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On the potential theory of some systems of coupled PDEs

Abderrahim Aslimani, Imad El Ghazi,
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Abstract. In this paper we study some potential theoretical properties of so-
lutions and super-solutions of some PDE systems (S) of type L1u = −µ1v,

L2v = −µ2u, on a domain D of R
d, where µ1 and µ2 are suitable measures

on D, and L1, L2 are two second order linear differential elliptic operators on D

with coefficients of class C∞. We also obtain the integral representation of the
nonnegative solutions and supersolutions of the system (S) by means of the Green
kernels and Martin boundaries associated with L1 and L2, and a convergence
property for increasing sequences of solutions of (S).
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1. Introduction

Let D be a domain of Rd (d ≥ 1), L1, L2 two second order elliptic or parabolic
linear differential operators with coefficients of class C∞, and µ1 and µ2 two
suitable measures on D. We suppose that D is Green domain for L1 and L2. The
potential theory of a system (S) of PDE of type

{
L1u = −µ1v,

L2v = −µ2u,

has been studied by many authors.
If L1 = L2 = ∆, the Laplace operators, µ2 = 0 and µ1 = λ the Lebesgue

measure, the solutions of the corresponding system (S) are the pairs (u, v) where u
is a biharmonic function, that is, a solution of the biharmonic equation ∆2u = 0,
and v = −∆u. More generally, if L1, L2 are two elliptic linear second order
differential operators on D, µ2 = 0 and µ1 = λ, the system (S) is equivalent
to biharmonic equation L1L2u = 0. The corresponding equations with limit
conditions were extensively studied by many authors [15], [16], [17], [18], [27],
[28].
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In the 1970’s Smyrnelis [25], [26] developed an axiomatic theory for the solu-
tions of these systems when µ1 = 0 or µ2 = 0, called axiomatic theory of bihar-
monic spaces. Just after, Bouleau [4], [5] studied the corresponding probabilistic
potential theory.

In the case where µ1 6= 0, µ2 6= 0 and L1, L2 are elliptic, a probabilistic
potential theory of systems of type (S) has been studied by Chen and Zhao [9].
The axiomatic theory of biharmonic spaces of Smyrnelis do not apply in this case.
However, the theory of balayage developed by Bliedtner and Hansen [2] can be
considered as the axiomatic theory which apply in this setting. Many potential
theoretical problems in this theory remain still open.

This work was initiated by the papers [12], [13] of the third named author on
the biharmonic Martin boundary and the integral representation of nonnegative
biharmonic functions in a general axiomatic setting which apply to a system of
type (S) with µ1 = 0 or µ2 = 0.

Our main purpose in this paper is to extend some potential theoretical methods
to the systems of type (S). In particular we will define and study the notions of
superharmonic pairs and potentials associated with (S) on the domain D. We
also obtain the integral representation of the potentials and the nonnegative har-
monic pairs. The results of this article can be extended to the systems of type (S)
associated with operators in the more general class of second order linear ellip-
tic differential operators leading to harmonic spaces and studied by R.-M. Hervé
in [22]. We have considered the operators with coefficients of class C∞ for sim-
plicity and in order to use the distribution theory.

Notations. Let A be a subset of Rd, d ≥ 1. We denote by A the closure of A

in the Alexandroff compactification Rd of Rd, and by ∂A the boundary of A in

Rd. By function on A we mean a function on A with values in [−∞, +∞]. Let U
be an open subset of Rd. The set of nonnegative Borel functions on U is denoted

by B+(U). If f is a function on U , we denote by f̂ the l.s.c. regularization of f .

Recall that f̂ is defined by f̂(x) = lim infy→x f(y) for all x ∈ U and that f̂ is the

greater l.s.c. function such that f̂ ≤ f on U .
The natural order on the set of pairs of functions on A is defined by

(f, g) ≥ (h, k) ⇐⇒ f(x) ≥ h(x) and g(x) ≥ k(x) ∀x ∈ A,

and we simply write (f, g) ≥ 0 for (f, g) ≥ (0, 0).

2. Potential theory associated with a second order elliptic operator

For the convenience of reader who is not familiar with potential theory, we give
here some recalls on potential theory of an elliptic operator of second order on a
domain of Rd.
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Let D be a domain of Rd, d ≥ 1, and

L =
d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj

+
d∑

i=1

bi(x)
∂

∂xi

+ c(x)

a second order linear differential operator with locally Lipschitz coefficients on D,
of type elliptic or simply elliptic, that is, for all x ∈ D the quadratic form∑

i,j aij(x)ξiξj is positive definite on Rd. In this section we recall some results on
potential theory of operator L that will be used in the sequel. For more details
on this theory the reader is referred to [22, Chapter VII] and the bibliography
therein.

Definition 2.1. A real function u on an open subset ω of D is said to be L-
harmonic (or simply harmonic if there is no risk of confusion) in ω if u is of class
C2 and Lu = 0 on ω.

When the coefficients aij and bi of L are of class C∞, then a continuous real
function on D is L-harmonic if and only if u is a solution of Lu = 0 in the
distribution sense, that is

∑

i,j

∫

D

aiju(x)
∂2ϕ

∂xi∂xj

(x) dλ(x) −
∑

i

∫

D

bi(x)u(x)
∂ϕ

∂xi

(x) dλ(x)

+

∫

D

c(x)u(x)ϕ(x) dλ(x) = 0

for all ϕ ∈ D(D), where D(D) is the space of functions of class C∞ of compact sup-
ports, that is, which vanish outside a compact of D, and λ denotes the Lebesgue
measure on Rd.

For every open subset ω of D, we denote by HL(ω) the set of L-harmonic
functions on ω. It is clear that the set HL(ω) is a R-vector space. Moreover,
the mapping H : O ∋ ω 7→ HL(ω) is a sheaf on D of vector spaces of continuous
functions, where O is the set of open subsets of D.

Definition 2.2. A relatively compact open subset ω of D is said to be L-regular
or simply regular if for any real continuous function f on ∂ω, there exists a unique
function h = Hω(f) ∈ HL(ω) such that limx∈ω,x→ζ h(x) = f(ζ) for all ζ ∈ ∂ω.

By [22, p. 561], every open ball B ⊂ B ⊂ D is L-regular.
Let ω be a regular relatively compact open subset of D. By the minimum

principle, if f ∈ C+(∂ω) then Hω(f) ≥ 0. It follows from the definition that for
all x ∈ ω, the map f ∈ C(∂ω) 7→ R is a positive linear form on C(∂ω), hence it is
a nonnegative Radon measure on ∂ω; we denote it by µω

x . We then have

Hω(f) =

∫
f dµω

x

for all x ∈ ω and f ∈ C(∂ω).
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The following results are consequences of [22, Theorem 34.1] and [8, p. 15] and
[22, p. 426]:

Theorem 2.3 (Harnack principle). Let K be a compact subset of D and x0 ∈ K.

