153 (2006), no. 11, 1696–1698.
- Basile D., Bella A., Ridderbos G.J., Weak extent, submetrizability and diagonal degrees, Houston J. Math. 40 (2014), no. 1, 255–266.
- [4] Engelking R., General Topology, Heldermann, Berlin, 1989.
- [5] Ikenaga S., A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Memoirs of Numazu College of Technology 18 (1983), 105–108.
- [6] Martin H.W., Contractibility of topological spaces onto metric spaces, Pacific J. Math. 61 (1975), no. 1, 209–217.
- [7] Wage M.L., Fleissner W.G., Reed G.M., Normality versus countable paracompactness in perfect spaces, Bull. Amer. Math. Soc. 82 (1976), no. 4, 635–639.
- [8] Tall F.D., First Countable Space with ℵ1-Calibre May or May not be Separable, Settheoretic Topology, Academic Press, New York, 1977.

College of Science, Nanjing Audit University, Nanjing, China, 210093

E-mail: wfxuan@nau.edu.cn

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING, CHINA, 210093

E-mail: wxshi@nju.edu.cn

(Received May 2, 2015, revised July 10, 2015)