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Spectral element discretization of the heat

equation with variable diffusion coefficient

Y. Daikh, W. Chikouche

Abstract. We are interested in the discretization of the heat equation with a dif-
fusion coefficient depending on the space and time variables. The discretization
relies on a spectral element method with respect to the space variables and Eu-
ler’s implicit scheme with respect to the time variable. A detailed numerical
analysis leads to optimal a priori error estimates.
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Classification: 35K05, 65N35, 35B45

1. Introduction

An impressive amount of work has been done concerning a priori and a poste-
riori analysis of parabolic type problems for finite element methods, see [6] and [1]
for instance. An extension in spectral element method of some results obtained
by Bergam et al. in [1] has been performed recently by N. Chorfi et al. in [4].
They were interested in a posteriori analysis of the spectral element discretiza-
tion of the one-dimensional heat equation with constant diffusion coefficient. The
spectral element method consists on approaching the solution of a partial dif-
ferential equation by polynomial functions of high degree on each element of a
decomposition.

In this paper, we are interested in the discretization of the heat equation with
a diffusion coefficient depending on the space and time variables by an implicit
Euler’s scheme with respect to the time variable and spectral element method with
respect to the space variables in a two- or three-dimensional bounded domain. For
the space discretization, we consider a partition of the domain into rectangles in
dimension 2 or rectangular parallelepipeds in dimension 3 which is conforming
and without overlap. The discrete spaces are constructed from tensorized spaces
of polynomials of the same high degree on each subdomain. The full discrete
problem is then obtained by Galerkin method with numerical integration.

An outline of the paper is as follows.

• In Section 2, we present the linear heat equation and we study the con-
tinuous problem and its stability.
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• In Section 3, we describe its time semi-discretization and the correspond-
ing stability property.

• Section 4 is devoted to the description of the space discretization of the
problem by using spectral element method.
The well-posedness of the corresponding problem in each section is proved.

• Optimal error estimates are proved in Section 5.

2. Position of the problem

Let Ω be a connected and bounded open set in R
d (d = 1, 2, or 3) with

a Lipschitz-continuous boundary. Also let T be a fixed positive integer. We
consider the heat equation

(1)











∂tu − div(λ∇u) = f in Ω×]0, T [,

u = 0 on ∂Ω×]0, T [,

u|t=0 = u0 in Ω,

where λ is a given continuous function on Ω × [0, T ] satisfying for some positive
constants λmin and λmax,

(2) ∀x ∈ Ω, ∀t ∈ [0, T ], λmin ≤ λ(x, t) ≤ λmax.

The data are the distribution f and the function u0; the unknown is the function u.

As usual, we denote by Lp(Ω), 1 ≤ p ≤ ∞, the Lebesgue spaces and by Hs(Ω),
s > 0, the standard Sobolev spaces. The usual norm and seminorm of Hs(Ω) are
denoted by ‖ ·‖s,Ω and | · |s,Ω respectively. The space H1

0 (Ω) stands for the closure
in H1(Ω) of the space of infinitely differentiable functions with a compact support
in Ω, and H−1(Ω) stands for its dual space. For simplicity, we denote by (·, ·)
the scalar product on L2(Ω) and by ‖ · ‖0,Ω the associated norm. By extension,
the duality pairing between H−1(Ω) and H1

0 (Ω), is also denoted by (·, ·). We
define C0(0, T ; L2(Ω)), as the space of continuous functions in time, with values
in L2(Ω), and also L2(0, T ; H1

0(Ω)), respectively L2(0, T ; H−1(Ω)), as the space
of square-integrable functions with values in H1

0 (Ω), respectively in H−1(Ω).
The problem (1) admits the equivalent variational formulation.

Find u in L2(0, T ; H1
0(Ω)) such that ∂tu ∈ L2(0, T ; H−1(Ω)) satisfying

(3) u|t=0 = u0 in Ω,

and such that, for a.e. t in ]0, T [,

(4) ∀v ∈ H1
0 (Ω), (∂tu(t), v) + (λ(t)∇u(t),∇v) = (f(t), v).

It is well known [5, Chapter 3, §4] that, for any f in L2(0, T ; H−1(Ω)) and u0 in
L2(Ω), problem (3)–(4) admits a unique solution u in L2(0, T ; H1

0 (Ω)) such that
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∂tu ∈ L2(0, T ; H−1(Ω)), and this implies that u ∈ C0(0, T ; L2(Ω)). Moreover, let
us introduce the norm

(5) [[v]](t) =

(

‖v(t)‖2
0,Ω +

∫ t

0

‖λ 1
2 (s)∇v(s)‖2

0,Ω

)

1
2

.