Then there exists a constant C > 0, depending only on K, such that for any

nonnegative L-harmonic function h on D, one has supx∈K h ≤ Ch(x0).

Corollary 2.4. For any x0 ∈ D, the set HL(x0) = {h ∈ H+
L (D) : h(x0) = 1} is

equicontinuous at x0.

Theorem 2.5. Let ω be a sub-domain of D, and (hn) an increasing sequence of

L-harmonic functions on ω. Then the function h = supn hn is L-harmonic in ω if

(and only if ) it is finite at some point of ω.

Definition 2.6. Let ω be an open subset of D. A function u : ω → R is said to
be L-hyperharmonic on ω if

(i) u is l.s.c. and u > −∞ on ω;
(ii) for every open ball B ⊂ B ⊂ ω,

∫ ∗

∂B
u dµω

x ≤ u(x) ∀x ∈ B.

The function u is said to be L-superharmonic on ω if u is L-hyperharmonic
and not identical to +∞ in each connected component of ω; u is L-hypoharmonic
(resp. L-subharmonic) if −u is L-hyperharmonic (resp. L-superharmonic).

It is clear from the definition that a L-superharmonic function u on an open
subset ω of D is finite on a dense subset of ω. The set of L-hyperharmonic (resp.
L-superharmonic) functions on D is a convex cone. It is denoted by H∗

L(D) (resp.
SL(D)) or simply H∗(D) (resp. S(D)) if here is no risk of confusion.

Let u be a L-superharmonic on D. It follows easily from the above theorem that
for any regular relatively compact open subset ω of D, the function x 7→

∫
u dµω

x

is L-harmonic in ω. We also denote it by Hω(u). If (un) is an increasing sequence
of L-superharmonic functions in a domain ω ⊂ D, then supn un is L-harmonic or
identical to +∞ in ω.

Definition 2.7. A subset A of D is said to be locally L-polar (resp. L-polar),
or simply locally polar (resp. polar), if for every x ∈ A there exists an open
neighborhood ω of x and a function u L-superharmonic on ω (resp. D) such that
A ∩ ω ⊂ {x ∈ ω : u(x) = +∞} (resp. A ⊂ {x ∈ D : u(x) = +∞}).

Properties. 1. Any L-polar subset A of D is locally polar.
2. Any subset of a locally L-polar (resp. polar) set is locally L-polar (resp.

polar).
3. Any locally L-polar subset of D has an empty interior.
4. Let (An) be a sequence of L-polar sets of D, then ∪nAn is L-polar.

Theorem 2.8 ([8, p. 47]). Suppose that there exists a L-superharmonic u > 0
on D which is not L-harmonic. Then every locally polar set is polar.

We say that a property P (x) relative to x ∈ D holds quasi-everywhere (q.e) if
it holds outside a polar set. For more details on polar sets we refer to [8], [11],
[22].
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Theorem 2.9 (cf. [22, Property (C), p. 521, and Corollary of Theorem 36.2]). Let

(ui)i∈I be a locally uniformly bounded family of L-hyperharmonic functions on

an open subset ω of D. Then the function înfi∈Iui = ̂infi∈I ui is L-hyperharmonic

in ω and înfi∈Iui = infi∈I ui q.e.

Theorem 2.10 (Removable singularities principle [11, Theorem, p. 60]). Let E
be a closed L-polar subset of D, and u a L-superharmonic function on D\E such

that u is locally lower bounded in a neighborhood of any point of E. Then there

exists a unique L-superharmonic function s on D such that s = u on D \ E.

The following proposition is an easy corollary of the above theorem:

Proposition 2.11. Let u and v be two L-hyperharmonic functions on D. If

u = v q.e. then u = v on D.

The following proposition follows easily from [11, pp. 38–39]:

Proposition 2.12. Let u be a nonnegative L-superharmonic function u on D.

Then the following statements are equivalent.

1. For any L-subharmonic function v on D, if v ≤ u, then v ≤ 0 in D.

2. For any L-superharmonic function v on D, if v + u ≥ 0, then v ≥ 0 in D.

3. For any L-harmonic function h on D, if h ≤ u, then h ≤ 0 in D.

Definition 2.13. A L-superharmonic function on D is said to be a L-potential
(or simply a potential) on D if it verifies one of the equivalent conditions of the
above proposition.

Theorem 2.14 (Riesz decomposition [10, Theorem 2.2.2]). Let u be a nonneg-

ative L-superharmonic function on D. Then there exists a unique L-potential p
and a unique nonnegative L-harmonic function h on D such that u = p + h.

The following theorem is a combination of properties of solutions of operator
L in [22, Chapter VII] and [22, Proposition 18.1 and Theorem 18.2]:

Theorem 2.15. Assume that there exists a L-potential p > 0 on D. Then there

exists a function G : D × D → R+ with the following properties.

1. G is l.s.c. on D×D and continuous on D×D\δ, where δ = {(x, x); x ∈ D}
is the diagonal of D × D.

2. For all y ∈ D, the function G(., y) is L-harmonic on D \ {y}.
3. For any L-potential p in D there exists a unique (Radon) measure µ on D

such that p = Gµ :=
∫

D
G(., y) dµ(y).

The following proposition is an easy consequence of Theorems 2.14 and 2.15(3).

Proposition 2.16. Let u be a L-superharmonic function on D. If Lu = 0 in the

distribution sense, then u is L-harmonic.

Definition 2.17. A domain D of Rd on which there exists a L-potential > 0 is
called a L-Green domain (or simply a Green domain). The corresponding function
G in Theorem 2.15 in the above theorem is called a L-Green kernel of L in D.
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If G and G′ are two L-Green kernels, there exists a continuous ϕ > 0 on D such
that G′(., y) = ϕ(y)G(., y) for all y ∈ D. Since the coefficients of L are supposed
to be of class C∞, there exists a unique L-Green kernel G such that for all y ∈ D,
we have LG(., y) = −ǫy in the distribution sense, where ǫy is the Dirac measure
at y; this function G is then called the Green kernel of L.

Remark 2.18. 1. Any subdomain of a L-Green domain is a L-Green domain.
2. Any bounded domain D is a L-Green kernel for any elliptic operator of

second order with Lipschitz coefficients.

Remark 2.19. The domain D is not always a L-Green domain. For example let
L = ∆, the Laplace operator, d = 2 and D = R2. Then D is not a L-Green
domain.

Let us recall here that a kernel on a measurable space (E, E) is a function
V : E × E → R+ such that

1. for any A ∈ E , the function E ∋ x 7→ V (x, A) is measurable;
2. for any x ∈ E, the function E ∋ A 7→ V (x, A) is a measure on (E, E).

The potential V f or V (f) of a nonnegative E-measurable function f on E is
defined by

V f(x) =

∫

E

f(y)V (x, dy), ∀x ∈ E.

