Comment.Math.Univ.Carolin. 57,2 (2016) 155-162

Ei-degeneration and d'd’-lemma

TAl-WEI CHEN, CHUNG-I Ho, JYyH-HAUR TEH*

Abstract. For a double complex (A, d’,d"”), we show that if it satisfies the d’d"’-
lemma and the spectral sequence {EX?} induced by A does not degenerate at
Eo, then it degenerates at 1. We apply this result to prove the degeneration at
FE of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian
manifolds that satisfy a version of d’d”’-lemma.
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1. Introduction

Complex manifolds that satisfy the 99-lemma enjoy some nice properties such
as they are formal manifolds ([DGMS]), their Bott-Chern cohomology, Aeppli
cohomology and Dolbeault cohomology are all isomorphic. Compact Kéhler ma-
nifolds are examples of such manifolds. The Hodge-de Rham spectral sequence
E2* of a complex manifold M is built from the double complex (Q** (M), d, ) of
complex differential forms which relates the Dolbeault cohomology of M to the de
Rham cohomology of M. It is well known that E7*? is isomorphic to H? (M, Q)
and the spectral sequence E** converges to H*(M,C). The goal of this paper
is to prove an algebraic version of the result that the 9-lemma implies the E;-
degeneration of a Hodge-de Rham spectral sequence. The following is our main
result.

Theorem 1.1. If a double complex (A,d’,d") satisfies the d'd"-lemma and the
spectral sequence {EP?} induced by A does not degenerate at Ey, then it dege-
nerates at F.

We define a spectral sequence that is analogous to the Hodge-de Rham spectral
sequence of complex manifolds for bi-generalized Hermitian manifolds. Applying
result above, we are able to show that for compact bi-generalized Hermitian man-
ifolds that satisfy a version of 90-lemma, the sequence degenerates at E;.
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2. Degeneration of a Hodge-de Rham spectral sequence

Definition 2.1. A spectral sequence is a sequence of differential bi-graded mo-
dules {(E}*,d,)} such that d, is of degree (r,1 — ) and E}}, is isomorphic to
HPY(E** d,).

Definition 2.2. A filtered differential graded module is an N-graded module
A=B, A* endowed with a filtration F and a linear map d : A — A satisfying
(1) d is of degree 1: d(A*) C A+
(2) dod=0;
(3) the filtered structure is descending:

A=F°ADF'AD - DFFAD FF1AD ..
(4) the map d preserves the filtered structure: d(F*A) C F*A for all k.
For p,q,r € Z, let

Zf’q — {g c FP APt

d¢ € Fp+7-Ap+q+1} , ZP1 = FPAPYY O kerd

B = FPAPTa O JFP—T APTa—1 BRI = FP AP A Imd
EPa — Zpe Epa — FPAPTI N kerd
T gptlatlyoppat T FrRLAPY O ker d 4 FPAPTa N Imd

with the convention F~¥APT¢ = AP*4 and A=% = {0} for k > 0. Let d, : EP'9 —
Eptra=r+l he the differential induced by d : ZP4 — Zp+ra—r+l,

Throughout this paper, we always assume that A = @p >0 AP-9 is a double
complex of vector spaces over some field with two maps d;)’ g AP — APtLa and
dy g o APT — AP satistying dyy o dy o = 0,dy ady, = 0 and dj, 1dy +

;’+17q ;mz = 0 for all p,q > 0. To make notation cleaner, we allow p, g to be any
integers by defining AP? =0 for p < 0 or ¢ < 0.
Let A% = @D, —r A7?. Define

k
FrAF = 5 Ak,
s=p

For p > k, define F?A¥ = {0}. This gives a descending filtration on A*.

Let d = d'+d”. The double complex (A, d’,d"”) then defines a filtered differen-
tial graded module (A, d, F'). Let {EP?} be the corresponding spectral sequence.
We are interested in the convergence of EZ9.

Definition 2.3. Let {EF?} be the spectral sequence associated to the double
complex (A4,d,d"). If d; = 0 for all s > r, then we say that {EP?} or A
degenerates at F,.