By taking v equal to u(t) in (4) and integrating on the interval ]0, t[, we easily
derive the following estimate [1]: for all t ∈ [0, T ]

(6) [[u]](t) ≤
(

‖u0‖2
0,Ω +

1

λmin
‖f‖2

L2(0,t;H−1(Ω))

)
1
2

.

3. The time semi-discrete problem

In order to describe the time discretization of equation (1), we introduce a par-
tition of the interval [0, T ] into subintervals [tk−1, tk], 1 ≤ k ≤ K, such that
0 = t0 < t1 < · · · < tK = T . We denote by τk := tk − tk−1, by τ the
K−tuple(τ1, . . . , τK) and by |τ | the maximum of the τk, 1 ≤ k ≤ K. We also
define the regularity parameter

στ = max
2≤k≤K

τk

τk−1
.

With each family (vk)0≤k≤K , we agree to associate the function vτ on [0, T ] which
is affine on each interval [tk−1, tk], 1 ≤ k ≤ K, and equal to vk at tk, 0 ≤ k ≤ K.
Equivalently, this function can be written, for 1 ≤ k ≤ K, as

(7) ∀t ∈ [tk−1, tk], vτ (t) = vk − tk − t

τk

(vk − vk−1).

For simplicity, we introduce the notation λk = λ(tk) and fk = f(tk), which
obviously requires the continuity of f with respect to t. The semi-discrete problem
issued from Euler’s implicit scheme is now written as















uk − uk−1

τk

− div(λk∇uk) = fk in Ω, 1 ≤ k ≤ K,

uk = 0 on ∂Ω, 1 ≤ k ≤ K,

u0 = u0 in Ω.

Equivalently, it admits the variational formulation.
Find (uk)0≤k≤K in L2(Ω) × H1

0 (Ω)K satisfying

(8) u0 = u0 in Ω,

and such that, for 1 ≤ k ≤ K,

(9) ∀v ∈ H1
0 (Ω), ak(uk, v) = Lk(v),
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where the bilinear forms ak, 1 ≤ k ≤ K, are defined by

ak(u, v) = (u, v) + τk(λk∇u,∇v),

and the linear forms Lk, 1 ≤ k ≤ K, are defined as

Lk(v) = (uk−1, v) + τk(fk, v).

The existence and uniqueness of a solution (uk)0≤k≤K for any data f in
C0(0, T ; H−1(Ω)) and u0 in L2(Ω) is now a simple consequence of the Lax-Milgram
lemma.

Moreover, by using the notation λk
min = inf

x∈Ω λ(x, tk) and taking v = uk

in (9), we easily derive the following estimate

(10) ‖uk‖2
0,Ω + τk

∥

∥(λk)
1
2∇uk

∥

∥

2

0,Ω
≤ ‖uk−1‖2

0,Ω +
τk

λk
min

‖fk‖2
−1,Ω.

We now define the norm on whole sequences vℓ, 0 ≤ ℓ ≤ k by

(11) [[(vℓ)]]k =

(

‖vk‖2
0,Ω +

k
∑

ℓ=1

τℓ

∥

∥(λℓ)
1
2∇vℓ

∥

∥

2

0,Ω

)
1
2

.

Proposition 3.1. For any data f in C0(0, T ; H−1(Ω)) and u0 in L2(Ω), problem

(8)–(9) has a unique solution (uk)0≤k≤K , which satisfies for all k, 1 ≤ k ≤ K,

(12) [[(uℓ)]]k ≤
(

‖u0‖2
0,Ω +

k
∑

ℓ=1

τℓ

λℓ
min

‖f ℓ‖2
−1,Ω

)
1
2

.

Moreover, this solution is such that, for all k, 1 ≤ k ≤ K,

(13)

( k
∑

ℓ=1

τℓ

∥

∥

∥

uℓ − uℓ−1

τℓ

∥

∥

∥

2

−1,Ω

)
1
2

≤
√

2

(

λmax‖u0‖2
0,Ω +

k
∑

ℓ=1

τℓ

(

1 +
λmax

λℓ
min

)

‖f ℓ‖2
−1,Ω

)
1
2

.