Let us denote by E+ the convex cone of nonnegative E-measurable functions
on E with value in R. We can define equivalently a kernel on (E, E) as being a
function V : E+ → E+ such that

1. V (0) = 0;
2. for any sequence (fn) in E+,

V (
∑

n

fn) =
∑

n

V (fn).

If ‖V 1‖∞ < 1, then I − V is a kernel on (E, E), and its restriction to the
cone bE+ of bounded non-negative E-measurable functions can be extended to an
invertible bounded positive linear operator on the linear space bE = bE+ − bE+.
The operator (I − V )−1 can be extended in a unique way to a kernel on (E, E),
denoted again by (I − V )−1. Then we have

(I − V )−1 =
∑

k

V k.

Suppose now that D is L-Green domain and let G be the L-Green kernel of D.
For any nonnegative Radon measure µ on D we denote by Gµ the kernel defined
on D by

Gµf(x) =

∫

D

G(x, y)f(y) dµ(y), x ∈ D,
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for all nonnegative Borel measurable function f on D, and by Gµ the function Gµ1.
Then we have LGµf = −fµ in the distribution sense. The function Gµ is called
the potential of µ. A nonnegative Radon measure on D is said to be Kato measure
for L if its potential Gµ is finite and continuous on D.

Following [8, p. 47], we have:

Theorem 2.20. Suppose that D is a L-Green domain. Then there exists up to

a homeomorphism a compact topological space D̂ containing D and a function

K : D × ∆ −→ R, where ∆ = D̂ \ D such that

1. the induced topology on D is identical to the Euclidean topology;

2. D is dense in D̂;

3. for each Y ∈ ∆, the function K(., Y ) is L-harmonic > 0 on D and the

functions K(x, .), x ∈ D, are continuous on ∆ and separate the points

of ∆;

4. for each L-harmonic ≥ 0 there exists a measure µ on ∆ such that h =
Kµ :=

∫
∆

K(., Y ) dµ(Y );
5. for each L-harmonic ≥ 0 there exists a unique measure µ on ∆, carried

by ∆1 such that h = Kµ :=
∫
∆

K(., Y ) dµ(Y ), where ∆1 is the Gδ-set of

minimal elements of ∆.

The set ∆ is called the Martin boundary of D (with respect to L) and ∆1 is
the minimal Martin boundary of D. The kernel (function) K is called the Martin
kernel of D. Let us recall here that a point Y ∈ ∆ is said to be minimal if
the L-harmonic function K(., Y ) is on an extreme generator of the cone H+

LD)
of nonnegative L-harmonic functions on D. For further results on classical and
axiomatic potential theory we refer to [1], [21], [22].

3. Harmonic and superharmonic pairs

In all the rest of this paper D is a domain of Rd, d ≥ 1, and L1, L2 are
two second order elliptic linear differential operators on D with coefficients of
class C∞. We suppose that D is a Green domain for L1 and L2 with L1-Green
and L2-Green kernels G1 and G2 respectively, normalized in such a way that, for
all y ∈ D we have L1G1(., y) = L2G2(., y) = −ǫy in the distribution sense.

We also fix µ1 and µ2, two Kato measures for L1 and L2 respectively, such that

(3.1) ‖Gµ1

1 ‖∞||Gµ2

2 ||∞ < 1,

and consider the following PDE’s system (S)

{
L1u = −µ1v,

L2v = −µ2u.

A solution of the system (S) is a pair (u, v) of continuous functions on D such
that L1u = −µ1v and L2v = −µ2u in the distribution sense. The condition (3.1)
insure the existence of positive solutions of the system (S) in the case where there
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exist positive bounded and continuous functions h and k on D such that L1h = 0
and L2k = 0.

If L1 = L2 = ∆ (the Laplace operator), the measure µ2 = 0 and µ1 = λ the
Lebesgue measure, the solutions of the corresponding system (S) are the pairs
(u, v) where u is a biharmonic function, that is, a solution of the biharmonic
equation ∆2u = 0, and v = −∆u.

In all the rest of this paper we denote by V1 and V2 the (Borel) kernels on D
defined by

V1 =

+∞∑

k=0

(Gµ1

1 Gµ2

2 )k

and

V2 =

+∞∑

k=0

(Gµ2

2 Gµ1

1 )k.

It follows from the hypothesis on the measures µ1 and µ2 that for any bounded
f ∈ B+(D), the functions Vif , i = 1, 2, are finite and continuous on Ω.

In this section we give some definitions, notations and properties of solutions
(harmonic pairs) and supersolutions (superharmonic pairs) of the system (S).

Definition 3.1. A pair (u, v) of continuous functions on D is said to be harmonic
if u and v are solutions of (S) in the distribution sense.

Let B be a ball B ⊂ B ⊂ D and f defined on a set containing ∂B. If f|∂B is

finite and continuous, we denote by Hi
B(f), i = 1, 2, the solution of the Dirichlet

problem relative to the operator Li on B for the data f on ∂B, and if f|∂B is l.s.c.
≥ 0 we define HB(f) by HB(f) = sup{HB(ϕ) : ϕ ∈ C(∂B)}. We also denote by

Ki,µi

B the Borel kernel defined on B by

Ki,µi

B f =

∫

B

Gi
B(., y)f(y) dµi(y), ∀f ∈ B+(B),

where Gi
B is the Green kernel on B relative to Li. We also denote by V i

B, i = 1, 2,
the Borel kernels defined on B by

V 1
B =

+∞∑

k=0

(K1,µ1

B K2,µ2

B )k and V 2
B =

+∞∑

k=0

(K2,µ2

B K1,µ1

B )k.

Remark 3.2. If the function f ∈ B+(B) is bounded, then the functions V i,µi

B f ,
i = 1, 2, are continuous on B.

Theorem 3.3. A pair (u, v) of continuous functions on D is harmonic if and

only if for any open ball B ⊂ B ⊂ D we have H1
B(u) + K1,µ1

B (v) = u and

H2
B(v) + K2,µ2

B (u) = v in B.
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Proof: Let us first suppose that the pair (u, v) is harmonic in D. Then we have
L1u = −µ1u and L2v = −µ2v in D in the distribution sense. Let B and B′ be

two open balls of D such that B ⊂ B ⊂ B′ ⊂ B
′
⊂ D. Since u and v are bounded

on B′ and µ1, µ2 are Kato measures, then the functions K1,µ1

B′ u and K2,µ2

B′ v are

continuous on B′ and we have L1(u − K1,µ1

B′ v) = L2(v − K2,µ2

B′ u) = 0 in the

distribution sense. Hence the functions u−K1,µ1

B′ v and v−K2,µ2

B′ u are respectively

L1-harmonic and L2-harmonic in B′. So we have H1
B(u−K1,µ1

B′ v) = u−K1,µ1

B′ v and

H2
B(v−K2,µ2

B′ u) = v−K2,µ2

B′ u in B. Hence H1
B(u) = u−(K1,µ1

B′ v−H1
B(K1,µ1

B′ v)) =

u−K1,µ1

B v and H2
B(v) = u−(K2,µ2

B′ u−H2
B(K2,µ2

B′ u)) = u−K2,µ2

B u in B, which gives

H1
B(u)+ K1,µ1

B (v) = u and H2
B(v)+ K2,µ2

B (u) = v in B. Conversely, suppose that

H1
B(u) + K1,µ1

B (v) = u and H2
B(v) + K2,µ2

B (u) = v in any open ball B ⊂ B ⊂ D.
Since H1

B(u) and H2
B(v) are L1-harmonic and L2-harmonic respectively, then we

obviously have L1u = L1K
1,µ1

B (v) = −µ1v and L2v = L2K
2,µ2

B (v) = −µ2u on B
in the distribution sense. As B is arbitrary we conclude that L1u = −µ1v and
L2v = −µ2u on D in the distribution sense, that is, the pair (u, v) is harmonic
on D. �

Definition 3.4. A pair (u, v) of locally integrable functions on D is said to be
superharmonic if u and v are l.s.c. > −∞ on D and satisfy the inequalities

{
L1u ≤ −µ1v

L2v ≤ −µ2u,

in distribution sense.

It follows clearly from the definition that a pair (u, v) of locally integrable
functions on D is harmonic if and only if the pairs (u, v) and (−u,−v) are super-
harmonic.

Proposition 3.5. Let (u, v) be a nonnegative superharmonic pair on D. Then

u is L1-superharmonic and v is L2-superharmonic on D.

Proof: The proposition is an obvious consequence of the definition of superhar-
monic pairs. �

The following theorem can be proved in the same way as Theorem 3.3.

Theorem 3.6. A pair (u, v) of locally integrable l.s.c. functions on D is superhar-

monic if and only if for any open ball B ⊂ B ⊂ D we have H1
B(u)+ K1,µ1

B (v) ≤ u

and H2
B(u) + K2,µ2

B (v) ≤ u on B.

We denote by S(D) the set of superharmonic pairs in D. Let (uj , vj), (u, v) ∈
S(D), j = 1, 2, and α ∈ R+, then we define

(u1, v1) + (u2, v2) = (u1 + u2, v2 + v2),

and

α(u, v) = (αu, αv) if α > 0 and 0(u, v) = (0, 0).
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Corollary 3.7. The set S(D) is a convex cone.

We denote by S+(D) the set of nonnegative superharmonic pairs on D.

Corollary 3.8. S+(D) is a convex cone.

Corollary 3.9. Let (u1, v1) and (u2, v2) are two superharmonic pairs on D. Then

the pair (u1 ∧ u2, v1 ∧ v2) is superharmonic in D.

Corollary 3.10. Let ((un, vn)) be an increasing sequence of nonnegative su-

perharmonic pairs on an open subset ω of D and suppose that supn un(x0) +
supn v(x0) < +∞ for some point x0 ∈ D. Then the pair (u, v) = supn(un, vn) is

superharmonic on ω.

Proof: In view of Proposition 3.5 the functions un, resp. vn, n ∈ N, are L1-
superharmonic, resp. L2 superharmonic, and hence the function u, resp. v, is L1-
superharmonic, resp. L2-superharmonic on D, since it is finite at x0. It follows
that u and v are l.s.c. and locally integrable. Let B be an open ball of Rd such that
B ⊂ D, then we have H1

B(un)+K1,µ1

B (vn) ≤ u and H2
B(un)+K2,µ2

B (vn) ≤ u on B

for any integer n. By letting n → +∞, we therefore have H1
B(un)+K1,µ1

B (vn) ≤ u

and H2
B(un) + K2,µ2

B (vn) ≤ u on B. It follows from Theorem 3.6 that the pair
(u, v) is superharmonic on D. �

Theorem 3.11. Let (u1, u2) be a pair of Borel functions on D such that

G
µj

j |uk| 6≡ +∞, j 6= k, j, k = 1, 2.

Then the following statements are equivalent.

1. The pair (u1, u2) is superharmonic.

2. The function u1−Gµ1

1 (u2), resp. u2−Gµ2

2 (u1), defined on the subset of D
where the difference is well defined has an extension to L1-superharmonic,

resp. L2-superharmonic, function on D.

Proof: Let us first remark that the hypothesis of the theorem implies that for
any j, k = 1, 2, j 6= k, the function G

µj

j |uk| is Lj-superharmonic on D, and so are

the functions G
µj

j u+
k and G

µj

j u−
k . It follows then that these functions are finite

Lj-q.e.
1 ⇒ 2 Suppose that the pair (u1, u2) is superharmonic on D and satisfies the

condition of the theorem. Then the function Gµ1

1 (u2) = Gµ1

1 (u+
2 ) − Gµ1

1 (u−
2 ) is a

difference of two L1-superharmonic functions on D, hence it is locally integrable
and we have L1(u1 − Gµ1

1 u2) = L1u1 + µ1u2 ≤ 0 in the distribution sense on D.
Then u1 −Gµ1

1 u2 is Lebesgue-a.e. equal to a L1-superharmonic function t1 on D.
It follows then that u1 + Gµ1

1 (u−
2 ) = t1 + Gµ1

1 (u+
2 ) Lebesgue-a.e. on D. The

second function is obviously L1-superharmonic on D. On the other hand, the
function u1 + Gµ1

1 (u−
2 ) is l.s.c. and we have L1(u1 + Gµ1

1 (u−
2 )) = L1u1 − µ1u

−
2 =

L1u1 + µ1u2 − µ1u
+
2 ≤ 0 on D, which proves that the function u1 + Gµ1

1 (u−
2 ) is

L1-superharmonic on D. Then we have u1 +Gµ1

1 (u−
2 ) = t1 +Gµ1

1 (u+
2 ) everywhere,

since two L1-superharmonic equal Lebesgue-a.e. are equal everywhere. Hence the
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function u1 − G1(u2) defined quasi-everywhere on D has an extension to the L1-
superharmonic function t1 on D. By a similar argument the same result also holds
for the function u2 − Gµ2

2 (u1).
2 ⇒ 1 Suppose that u1−Gµ1

1 (u2) and u2−Gµ2

2 (u1) can be extended respectively
to L1-superharmonic and L2-superharmonic functions s and t on D, then we have
u1 = Gµ1

1 (u2)+s and u2 = Gµ2

2 (u1)+t on D. Hence L1u1 = −µ1u2+L1s ≤ −µ1u2

and L2u2 = −µ2u1 + L2t ≤ −µ2u1 in the distribution sense on D, that is, the
pair (u1, u2) is superharmonic on D. �

Corollary 3.12. Let (u1, u2) be a pair of Borel functions on D such that

G
µj

j |uk| 6≡ +∞, j 6= k, j, k = 1, 2.

Then the following statements are equivalent.

1. The pair (u1, u2) is harmonic on D.

2. The functions Gµ1

1 |u2|, Gµ2

2 |u1| are finite and the functions u1 − Gµ1

1 u2,

u2 − Gµ2

2 u1 are respectively L1-harmonic and L2-harmonic on D.