The following simple lemmas will be used frequently.
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Lemma 2.4. If G’ is a vector space and H < G, H < H' are subspaces of G', the
natural map @ : % — % is injective if and only if G N H' = H, and is surjective

if and only if G' = G+ H'.
Lemma 2.5. Let p,q,r € Z. There are inclusions

-cBycBYMc-..cBYlCczbiC--cZptczP

p+1,q—1 P,q p+1,g—1 D,q p—r,q+r—1\ _ pp.q
VA Cc ZF B c zPra, d(ZF ) = BPA,

.. Zra :
Definition 2.6. Let ay 4, : BV — T T g be the map induced by the

ALK
e A —
Zp+1q 1 + BP9

composition of inclusion and projection, and 3, 4, : EP'? — be the

map induced by the projection.

Proposition 2.7. Let r € Z. Then

(1) d, =0 if and only if By 4 is an isomorphism for all p,q € Z,
(2) d, =0 implies that a4 is an isomorphism for all p,q € Z.

PRrROOF: (1) We first note that the map 3, 4, is always surjective. By Lemma 2.4,
Bp.q.r is an isomorphism if and only if ZP4N(ZP1 197 4 Bpa) = zPH 1471y ppa
or equivalently, BP¢ C ZP*14~1 4 BP9 - The map dp—"9t7—1 ; gp—ratr—1
EP is the zero map if and only if Imd?~"4t"=1 = {0}. This is equivalent to
d(zp—ratr=1)y = Bpa C zP*H971 L BP9 which is equivalent to (3, 4., being an
isomorphism.

(2) We recall that the isomorphism Ef, — HP9(E}* d,) (see [M, Proof
of Theorem 2.6]) is induced from some canonical projections and inclusions. If
d, =0, HPY(E**,d,) = EP? and we have a commutative diagram

EP EP:4
P

r4+1
k ;4

ZP1
Zp+1q 1 +BP1

By (1), Bp,q,r is an isomorphism and hence a4 is an isomorphism. O
Definition 2.8. Fix a pair of integers (p, ¢). For nonzero

(=Y e

>0

where & € APTHI71 et ip = min;{& # 0}. We call &, the leading term of ¢
and denote it as £79(¢). We define ¢79(0) = 0. For r > 1, p,q € Z, let EP? be
the set of & = & + &1 + -+ - + &._1 such that & € APTHI70 d¢ = d'¢, 1 ¢ Tmd”,
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P4(n) # & for all d-closed n and let
epet = By — (2750 4 B,

Lemma 2.9. Fixrg > 1.
(1) If the map « 4, is an isomorphism for all p,q € Z,r > ro, then EF1 = ()
for all p,q € Z, r > ro.
(2) If the map ay q,r, is not an isomorphism, then EX9 # (.

Proor: Note that by Lemma 2.4, the surjectivity of «, 4 is equivalent to the
condition
g _ ) +1,q-1 4 ) +1,q—1
Zpt=Z0N + 2P+ B =20 + 27
(1) Suppose that o g, is an isomorphism for all r > ro. Then Z"% = ZP% +
ZPTH for all i > rg. Assume that £79 # () for some r > 79,p,q € Z. Let
§ € &9, By definition, Z}Y, = Z0%; = --- = Z%?. So we may take j > r such
that Z"* = Zh9. Note that § € ZP9. Using the relation above, we may write
£ =m +mn2 where y1 € Z9% 1y € Zf:gl’qfl + o4 ZPTHT Since P2(€) # 0,
by comparing the degrees of both sides of & = 7y + 12, we have £7:9(&) = £P9(n).
But dn; = 0 which contradicts to the fact that £79(¢) is not the leading term of
any d-closed element.
(2) Fix r > 1. Suppose that o4, is not an isomorphism, then Z/7 +
ZPT 1T G zpa. Let

E=b+ &+ +& ez — (Z08 + ijll’qfl) where & € APTHa1,
Ifk>r—1,1let f’ =&, +§T+1 4o+ & € Frtr Ap+a — pp+l Ap+4. We have
d€' = dE, + - - - + &), € FPHm Ap+a+l — p+D)+r—1) g(P+)+(g—1+1

which means that & € ZP7 197" Let ¢ = ¢ — ¢ If ¢” € ZP% + ZP4 17" then
E=¢8+" ezl + foll’q_l which contradicts to our assumption. Therefore
=&+ &y € 20 — (ZP% + ZPT17T). Hence we may assume & =
So+ -+ &1

(i) Since & € ZP+9, by definition, d¢ € FPT"APTITL But d(& + -+ + & —2) +
d"&._q € APITE @ ArtLa gy oo @ APFr—La=r+2 This forces d(&p + - -+ +
&—2) +d"&—1 =0 and hence d€ = d'¢,._1.