Proof: By summing up estimate (10) on k, we derive (12), which is the semi-
discrete analogue of (6). On the other hand, we derive from (9)

∥

∥

∥

uℓ − uℓ−1

τℓ

∥

∥

∥

−1,Ω
= sup

v∈H1
0 (Ω)

(f ℓ, v) − (λℓ∇uℓ,∇v)

|v|1,Ω
,

which gives

∥

∥

∥

uℓ − uℓ−1

τℓ

∥

∥

∥

−1,Ω
≤ ‖f ℓ‖−1,Ω + (λmax)

1
2 ‖(λℓ)

1
2∇uℓ

∥

∥

0,Ω
.
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Multiplying the square of this inequality by τℓ, summing on ℓ and using (12) leads
to (13). �

The norm [[(uℓ)]]k involved in this estimate is not equal to the norm [[uτ ]](tk)
(see (7) for the definition of the function uτ ). However, when u0 is supposed to
be in H1(Ω), they are equivalent, as proven in the next lemma [1].

Lemma 3.2. Assume that the function λ is continuously differentiable in time,

with maximum value of ∂tλ on Ω× [0, T ] denoted by µmax. There exists a positive

real number α0, equal to λmin/2µmax, such that the following equivalence property

holds for |τ | ≤ α0 and for any family (vℓ)0≤ℓ≤K in H1(Ω)K+1

(14)
1

8
[[(vℓ)]]2k ≤ [[vτ ]]2(tk) ≤ 3

4

(

1 +
3

2
στ

)

[[(vℓ)]]2k +
3

4
τ1

∥

∥(λ1)
1
2∇v0

∥

∥

2

0,Ω
.

Proof: Owing to the definitions (5) and (11) of the norms, we have to compare
the quantities

Xℓ =

∫ tℓ

tℓ−1

∥

∥λ
1
2 (s)∇vτ (s)

∥

∥

2

0,Ω
ds and Yℓ = τℓ

∥

∥(λℓ)
1
2∇vℓ

∥

∥

2

0,Ω
.

Thanks to the definition of µmax, we have the standard estimate

∀s ∈ [tℓ−1, tℓ], ∀x ∈ Ω, |λ(x, s) − λℓ(x)| ≤ τℓ µmax,

so that, when |τ | ≤ α0,

(15) ∀s ∈ [tℓ−1, tℓ], ∀x ∈ Ω,
1

2
≤ λ(x, s)

λℓ(x)
≤ 3

2
.

It can also be noted that, thanks to the definition of vτ , and for a.e. x in Ω,

(16)

∫ tℓ

tℓ−1

|∇vτ (x, s)|2 ds =
τℓ

3

(

|∇vℓ(x)|2 + |∇vℓ−1(x)|2 + ∇vℓ(x) · ∇vℓ−1(x)
)

.

By combining (15) and (16), we obtain

Xℓ ≥
τℓ

6

(

∥

∥(λℓ)
1
2∇vℓ

∥

∥

2

0,Ω
+
∥

∥(λℓ)
1
2∇vℓ−1

∥

∥

2

0,Ω
+ ((λℓ)

1
2∇vℓ, (λℓ)

1
2∇vℓ−1)

)

.

So using the inequality ab ≥ − 1
4a2 − b2 yields

Xℓ ≥
τℓ

8

∥

∥(λℓ)
1
2∇vℓ

∥

∥

2

0,Ω
=

1

8
Yℓ,

whence the first inequality in (14) holds.
Similarly, by combining (15) and (16) and using the inequality ab ≤ 1

2a2 + 1
2b2,

we have

Xℓ ≤
3τℓ

4

(
∥

∥(λℓ)
1
2∇vℓ

∥

∥

2

0,Ω
+
∥

∥(λℓ)
1
2∇vℓ−1

∥

∥

2

0,Ω

)

.
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When ℓ = 1, we keep this inequality without modification. When ℓ > 1, we use
an analogue of (15) to obtain

Xℓ ≤
3τℓ

4

∥

∥(λℓ)
1
2∇vℓ

∥

∥

2

0,Ω
+

3τℓ−1

4

3

2
στ

∥

∥(λℓ−1)
1
2∇vℓ−1

∥

∥

2

0,Ω
.