Theorem 3.13. Let ti, i = 1, 2, be two Li-harmonic functions on D such that

G
µj

j ti is finite and Gµk

k G
µj

j ti is bounded on D, j 6= k, j, k ∈ {1, 2}. Then the pairs

of functions (V1t1, V2G
µ2

2 t1) and (V2G
µ1

1 t2, V2t2) are harmonic on D.

Proof: It is clear that the functions V1t1 and V2G
µ1

1 t2 are continuous on D. On

the other hand, we have V1t1 =
∑+∞

n=0
(Gµ1

1 Gµ2

2 )n(t1), hence L1V1t1 = −µ1G
µ2

2 V1t1
(in the distribution sense) on D. We also have L2(V2G

µ2

1 t1) = −µ2V1t1 on D.
Hence the first pair (V1t1, V2G

µ1

1 t1) is harmonic on D. The same holds for the
pair (V2G

µ1

1 t2, V2t2). �

4. Nonnegative superharmonic pairs of functions

Proposition 4.1. Let hi be a nonnegative Li-harmonic functions on D, i = 1, 2.

If the function V1h1 + V1G
µ2

2 h1, resp. V2G
µ1

1 h1 + V2h2, is finite and continuous

on D, then the pair (V1h1, V2G
µ2

2 h1), resp. (V1G
µ1

1 h2, V2h2), is harmonic on D.

Proof: The functions u = V1h1 + V1G
µ1

1 h2 and v = V2G
µ2

2 h1 + V2h2 are clearly
superharmonic on D, and we have L1u = −µ1v and L2v = −µ2u in the distribu-
tion sense. Then, by definition, the pair (u, v) is harmonic. Since h1 and h2 are
arbitrary, then by taking h2 = 0 (resp. h1 = 0) we obtain the result. �

Corollary 4.2. Let hi be a nonnegative Li-harmonic functions on D, i = 1, 2. If

the function h1, resp. h2, is bounded on D, then the pair (V1h1, V2G
µ2

2 h1), resp.

(V1G
µ1

1 h2, V2h2), is harmonic on D.

Proof: Suppose for example that h1 is bounded on D. Then by the hypothesis
on measures µ1 and µ2, the functions V1h1 and V1G

µ2

2 h1 are finite and continuous
on D. Hence the pair (V1h1, V1G

µ2

2 h1) is harmonic on D by the above proposition.
�
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Theorem 4.3. Let (u, v) be a nonnegative superharmonic pair on D. If the

functions Gµ1

1 v and Gµ2

2 u are finite and continuous on D, and if L1u = −µ1v and

L2v = −µ2u in the distribution sense, then the pair (u, v) is harmonic on D.

Proof: It is clear that the functions u and v are respectively nonnegative L1-
superharmonic and L2-superharmonic functions on D. Let h1 and h2 be the
harmonic parts of u and v respectively. Then, by hypothesis we have u = h1+Gµ1

1 v
and v = h2 +Gµ2

2 u and hence u and v are continuous on D, and consequently the
pair (u, v) is harmonic on D. �

Theorem 4.4. A nonnegative superharmonic pair (u, v) on D is harmonic on D
if and only if the following conditions hold:

1. L1u = −µ1v and L2v = −µ2u in the distribution sense;

2. Gµ1

1 v and Gµ2

2 u are finite and continuous on D.

Proof: Suppose first that the pair (u, v) is harmonic on D. Then we have
L1u = −µ1v, L2v = −µ2u (in the distribution sense) and the functions u and v
are respectively L1-superharmonic and L2-superharmonic on D. Let h1 and h2 be
the harmonic parts of u and v in the Riesz decomposition of u and v respectively.
Then we necessarily have u = h1 + Gµ1

1 v and v = h2 + Gµ2

2 u. Since the functions
u, v, h1, h2 are continuous, we deduce that Gµ1

1 v and Gµ2

2 u are continuous on D.
Conversely, if the condition 2 holds, then u and v are continuous on D, since they
are respectively L1-superharmonic and L2-superharmonic, and since the continu-
ous functions Gµ1

1 v and Gµ2

2 u are their potential parts in the Riesz decomposition
of L1-superharmonic, resp. L2-superharmonic, functions. Hence it follows that the
pair (u, v) is continuous and hence harmonic on D if the condition 1 holds. �

Proposition 4.5. Let ((un, vn)) be an increasing sequence of nonnegative har-

monic pairs on D, and suppose that supn un + supn vn is finite at some point

x0 ∈ D. Then the pair (u, v) = supn(un, vn) is harmonic if and only if the

functions Gµ1

1 v and Gµ2

2 u are finite and continuous on D.

Proof: By hypothesis, the pair (u, v) is superharmonic on D by Corollary 3.10.
For every n let hn, resp. kn, be the L1-harmonic, resp. L2-harmonic, part of
u, resp. v, in the Riesz decomposition of L1-superharmonic functions, resp. L2-
superharmonic functions. Then we have un = hn + Gµ1

1 vn and vn = kn + Gµ2

2 vn

on D. The sequences (hn) and (kn) are increasing (because hn, resp. kn is the
greatest L1-harmonic, resp. L2-harmonic minorant of un resp. vn) and the function
h = supn hn, resp. k = sup kn, is L1-harmonic, resp. L2-harmonic, on D. By
letting n → +∞, we have u = h + Gµ1

1 v and v = k + Gµ2

2 u. From these equalities
we deduce that L1u = −µ1v and L2v = −µ2u in the distribution sense. It follows
by Theorem 4.8 that the pair (u, v) is harmonic on D if and only if Gµ1

1 v and
Gµ2

2 u are finite and continuous on D. �

Proposition 4.6. Let ti be a nonnegative Li-superharmonic functions on D,

i = 1, 2. If the function V1t1 + V1G
µ1

1 t2 + V2G
µ2

2 t1 + V2t2 is finite at some point

of D, then the pairs (V1t1, V2G
µ2

2 t1) and (V1G
µ1

1 t2, V2t2) are superharmonic on D.
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Proof: By the definition of the kernel V1, the function V1t1, finite at some point
of D, is L1-superharmonic, hence it is locally integrable and l.s.c. on D. On
the other hand, we easily have in the distribution sense, L1(V1t1) = −L1t1 −
µ1V2G

µ2

2 t1 ≤ −µ1V2G
µ2

2 t1 and L2(V2G
µ2

2 t1) = −µ2t2 − µ2V1t1 ≤ −µ2V1t1 on D,
by the definition of the kernels V1 and V2. Hence the pair (V1t1, V2G

µ2

2 t1) is super-
harmonic on D. In the same way we prove that (V1G

µ1

1 t2, V2t2) is superharmonic
on D. �

Corollary 4.7. Let (u, v) be a nonnegative superharmonic pair on D. If u and v
are bounded, then for i = 1, 2 there exists a unique nonnegative Li-superharmonic

function ti on D such that u = t1 + Gµ1

1 v and v = t2 + Gµ2

2 u.