(i) If d'¢,—1 = d"n, for some n, € APT™I7" then d(€é —n,) = d'&—1 —
dn, —d'n, = —d'n, € AptrtLa—r c ppt(r+l) gptatl  Hence ¢ —
ne € ZY,. Since n, € FPAPTY and dn, € APTHa-H g Aptrila-r
FetD+0r=1) gptatl e haven, € ZPT177 ! Therefore & = (€—n,)+1, €
ZP% + ZPT 177! which is a contradiction. Hence d'¢,—; ¢ Imd”.

(iii) If & is the leading term of a d-closed form 7 € FPAPTY then £ — T €
FPHIAPTa and d(¢ — 7) = dé € FPirAptatl — pleth)+r=1) gpta+l
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Hence £ — 7 € ijllﬂl*l_ Then £ = 7+ (£ —7) € Z27 + Zfirll,q—1 c
Z5 + foll’q_l, which is a contradiction.
Hence & € P9, O

Lemma 2.10. (1) E9" =0 if and only if B, 4.0 is an isomorphism.
(2) Forr>1,if Er~4t"=1 =0, then 3, 4 is an isomorphism.
(3) Forr > 1, if EP~m9t=1 £ () then f3,,; is not an isomorphism for j =
lorr.

PROOF: We note that 3, 4., is an isomorphism if and only if B?4 ¢ ZP*]97 4
B,

(1) This follows from the definition.

(2) Assume that Gy 4, is not an isomorphism. Then there exists £ € B2 —
(ZPT 0 4 BPY)). So € = dn for some 1) € FP~"APTa=1, Let

n=mno+n +---+n where n; € APTTTHeTr—I=L

Ifk>r letny =n. 4 - +mn, € FPArta—1 ¢ pp—(r=1)gp+ta=1 Then dy €

FPAPHa O d(FP=(r=D Apta=1y — BP9 If d(n — i) € ZPT] 7! + BP9, then

E=dn—n)+dy € ZPT)1 4 BP9 which is a contradiction. So d(n — ') €

Bpr1— (foll’q + BP). Hence we may assume & = dn where n =g+ +1n,_1.
(i) Comparing the degrees of £ and dn, we see that dn = d'n,_;.

(ii) If 1o = 0, then € = d(iy + -+ +1,_1) € FPAP+ O d(FP—(r=1) Ap+a-1) —
B, | which is a contradiction. So g # 0.

(iii) If no is the leading term of a d-closed form 7", n —n" € FP=rtiApta-1
and & = dn = d(n — ") € d(FP~(r=DAr+a=1)yn FP AP+ = BP9 which
is a contradiction. Hence 7 is not the leading term of any d-closed form.

(iv) If dn,—q € Imd”, € = dnp = d'n.—1 = —d"n, for some n, € API~1
then £ = d'n, — dn, € Z0tha=1 4 B2 ¢ zPthaml L pPa - which is a
contradiction. Hence d'n,—1 ¢ Imd”.

Therefore, n € EP~matr=1,

(3) Assume that EP~mItT=1 L (). Let n =g + -+ + np—1 € EP77IT"1 where
n; € Ap=rthatr—i=lGince dy € BPY, if dyp ¢ ZPT " + B2 B, ., is not an
isomorphism. So we may assume dn = d'n,_1 = £ + dn’ where £’ € foll’q_l and
dn' € BP' . Let o/ =n} +nh+---+n], where n, € AP~"T4atr=1= The degree
of d'n-—1 is (p, q), so by comparing degrees of both sides of d'n,_1 =& + dn/, we
get

dn.—1=dn._y+d"n. and d'n._, =0.