By summing up the previous lines on ℓ, we derive the second inequality in (14). �

In order to state the a priori error estimate (see [1]), we observe that the family
(ek)0≤k≤K , with ek = u(tk) − uk, satisfies e0 = 0 and also, by integrating ∂tu
between tk−1 and tk and using equation (9) and equation (4) at time t = tk,

∀v ∈ H1
0 (Ω), (ek, v) + τk(λk∇ek,∇v) = (ek−1, v) + τk(ǫk, v),

where the consistency error ǫk is given by

(ǫk, v) =

(

1

τk

∫ tk

tk−1

(∂tu)(s) ds − (∂tu)(tk), v

)

.

So, applying (12) to this new problem, we derive the estimate. Indeed, if the
solution u is such that ∂2

t u belongs to L2(0, T ; H−1(Ω)), thus for 1 ≤ k ≤ K,

[[(u(tℓ) − uℓ)]]k ≤ 2

3λ
1
2

min

(

max
1≤ℓ≤k

τℓ

)

∥

∥∂2
t u
∥

∥

2

L2(0,tk;H−1(Ω))
.

Thanks to Lemma 3.2, this also induces a similar bound for the norm [[u−uτ ]](tk).

4. The time and space discrete problem

From now on, we assume that Ω admits a partition without overlap into a finite
number of subdomains

Ω = ∪R
r=1Ωr and Ωr ∩ Ωr′ = ∅, 1 ≤ r < r′ ≤ R,

which satisfy the further conditions:

(i) each Ωr, 1 ≤ r ≤ R, is a rectangle in dimension d = 2 or a rectangular
parallelepiped in dimension d = 3;

(ii) the intersection of two subdomains Ωr and Ωr′ , 1 ≤ r < r′ ≤ R, if not
empty, is either a vertex or a whole edge or a whole face of both Ωr

and Ωr′ .

We introduce the space PN(Ωr) of restrictions to Ωr of polynomials with d
variables and degree ≤ N with respect to each variable. Relying on this definition,
we introduce the discrete spaces, for an integer N ≥ 2,

YN = {w ∈ L2(Ω) | wr = w|Ωr
∈ PN (Ωr), r = 1, . . . , R},

X
0
N = YN ∩ H1

0 (Ω).
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Setting ξ0 = −1 and ξN = 1, we introduce the N − 1 nodes ξj , 1 ≤ j ≤ N − 1,
and the N + 1 weights ρj , 0 ≤ j ≤ N , of the Gauss-Lobatto quadrature formula

on Λ := [−1, 1]. We recall that the following equality holds

(17) ∀ϕN ∈ P2N−1(Λ),

∫ 1

−1

ϕN (ζ) dζ =

N
∑

j=0

ϕN (ξj)ρj .

We also recall [2, form. (13.20)] the following property, which is useful in what
follows

(18) ∀ϕN ∈ PN(Λ), ‖ϕN‖2
L2(Λ) ≤

N
∑

j=0

ϕ2
N (ξj)ρj ≤ 3‖ϕN‖2

L2(Λ).

Denoting by Fr the affine mapping that sends Λd onto Ωr, we introduce the local
discrete products, defined on continuous functions u and v on Ωr by

(u, v)r
N =



















meas(Ωr)
4

∑N

i=0

∑N

j=0 u ◦ Fr(ξi, ξj)v ◦ Fr(ξi, ξj)ρiρj

if d = 2,
meas(Ωr)

8

∑N

i=0

∑N

j=0

∑N

p=0 u ◦ Fr(ξi, ξj , ξp)v ◦ Fr(ξi, ξj , ξp)ρiρjρp

if d = 3.

The global product is then defined on continuous functions u and v on Ω by

((u, v))N =

R
∑

r=1

(u|Ωr
, v|Ωr

)r
N .

We denote by iN the interpolation operator at the nodes ξj , 0 ≤ j ≤ N . We
need the local Lagrange interpolation operators Ir

N : for each function ϕ contin-

uous on Ωr, Ir
Nϕ belongs to PN (Ωr) and is equal to ϕ at all nodes Fr(ξi, ξj),

0 ≤ i, j ≤ N in dimension 2 and at Fr(ξi, ξj , ξp), 0 ≤ i, j, p ≤ N in dimension 3.