Theorem 4.8. Let (u, v) be a nonnegative superharmonic pair on D. Then for

each i = 1, 2, there exists a unique nonnegative Li-superharmonic function ti on D
such that u = t1 + Gµ1

1 v = V1t1 + V1G
µ1

1 t2 and v = t2 + Gµ2

2 u = V2G
µ2

2 t1 + V2t2.

Proof: According to Proposition 3.5, the function u is L1-superharmonic ≥
0 on D. Hence ν = −L1u, in the distribution sense, is a nonnegative Radon
measure on D. We have µ1v ≤ ν, and, consequently, Gµ1

1 v ≤ Gν
1 = u. Let

n be an integer. Since µ1 is Kato measure, the function Gµ1

1 (v ∧ n) is finite
and continuous, so that u − Gµ1

1 (v ∧ n) is l.s.c. locally integrable, and we have
L1(u − Gµ1

1 (v ∧ n)) = −ν + µ1(v ∧ n) ≤ 0 in the distribution sense, hence the
function tn1 = u−Gµ1

1 (v ∧ n) is L1-superharmonic, and u = tn1 + Gµ1

1 (v ∧ n). The

sequence of functions (tn1 ) is decreasing, then the nonnegative function t1 = înfntn1
is L1-superharmonic and verify u = t1 + Gµ1

1 v. In the same way, there exists
a nonnegative L2-superharmonic function t2 such that v = t2 + Gµ2

2 u. Hence
u = t1+Gµ1

1 t2+Gµ1

1 Gµ2

2 u, and therefore (I−Gµ1

1 Gµ2

2 )u = t1+Gµ1

1 t2. By applying
the operator V1 to the members of the last equality we obtain u = V1t1 +V1G

µ1

1 t2.
Similarly we have v = Gµ2

2 v + t2 = V2G
µ2

2 t2 + V2t2.
Let us now prove the uniqueness of the pair (t1, t2). Suppose that t′1 and t′2

are as above. Then we have u = t1 + Gµ1

1 v = t′1 + Gµ1

1 v and v = t2 + Gµ2

1 v =
t′2 + Gµ2

2 u. Hence t1 = t′1 and t2 = t′2 q.e, and therefore t1 = t′1 and t2 = t′2 by
Proposition 2.11. This ends the proof. �

Lemma 4.9. Let ti be a nonnegative Li-superharmonic functions on D, i = 1, 2.

If the pair (V1t1 + V1G
µ1

1 t2, V2G
µ2

2 t1 + V2t2) is harmonic, then ti is Li-harmonic

on D, i = 1, 2.

Proof: Indeed we have L1(V1t1 + V1G
µ1

1 t2) = L1t1 − µ1(V2G
µ2

2 t1 + V2t2) and
L2(V2G

µ2

2 t1 + V2t2) = L2t2 −µ2(V1t1 + V1G
µ1

1 t2) in the distribution sense. Hence
if the pair (V1t1 + V1G

µ1

1 t2, V2G
µ2

2 t1 + V2t2) is harmonic, then for each i = 1, 2,
we have Liti = 0 and thus ti is Li-harmonic on D by Proposition 2.16. �

Theorem 4.10. Let (u, v) be a nonnegative harmonic pair on D. Then for each

i = 1, 2, there exists a unique nonnegative Li-harmonic function ti on D such that

(u, v) = (V1t1 + V1G
µ1

1 t2, V2G
µ2

2 t1 + V2t2).

Proof: The theorem follows easily from Theorem 4.8 and Lemma 4.9. �
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Proposition 4.11. Let (uj , vj), j = 1, 2, be two nonnegative superharmonic

pairs. If the pair (u1+v1, u2+v2) is harmonic then the pairs (uj , vj) are harmonic,

j = 1, 2.

Proof: According to Theorem 4.10 we have (uj , vj) = (V1t
j
1+V1G

µ1

1 tj2, V2G
µ2

2 tj1+

V2t
j
2) for j = 1, 2, where tji is Li-harmonic, i = 1, 2. If the pair (u1 +v1, u2 +v2) is

harmonic, then, according to Lemma 4.9, for each i = 1, 2, the Li-superharmonic
functions t1i + t2i are Li-harmonic, hence tji is Li-harmonic for all j and i. Hence
(uj , vj) is harmonic by Corollary 3.9. �

We denote by H+(D) the set of nonnegative harmonic pairs on D.

Corollary 4.12. The set H+(D) of nonnegative harmonic pairs on D is a band

in the cone S+(D).

Lemma 4.13. Let ω be a connected relatively compact open subset of D. Then

there exists a harmonic pair (h, k) on ω such that infx∈ω h(x), infx∈ω k(x) > 0
on ω.

Proof: Since for each i = 1, 2, D is a Li-Green domain, then by [22, Thé-
orème 16.1], there exists a Li-harmonic hi > 0 on D. The restrictions of h1

and h2 to ω are bounded. The measures µ1 and µ2 are of Kato type, hence by
Corollary 4.2 the pair of the restrictions to ω of the functions V ω

1 h + V ω
1 Gω,µ1

1 k
and Gω,µ2

2 h + V ω
2 k has the required property of the lemma. �

For a pair (f, g) of functions on an open subset of Rd, the pair

(lim inf
x→z

f(x), lim inf
x→z

g(x)) ∈ R
2

is denoted by lim infx→z(f, g)(x).

Theorem 4.14. Let ω be a relatively compact open subset of D and let (u, v)
a superharmonic pair on ω such that lim infω∋x→z(u, v)(x) ≥ 0 for all z ∈ ∂ω.

Then (u, v) ≥ 0 on ω.

Proof: We may assume that ω is connected. By the above lemma there exists a
harmonic pair (h, k) on an open neighborhood of ω such that infx∈ω h(x) > 0 and
infx∈ω k(x) > 0 on ω. Suppose for example that u is not nonnegative, then the
function u/h attains its minimum α < 0 at some point x0 of ω. Let β = inf v

k
, then

we have α, β ∈ R. If β ≥ α, then the pair of nonnegative functions (u−αh, v−αk)
is a superharmonic on ω. Hence u−αh is a nonnegative L1-superharmonic which
is zero at x0, and therefore we have u = αh, which is a contradiction with the fact
that lim infx→z u(x) ≥ 0 for z ∈ ∂ω. If α ≥ β, then the l.s.c. function v/k attains
its minimum at a point x1 ∈ ω. The above argument applied to the superharmonic
pair (u − βh, v − βk) leads to a contradiction. Hence (u, v) ≥ 0. �

5. Potentials

Definition 5.1. A nonnegative superharmonic pair (p, q) in Ω is said to be a po-
tential if, for any nonnegative L1-harmonic function h on D and any nonnegative
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L2-harmonic function k on D such that (V1h + V1G
µ1

1 k, V2G
µ2

2 h + V2k) ≤ (p, q),
we have h = k = 0 on D.