If dn._, € Imd”, then d'n,_; € Imd’ which contradicts to the fact that n €
gp—matr=1Go d'n._, ¢ Imd”. Note that if n’._; is the leading term of a d-
closed element 7, we may write 7 =n._; + 7, + - - + 7, for some k > r — 1 and
each 7; € AP~"+4a+r=1=i  Then comparing the degrees of d'r = —d’1, we get
d'ny—1 = —d" 7, which contradicts to the fact that d’'n,_; ¢ Imd".
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From the above verification, we see that 7. , € E/~"9. Assume that dn.. , €
Zg+17Q—1 + Bgﬂ. Write d777I~71 = v + do where v = 7.1 + '}/2. + ... € Zg-i—LQ—l7
v; € APTHIT o = 6g 4+ 01 4 --- € BP'Y and 0; € APTH47170 Since the degree
of dn._; is (p,q), comparing the degrees of both sides of dn._; = v + do, we
get dnl._, = d"oy which contradicts to the fact that 7, , € E'~"9. Therefore
dn._, ¢ ZPT971 4 BP9 and hence f3,,4,1 is not an isomorphism. O

Theorem 2.11. Suppose that (A = & ¢>0A9,d',d") is a double complex and
r > 1. The spectral sequence {EP'?} induced by A degenerates at E, but not at
FE,_; if and only if the following conditions hold:

(1) &* =0 for allp,q € Z,k > r and
(2) EP9, # 0 for some p, q.

PROOF: Suppose that { EP*?} degenerates at E, but not at E,_; for some r > 1.
By Proposition 2.7(2), a4 is an isomorphism for all p,q € Z,i > r. Then by
Lemma 2.9, /7 = ( for all p,q € Z,i > r. Since d,_1 # 0, by Proposition 2.7(1),
there are some p,q € Z such that (8, 4,—1 is not an isomorphism. Then by
Lemma 2.10, EP~ 197772 £ ¢,

Conversely, suppose that (1) and (2) hold. By Lemma 2.10, §, 4. is an iso-
morphism for all p,q € Z,k > r. Then by Proposition 2.7, d, = 0 for & > r.
For the case r = 1, by definition, &'? # 0 implies that (8, 4+1,0 1S not an isomor-
phism. And hence by Proposition 2.7, dy # 0. For the case r > 2, if 8y ¢.r—1
is an isomorphism for all p,q € Z, by Proposition 2.7, d,_; = 0. Then we have
dp =0 for k > r — 1. By the proof above, £, = () for k¥ > r — 1. In particular,
EPY = () for all p, ¢ € Z which contradicts to our assumption (2). Therefore there

exist some pg, o such that By, ¢,,r—1 is not an isomorphism. By Proposition 2.7,
d.—1 #0. O

Definition 2.12. We say that a double complex (A, d’,d"”) satisfies the d'd"-
lemma at (p, q) if

Imd Nkerd’ N AP? = kerd’ N Imd” N AP*? = Imd'd"” N AP4

and A satisfies the d’'d”-lemma if A satisfies the d'd”-lemma at (p, q) for all (p, q).

Now we can give a proof of the main result Theorem 1.1.

ProOF: Note that by definition, d’d”-lemma implies that Imd’ Nkerd” N AP9 =
Imd’ N Imd" N AP9 for all p,q. Since {EP?} does not degenerate at Ey, B 4.0 is
not an isomorphism for some p, g, hence by Lemma 2.10, E£97" # (. Assume
that EP7 £ () for some p,q € Z, r > 1. Then there is a = Z:;Ol o; € EPY where
a; € APTHa=i From the condition do = d'a,.—1, we have d"a,—1 = —d'o,_a
and hence d"da = —d'd"a,—1 = 0. So da = d'a,—1 € (Imd’' Nkerd”) N AP =
(Imd’ NImd"”) N AP2. But by the definition of £79, d'a,—1 ¢ Imd” which leads to
a contradiction. Therefore by Theorem 2.11, { EP*?} degenerates at E1. O
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In the following, we apply the main result to prove the Fj-degeneration of
a spectral sequence of bi-generalized Hermitian manifolds. We refer the reader
to [G1], [C] for generalized complex geometry, and to [CHT] for bi-generalized
complex manifolds. We give a brief recall here. A bi-generalized complex struc-
ture on a smooth manifold M is a pair (J1,J2) where J1,J2 are commuting
generalized complex structures on M. A bi-generalized complex manifold is a
smooth manifold M with a bi-generalized complex structure. A bi-generalized
Hermitian manifold (M, J1, J2, G) is an oriented bi-generalized complex manifold
(M, J1, J2) with a generalized metric G which commutes with J; and J2. We
define