Finally, for each function ϕ continuous on Ω, INϕ denotes the function equal to
Ir

Nϕ on each Ωr, 1 ≤ r ≤ R.
The fully discrete problem is now constructed from (8)–(9) by using the Galer-

kin method combined with numerical integration. It reads as follows:

find (uk
N )0≤k≤K in YN × (X0

N )K , satisfying

(19) u0
N = INu0 in Ω,

and such that, for 1 ≤ k ≤ K,

(20) ∀vN ∈ X
0
N (Ω), ak

N (uk
N , vN ) = Lk

N (vN ),

where the bilinear forms ak
N (·, ·), 1 ≤ k ≤ K, are defined by

ak
N (uN , vN ) = ((uN , vN ))N + τk((λk∇uN ,∇vN ))N ,
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and the linear forms Lk
N are defined by

Lk
N(vN ) = ((uk−1

N , vN ))N + τk((fk, vN ))N .

It follows from (18) combined with Cauchy-Schwarz inequalities, that the forms
ak

N and Lk
N are continuous on X

0
N ×X

0
N and X

0
N respectively, and ak

N are coercive
with norms bounded independently of N .

In all that follows, c stands for a generic constant which can vary from one line
to the next one but is always independent of N . The proof of the next proposition
is standard.

Proposition 4.1. For any data f continuous on Ω × [0, T ] and a continuous

u0 on Ω, problem (19)–(20) has a unique solution (uk
N )0≤k≤K in YN × (X0

N )K .

Moreover this solution satisfies for a constant c independent of N

(21) [[(uℓ
N )]]k ≤ c

(

1+
λmax

λmin

)
1
2

(

‖INu0‖2
0,Ω+

(

1+
λmax

λmin

)

k
∑

ℓ=1

τℓ

λℓ
min

∥

∥INf ℓ
∥

∥

2

0,Ω

)
1
2

.

Proof: Taking vN equal to uk
N in (20), we have thanks to Cauchy-Schwarz in-

equality

((uk
N , uk

N ))N + τk((λk∇uk
N ,∇uk

N ))N ≤ ((uk−1
N , uk−1

N ))
1
2

N · ((uk
N , uk

N))
1
2

N

+ τk((INfk, INfk))
1
2

N · ((uk
N , uk

N ))
1
2

N .

Using (18), Poincaré-Friedrichs inequality and the inequality ab ≤ 1
2ε

a2 + ε
2b2, for

each ε > 0, we obtain

1

2

∥

∥uk
N

∥

∥

2

0,Ω
+ τk((λk∇uk

N ,∇uk
N))N

≤ 1

2

∥

∥uk−1
N

∥

∥

2

0,Ω
+

1

2ε

cτk

λk
min

∥

∥INfk
∥

∥

2

0,Ω
+

ε

2
τk

∥

∥(λk)
1
2∇uk

N

∥

∥

2

0,Ω
.

Summing up on k, and using (19), we get

(22)
1

2

∥

∥uk
N

∥

∥

2

0,Ω
+

k
∑

ℓ=1

τℓ((λ
ℓ∇uℓ

N ,∇uℓ
N ))N

≤ 1

2

∥

∥INu0

∥

∥

2

0,Ω
+

c

2ε

k
∑

ℓ=1

τℓ

λℓ
min

∥

∥INf ℓ
∥

∥

2

0,Ω
+

ε

2

k
∑

ℓ=1

τℓ

∥

∥(λℓ)
1
2∇uℓ

N

∥

∥

2

0,Ω
.

On the other hand, thanks to (2) and (18), we have

∥

∥(λℓ)
1
2∇uℓ

N

∥

∥

2

0,Ω
≤ λmax((∇uℓ

N ,∇uℓ
N ))N ≤ λmax

λmin
((λℓ∇uℓ

N ,∇uℓ
N ))N , 1 ≤ ℓ ≤ k,
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so, (22) implies that

1

2

∥

∥uk
N

∥

∥

2

0,Ω
+

k
∑

ℓ=1

τℓ

∥

∥(λℓ)
1
2∇uℓ

N

∥

∥

2

0,Ω

≤ 1

2

(

1 +
λmax

λmin

)(

∥

∥INu0

∥

∥

2

0,Ω
+

c

ε

k
∑

ℓ=1

τℓ

λℓ
min

∥

∥INf ℓ
∥

∥

2

0,Ω

+ ε

k
∑

ℓ=1

τℓ

∥

∥(λℓ)
1
2∇uℓ

N

∥

∥

2

0,Ω

)

.

Finally, we choose ε = λmin

λmax+λmin
to obtain (21). �

5. Error estimate

We now wish to establish the error estimate between the solution (uk)0≤k≤K

of problem (8)–(9) and the solution (uk
N )0≤k≤K of problem (19)–(20).