Proposition 5.2. Let (p, q) be a potential on D and (h, k) a nonnegative har-

monic pair on D such that (h, k) ≤ (p, q). Then h = k = 0 on D.

The proposition follows easily from Definition 5.1 and Theorem 4.10.

Proposition 5.3. Let (p, q) be a potential on D. Then p is a L1-potential and v
is a L2-potential on D.

Proof: Let h and k be nonnegative L1-harmonic and nonnegative L2-harmo-
nic respectively on D such that h ≤ p and k ≤ q. By Theorem 4.8, we have p =
V1p1+V1G

µ1

1 p2 and q = V2G
µ2

1 p1+V2p2, where pi is nonnegative Li-superharmonic
on D for each i = 1, 2. Then we have h− p1 ≤ Gµ1

1 V2G
µ2

2 p1 +V1G
µ1

1 p2. Since the
function h−p1 is L1-subharmonic on D and the function Gµ1

1 V2G
µ2

2 p1+V1G
µ1

1 p2 is
a L1-potential, we necessarily have h−p1 ≤ 0, that is, h ≤ p1. The same argument

applied to k and q gives that k ≤ p2. Hence we have (V1h + V1G
µ1k
1 , V2G

µ2

2 k +
V2k) ≤ (p, q) and therefore h = k = 0. It follows then that p is a L1-potential
and q is a L2-potential. �

Proposition 5.4. Let (h, k) = (V1h1 + V1G
µ1

1 h2, V2G
µ2

2 h1 + V2h2) be a nonneg-

ative harmonic pair and (u, v) = (V1t1 + V1G
µ1

1 t2, V2G
µ2

2 t1 + V2t2) a nonnegative

superharmonic pair on D. If (h, k) ≤ (u, v) on D, then h1 ≤ t1 and h2 ≤ t2 on D.

Proof: The pairs (u−h, v−k), (u, v) are nonnegative and superharmonic on D.
According to Theorem 4.8, there exist two nonnegative L1-superharmonic func-
tions t1, t′1 on D and two nonnegative L2-superharmonic functions t2, t

′
2 on D

such that u = V1t1 + V1G
µ1

1 t2, v = V2G
µ2

2 t1 + V2t2, u − h = V1t
′
1 + V1G

µ1

1 t′2
and v − k = V2G

µ2

2 t′1 + V2t
′
2. There exist again by Theorem 4.10 a nonnegative

L1-harmonic h1 on D and a nonnegative L2-harmonic function h2 on D such that
h = V1h1 + V1G

µ1

1 h2, k = V2G
µ2

2 h1 + V2h2. By the uniqueness in Theorem 4.8 we
have necessarily t1 = t′1 + h1 and t2 = t′2 + h2, hence h1 ≤ t1 and k2 ≤ t2. �

Proposition 5.5. For each i = 1, 2, let pi be a Li-potential on D. If the pair

(V1p1 + V1G
µ2

1 p2, V2G
µ2

1 p1 + V2p2) is superharmonic, then it is a potential.

Proof: Suppose that the pair (V1p1 + V1G
µ2

2 p2, V2G
µ2

2 p1 + V2p2) is superhar-
monic on D. Then by Theorem 3.11, for each i = 1, 2, there exists a nonne-
gative Li-harmonic hi such that (V1h1 + V1G

µ1

1 h2, V2G
µ2

2 h1 + V2h2 ≤ (V1p1 +
V1G

µ2

1 p2, V2G
µ2

1 p1 + V2p2). According to Proposition 5.3 we have necessarily
hi ≤ pi, and hence hi = 0, for i = 1, 2, and therefore h = k = 0 because pi

is a Li-potential. Then (V1p1 + V1G
µ1

1 p2, V2G
µ2

2 p1 + V2p2) is a potential. �

Theorem 5.6 (Riesz decomposition). Let (u, v) be a nonnegative superharmonic

pair on D, then for each i = 1, 2, there exist a unique nonnegative Li-harmonic

function hi on D and a unique potential (p, q) in D such that (u, v) = (V1h1 +
V1G

µ1

1 k1, V2G
µ2

2 h1 + V2h2) + (p, q).
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Proof: Let (u, v) be a nonnegative superharmonic pair in D. By Theorem 4.8,
for each i = 1, 2, there exists a nonnegative Li-superharmonic ti on D such that
u = V1t1 + V1G

µ1

1 t2 and v = V2G
µ2

2 t1 + V2t2. By the Riesz decomposition of
nonnegative Li-superharmonic functions, there exists a nonnegative Li-harmonic
function hi in Ω such that ti = hi + pi. Thus we have

(u, v) = (V1h1 + V1G
µ1

1 h2, V2G
µ1

2 h1 + V2h2) + (V1p1 + V1G
µ1

1 p2, V2G
µ2

2 p1 + V2p2).

The theorem follows now from Proposition 5.5. �

Corollary 5.7. Let (p, q) be a potential pair on D. Then for i = 1, 2, there exists

a Li-potential pi on D such that p = V1p1 + V1G
µ1

1 p2 and q = V2G
µ2

2 p1 + V2q2.

Corollary 5.8. The set P(D) of potential pairs on D is a convex cone and a band

of S(D).

Theorem 5.9. Let (p, q) be a potential pair on D. Then there exist two unique

nonnegative measures µ and ν on D such that

p =

∫

D

V1G1(., y)dµ(y) +

∫

D

V1G
µ1

1 G2(., y) dν(y)

and

q =

∫

D

V2G
µ2

2 G1(., y)dµ(y) +

∫

D

V2G2(., y) dν(y).

Proof: According to Corollary 5.7, for each i = 1, 2, there exists a unique Li-
potential pi such that p = V1p1 +V1G

µ1

1 p2 and q = V2G
µ2

2 p1 +V2p2. By the Riesz
representation Theorem, there exist two unique measures µ and ν on D such
that p1 =

∫
G1(x, y) dµ(y) and p2 =

∫
G2(., y) dν(y). Hence we have by Fubini

Theorem,

p =

∫

∆

V1G1(., y) dµ(y) +

∫

∆

V1G
µ1

1 G2(., y) dν(y)

and

q =

∫

∆

V2G
µ2

2 G1(., y) dµ(y) +

∫

∆

V1G2(., y) dν(y). �

6. Integral representation of nonnegative solutions of (S)

For i = 1, 2, we denote by ∆i the Martin boundary of D relative to the operator
Li, and by gi the corresponding Martin kernel on D×∆i. Then, for any Y ∈ ∆i,
gi(., Y ) is a nonnegative Li-harmonic function on D. We also denote by ∆m

i the
associated minimal Martin boundary of D, that is, the set of minimal points of ∆i.

Proposition 6.1. Let µ and ν be two measures ≥ 0 on ∆1 and ∆2 respectively.