ure.=U0rnud
where U, U C T(A*TM ® C) are eigenspaces of J1, J2 associated to the eigen-
values ip and iq respectively and TM = TM @ T*M is the generalized tangent

space. It can be shown that the exterior derivative d is an operator from UP? to
yrtbatl g grtha-l g yr-Latl g yr-1.9-1 and we write

6. UPT — UszquJrl7 §_ - UPe — yrtla-l

for the projection of d into corresponding spaces.

Definition 2.13. On a bi-generalized Hermitian manifold M, there is a double
complex {(A,d',d")} given by

AP = gPraer=a gl = § d" = §_,

We call the spectral sequence {E;"} associated to this double complex the 0;-
Hodge-de Rham spectral sequence.

By Theorem 1.1, we have the following result.

Theorem 2.14. Suppose that M is a compact bi-generalized Hermitian manifold
which satisfies the 6. d_-lemma and has positive dimension. Then the 0;-Hodge-
de Rham spectral sequence degenerates at Ej.

Now we give a proof of the F;-degeneration of the 01-Hodge-de Rham spectral
sequence.

Proor: Since P, , U = Q*(M) ® C (see [Cal07], p. 36) where Q*(M) is
the collection of smooth forms on M, some UP-? is not empty. The space UP?
is a C°°(M,C)-module where C*°(M,C) is the ring of complex-valued smooth
functions on M, and M has positive dimension, therefore UP? is an infinite di-
mensional complex vector space . If 6_ is a zero map, we have H (M) = UP4
for all p,q. But M is compact, this contradicts to the fact that H}*¢(M) is finite
dimensional ([CHT, Theorem 2.14, Corollary 3.11]). Hence d_ is not the zero
map and the spectral sequence does not degenerate at Fy. Since we assume that

M satisfies the d1d_-lemma, by Theorem 1.1, the spectral sequence degenerates
at El. O

161



162 Chen T.W., Ho Ch.I., Teh J.H.

Acknowledgment. The authors thank the referee for his/her extremely careful
review which largely improves this paper.

REFERENCES

[C] Cavalcanti G., New aspects of the dd®-lemma, Oxford Univ. DPhil. thesis,
arXiv:math/0501406v1[math.DG].

[Ca07] Cavalcanti G., Introduction to generalized complex geometry, impa, 26-Coloquio
Brasileiro de Matematica, 2007.

[CHT] Chen T.W., Ho C.I., Teh J.H., Aeppli and Bott-Chern cohomology for bigeneralized
Hermitian manifolds and d'd"” -lemma, J. Geom. Phys. 93 (2015), 40-51.

[DGMS] Deligne P., Griffiths P., Morgan J., Sullivan D., Real homotopy theory of Kdhler ma-
nifolds, Invent. Math.29 (1975), no. 3, 245-274.

[G1] Gualtieri M., Generalized complex geometry, Ann. of Math. 174 (2011), 75-123.

[M] McCleary J., A User’s Guide to Spectral Sequences, 2nd edition, Cambridge studies
in advanced mathematics, 58, Cambridge University Press, Cambridge, 2001.

Tai-Wei Chen, Jyh-Haur Teh:
MATHEMATICS DEPARTMENT, NATIONAL TSING HUA UNIVERSITY, HSINCHU, TATWAN

E-mail: d937203Qoz.nthu.edu.tw
jyhhaur@math.nthu.edu.tw

Chung-I Ho:
MATHEMATICS DEPARTMENT, NATIONAL TSING HUA UNIVERSITY, NATIONAL CENTER
OF THEORETICAL SCIENCES, MATHEMATICAL DIVISION, HSINCHU, TAIWAN

E-mail: ciho@math.cts.nthu.edu.tw

(Received January 25, 2015, revised January 26, 2016)