Let Π1,0
N denote the orthogonal projection operator from H1

0 (Ω) onto X
0
N for

the scalar product associated with the norm | · |1,Ω. For 0 ≤ ℓ ≤ k, Π1,0
N uℓ will be

denoted by pℓ
N .

Proposition 5.1. Assume that f and u0 are continuous on Ω × [0, T ] and Ω
respectively. Then the following estimate holds for the error between the solution

(uk)0≤k≤K of problem (8)–(9) and the solution (uk
N )0≤k≤K of problem (19)–(20)

[[(uℓ − uℓ
N )]]k ≤ c

(

[[(uℓ − pℓ
N−1)]]k

+
(

1 +
λmax

λmin

)
1
2
(

‖u0 − p0
N−1‖0,Ω + ‖u0 − INu0‖0,Ω(23)

+
(

1 +
λmax

λmin

)
1
2

k
∑

ℓ=1

( τℓ

λℓ
min

)
1
2 (

Ea,1
N,ℓ + Ea,2

N,ℓ + Ef
N,ℓ

)

)

)

,

where the quantities Ea,1
N,ℓ, Ea,2

N,ℓ and Ef
N,ℓ are defined by

Ea,1
N,ℓ = sup

vN∈X
0
N

(uℓ−uℓ−1

τℓ
, vN ) − ((

pℓ
N−1−p

ℓ−1

N−1

τℓ
, vN ))N

|vN |1,Ω
,

Ea,2
N,ℓ = sup

vN∈X
0
N

(λℓ∇uℓ,∇vN ) − ((λℓ∇pℓ
N−1,∇vN ))N

|vN |1,Ω
,

Ef
N,ℓ = sup

vN∈X
0
N

(f ℓ, vN ) − ((f ℓ, vN ))N

|vN |1,Ω
.
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Proof: We have

[[(uℓ − uℓ
N )]]k ≤ [[(uℓ − pℓ

N−1)]]k + [[(uℓ
N − pℓ

N−1)]]k,

so we have to estimate the term [[(uℓ
N − pℓ

N−1)]]k. It follows from (9) and (20)
that

((uk
N − pk

N−1, vN ))N + τk((λk∇(uk
N − pk

N−1),∇vN ))N

= ((uk−1
N − pk−1

N−1, vN ))N + τkMk
N(vN ),

where Mk
N is the linear form on X

0
N defined by

(24)

Mk
N(vN ) = (

uk − uk−1

τk

, vN ) − ((
pk

N−1 − pk−1
N−1

τk

, vN ))N

+ (λk∇uk,∇vN ) − ((λk∇pk
N−1,∇vN ))N

+ ((fk, vN ))N − (fk, vN ).

Due to the Riesz’s theorem, there exists a unique polynomial F k
N in X

0
N such that

∀vN ∈ X
0
N , Mk

N (vN ) = ((F k
N , vN ))N .

Thus the family (uk
N −pk

N−1)0≤k≤K is a solution of the discrete problem (19)-(20)

with INu0−p0
N−1 instead of INu0 and F k

N instead of fk. So we proceed as in the

proof of Proposition 4.1. Taking vN equal to uk
N − pk

N−1, using Cauchy-Schwarz

inequality and the fact that the form Mk
N is linear on the finite dimensional

space X
0
N , we get

((uk
N − pk

N−1, u
k
N − pk

N−1))N + τk((λk∇(uk
N − pk

N−1),∇(uk
N − pk

N−1)))N

≤ ((uk−1
N − pk−1

N−1, u
k−1
N − pk−1

N−1))
1
2

N · ((uk
N − pk

N−1, u
k
N − pk

N−1))
1
2

N

+ τk sup
vN∈X

0
N

((F k
N , vN ))N

|vN |1,Ω
· |uk

N − pk
N−1|1,Ω

using (18), Poincaré-Friedrichs inequality and the inequality ab ≤ 1
2ε

a2 + ε
2 b2, for

each ε > 0, summing up on k, we obtain

1

2

∥

∥uk
N − pk

N−1

∥

∥

2

0,Ω
+

k
∑

ℓ=1

τℓ((λ
ℓ∇(uℓ

N − pℓ
N−1),∇(uℓ

N − pℓ
N−1)))N

≤ 1

2

∥

∥INu0 − p0
N−1

∥

∥

2

0,Ω
+

1

2ε

k
∑

ℓ=1

τℓ

λℓ
min

(ϕℓ)2

+
ε

2

k
∑

ℓ=1

τℓ

∥

∥(λℓ)
1
2∇(uℓ

N − pℓ
N−1)