If the functions

u =

∫

∆1

V1g1(., Y ) dµ(Y ) +

∫

∆2

V1G
µ1

1 g2(., Y ) dν(Y )
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and

v =

∫

∆1

V2G
µ2

2 g1(., Y ) dµ(Y ) +

∫

∆2

V2g2(., Y ) dν(Y )

are finite and continuous on D, then the pair (u, v) is harmonic in D.

Proof: Suppose that u and v are finite and continuous on D. It follows then
that the functions h1 =

∫
∆1

g1(., Y ) dµ(Y ) and h2 =
∫
∆2

g2(., Y ) dν(Y ) are re-

spectively L1-harmonic and L2-harmonic on D and we have by Fubini’s Theorem
u = V1h1 + V1G

µ1

1 h2 and v = V2G
µ2

2 h1 + V2h2. Then the pair (u, v) is harmonic
by Proposition 4.1. �

Lemma 6.2. Let µ and ν be two finite measures on ∆1 and ∆2 respectively, and

let u and v the functions defined on D by

u =

∫

∆1

V1g1(., Y ) dµ(Y ) +

∫

∆2

V1G
µ1

1 g2(., Y ) dν(Y )

and

v =

∫

∆1

V2G
µ2

2 g1(., Y ) dµ(Y ) +

∫

∆2

V2g2(., Y ) dν(Y ).

If the pair (u, v) is harmonic on D, then we have

∫

∆

g1(., Y ) dµ(Y ) +

∫

∆2

Gµ1

1 g2(., Y ) dν(Y ) < +∞

and ∫

∆1

Gµ2

2 g1(., Y ) dµ(Y ) +

∫

∆2

g2(., Y ) dν(Y ) < +∞.

Proof: Indeed we have
∫

∆1

g1(., Y ) dµ(Y ) +

∫

∆2

Gµ1

1 g2(., Y ) dν(Y ) ≤ u < +∞

and ∫

∆1

Gµ2g1(., Y ) +

∫

∆2

g2(., Y ) dν(Y ) ≤ v < +∞.

�

Theorem 6.3. Let (u, v) be a nonnegative harmonic pair on D. Then there exist

two unique nonnegative finite measures µ and ν on ∆1 and ∆2 respectively and

supported by ∆m
1 and ∆m

2 respectively such that

u =

∫

∆1

V1g1(., Y ) dµ(Y ) +

∫

∆2

V1G
µ1

1 g2(., Y ) dν(Y )

and

v =

∫

∆1

V2G
µ2

2 g1(., Y ) dµ(Y ) +

∫

∆2

V2g2(., Y ) dν(Y ).
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Proof: According to Theorem 4.10, for each i = 1, 2, there exists a unique
nonnegative Li-harmonic function hi such that u = V1h1 + V1G

µ1

1 h2 and v =
V2G

µ2

2 h1 + V2h2. By the Theorem 2.20, there exist two unique (Radon) measures
µ and ν on ∆1 and ∆2, carried by ∆m

1 and ∆m
2 respectively such that h1 =∫

g1(x, Y ) dµ(Y ) and h2 =
∫

g2(., Y ) dν(Y ). Hence we have by Fubini’s Theorem,

u =

∫

∆1

V1g1(., Y ) dµ(Y ) +

∫

∆2

V1G
µ1

1 g2(., Y ) dν(Y )

and

v =

∫

∆1

V2G
µ2

2 g1(., Y ) dµ(Y ) +

∫

∆2

V2g2(., Y ) dν(Y ).

Let σ and τ be two nonnegative (Radon) measures on ∆1 and ∆2 and carried
by ∆m

1 and ∆m
2 respectively, and such that

u =

∫

∆1

V1g1(., Y ) dσ(Y ) +

∫

∆2

V1G
µ1

1 g2(., Y ) dτ(Y )

and

v =

∫

∆1

V2G
µ2

2 g1(., Y ) dσ(Y ) +

∫

∆2

V2g2(., Y ) dτ(Y ).

Then, by Fubini’s Theorem,

(I − Gµ1

1 Gµ2

2 )u =

∫

∆1

g1(., Y ) dµ(Y ) +

∫

∆2

Gµ2

2 g2(., Y ) dν(Y )

=

∫

∆1

g1(., Y ) dσ(Y ) +

∫

∆2

Gµ2

2 g2(., Y ) dτ(Y ).

The functions
∫
∆1

g1(., Y ) dµ(Y ) and
∫
∆1

g1(., Y ) dσ(Y ) are L1-harmonic and L2-

harmonic respectively, and the functions
∫

∆1

Gµ2

2 g1(., Y ) dν(Y ) and

∫

∆2

Gµ2

2 g2(., Y ) dτ(Y )

are a L1-potential and L2 potential respectively, then by the uniqueness of the
Riesz decomposition we have

∫
∆

g1(., Y ) dµ(Y ) =
∫
∆

g1(., Y ) dσ(y), hence µ =
σ by the uniqueness of the integral representation of nonnegative L1-harmonic
functions by mean of measure on ∆1 carried by ∆m

1 . In the same way we have
ν = τ . �

Corollary 6.4. Let (u, v) be a nonnegative harmonic pair on D admitting the

integral representation

u =

∫

∆1

V1g1(., Y ) dµ(Y ) +

∫

∆2

V1G
µ1

1 g2(., Y ) dν(Y )
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and

v =

∫

∆1

V2G
µ2

2 g1(., Y ) dµ(Y ) +

∫

∆2

V2g2(., Y ) dν(Y )

on D, where µ and ν are two finite nonnegative measures on ∆1 and ∆2 respec-

tively. Then the pair (h, k) = ((I −Gµ1

1 Gµ2

2 )u,
∫
∆2

g2(., Y ) dν(Y )) is a solution of

the system L1h = −µ1k, L2k = 0.

Proof: Indeed, we have (I − Gµ1

1 Gµ2

2 )(V1g1(., Y )) = g1(., Y ) for each Y ∈ ∆1

and (I − Gµ1

1 Gµ2

2 )V1G
µ1

1 g2(., Y )) = Gµ1

1 g2(., Y ) for each Y ∈ ∆2. Hence, by
Fubini’s Theorem, (I − Gµ1

1 Gµ2

2 )u =
∫
∆1

g1(., Y ) dµ(Y ) + Gµ1

1

∫
∆2

g2(., Y ) dν(Y ).

By applying the operator L1 to the members of this equality, we obtain L1(I −
Gµ1

1 Gµ2

2 )u = −µ1

∫
∆2

g2(., Y ) dν(Y ) because the function
∫
∆1

g1(., Y ) dµ(Y ) is L1-

harmonic. Since the function
∫
∆1

g1(., Y ) dν(Y ) is L2-harmonic, we deduce that

the pair (h, k) = ((I − Gµ1

1 Gµ2

2 )u,
∫
∆2

g2(., y) dν(Y )) is a solution of the system
L1h = −µk, L2k = 0. �
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[24] Mokobodzki G., Représentation intégrale des fonctions surharmoniques au moyen des
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