∥

∥

2

0,Ω
,
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where ϕℓ = supvN∈X
0
N

((F ℓ
N ,vN ))N

|vN |1,Ω
. Consequently, following the same arguments

as in the end of the proof of Proposition 4.1, we get

[[(uℓ
N−pℓ

N−1)]]k ≤ c
(

1+
λmax

λmin

)
1
2
(

‖INu0−p0
N−1‖2

0,Ω+
(

1+
λmax

λmin

)

k
∑

ℓ=1

τℓ

λℓ
min

(ϕℓ)2
)

1
2

.

We conclude the proof thanks to (24). �

In order to estimate the term Ea,1
N,ℓ, we denote by wℓ the quantity uℓ−uℓ−1

τℓ

and we observe that
pℓ

N−1−pℓ−1

N−1

τℓ
= Π1,0

N−1w
ℓ, so as a consequence of the exactness

property (17), the terms (Π1,0
N−1w

ℓ, vN

)

0,Ω
and ((Π1,0

N−1w
ℓ, vN

)

)N coincide and

thus, using Poincaré-Friedrichs inequality, we get

(25) Ea,1
N,ℓ ≤ c

∥

∥wℓ − Π1,0
N−1w

ℓ
∥

∥

0,Ω
.

Now, in order to evaluate the term Ea,2
N,ℓ, we define Ñ as the integer part of N−1

2 ,

so as a consequence of the exactness property (17), we have for any vN ∈ X
0
N

(26)

(λℓ∇uℓ,∇vN ) − ((λℓ∇pℓ
N−1,∇vN ))N

= (λℓ(∇uℓ −∇pℓ
N−1),∇vN )

+

R
∑

r=1

(

∫

Ωr

(λℓ∇pℓ
N−1 − Ir

Ñ
λℓ∇pℓ

Ñ
)(x) · ∇vN (x) dx

+ (Ir

Ñ
λℓ∇pℓ

Ñ
− λℓ∇pℓ

N−1,∇vN )r
N

)

.

Due to Cauchy-Schwarz inequality and by using the notation λℓ
max :=

sup
x∈Ω λ(x, tℓ), the first term in the right hand side of (26) can be estimated

as

(λℓ(∇uℓ −∇pℓ
N−1),∇vN ) ≤ λℓ

max|uℓ − pℓ
N−1|1,Ω|vN |1,Ω.

Similar arguments also lead to

R
∑

r=1

∫

Ωr

(λℓ∇pℓ
N−1 − Ir

Ñ
λℓ∇pℓ

Ñ
)(x) · ∇vN (x) dx

≤
(

λℓ
max

(

|uℓ − pℓ
N−1|1,Ω +

R
∑

r=1

∣

∣uℓ − pℓ

Ñ

∣

∣

1,Ωr

)

+
R
∑

r=1

∥

∥λℓ − Ir

Ñ
λℓ
∥

∥

∞,Ωr

∣

∣pℓ

Ñ

∣

∣

1,Ωr

)

|vN |1,Ω.
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Now, thanks to Cauchy-Schwarz inequality and (18), the last term in the right
hand side of (26) can be estimated as follows

R
∑

r=1

(Ir

Ñ
λℓ∇pℓ

Ñ
− λℓ∇pℓ

N−1,∇vN )r
N

≤ c
(

λℓ
max

(

|uℓ − pℓ
N−1|1,Ω +

R
∑

r=1

∣

∣uℓ − pℓ

Ñ

∣

∣

1,Ωr

)

+
R
∑

r=1

∥

∥λℓ − Ir

Ñ
λℓ
∥

∥

∞,Ωr

∣

∣pℓ

Ñ

∣

∣

1,Ω

)

|vN |1,Ω.

So that

(27)

Ea,2
N,ℓ ≤ c

(

λℓ
max

(

|uℓ − pℓ
N−1|1,Ω +

∣

∣uℓ − pℓ

Ñ

∣

∣

1,Ω

)

+

R
∑

r=1

∥

∥λℓ − Ir

Ñ
λℓ
∥

∥

∞,Ωr
|uℓ|1,Ω

)

,

since
∣

∣pℓ

Ñ

∣

∣

1,Ω
=
∣

∣Π1,0

Ñ
uℓ
∣

∣

1,Ω
≤
∥

∥Π1,0

Ñ

∥

∥

L(H1
0 (Ω),X0

Ñ
(Ω))

|uℓ|1,Ω = |uℓ|1,Ω.

It remains to estimate the term Ef
N,ℓ . Since f is only in the space L2(Ω),

we introduce the orthogonal projection operator Πr
N from L2(Ωr) onto PN (Ωr).

Indeed, using (17) leads to, for any vN in X
0
N ,

∫

Ωr

f ℓ(x) · vN (x)dx− (f ℓ, vN )r
N

=

∫

Ωr

(f ℓ − Πr
N−1f

ℓ)(x) · vN (x)dx − (Ir
Nf ℓ − Πr

N−1f
ℓ, vN )r

N ,

so that, owing to (18) and Poincaré-Friedrichs inequality, we obtain

(28) Ef
N,ℓ ≤ c

R
∑

r=1

(

∥

∥f ℓ − Πr
N−1f

ℓ
∥

∥

0,Ωr
+
∥

∥f ℓ − Ir
Nf ℓ

∥

∥

0,Ωr

)

.

Now, to make complete the evaluation of Ea,1
N,ℓ, Ea,2

N,ℓ and Ef
N,ℓ, we need the

following results. First, we recall from [2, Theorem 7.1 and Theorem 14.2] the
approximation properties of the operators Πr

N and Ir
N , 1 ≤ r ≤ R: for any function

ϕ in Hs(Ωr), s ≥ 0

(29)
∥

∥ϕ − Πr
Nϕ
∥

∥

0,Ωr
≤ cN−s‖ϕ‖s,Ωr

,

and for any function ϕ in Hs(Ωr), s > d
2

(30)
∥

∥ϕ − Ir
Nϕ
∥

∥

0,Ωr
≤ cN−s‖ϕ‖s,Ωr

.
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The following result is derived from [3, Lemma VI.2.5] thanks to an interpo-
lation argument, for any real number s ≥ 1, and any function ϕ in H1

0 (Ω) such
that each ϕ|Ωr

, 1 ≤ r ≤ R, belongs to Hs(Ωr)

(31)
∥

∥ϕ − Π1,0
N ϕ

∥

∥

1,Ω
≤ cN1−s

R
∑

r=1

‖ϕ‖s,Ωr
.

Finally, in order to evaluate the term ‖λℓ − Ir
Nλℓ‖∞,Ωr

, we introduce the Gauss-
Lobatto interpolation operator denoted by IN : for any continuous function ϕ on
Λd, INϕ is the only polynomial in PN (Λd) which satisfies (INϕ)(ξi, ξj) = ϕ(ξi, ξj),
0 ≤ i, j ≤ N when d = 2, and (INϕ)(ξi, ξj , ξp) = ϕ(ξi, ξj , ξp), 0 ≤ i, j, p ≤ N when
d = 3.

We have the identity

IN =

{

ixN ◦ iyN if d = 2,

ixN ◦ iyN ◦ izN if d = 3,

where ixN (resp. iyN , izN ) denotes the Lagrange interpolation operator iN (at the
nodes ξj , 0 ≤ j ≤ N) with respect to the variable x (resp. y, z).

We need the following results, derived from a Gagliardo-Nirenberg inequality.

Lemma 5.2. For any function ϕ in Hs(Λd), the following estimates hold:

(32) ‖ϕ − iNϕ‖∞,Λd ≤ cN
1
2
−s‖ϕ‖s,Λd , for d = 1 and s >

3

4
,

and

(33) ‖ϕ − INϕ‖∞,Λd ≤ cN1−s‖ϕ‖s,Λd , for d = 2 and s >
5

4
.

For the proof see Lemmas 2.2.3 and 2.2.5 in [7]. Using the same arguments,
we can derive the analogue of this result in dimension 3.

Lemma 5.3. For any real number s > 2, and for any function ϕ in Hs(Λ3), the

following estimate holds

‖ϕ − INϕ‖∞,Λ3 ≤ cN
3
2
−s‖ϕ‖s,Λ3 .

Proof: We note that we have the identity

ϕ − INϕ = (ϕ − ixN ◦ iyNϕ) + (ϕ − izNϕ) − (id − ixN ◦ iyN) ◦ (id − izN)ϕ,

so we have to estimate each term in the right hand side of this equality. A Gagli-
ardo-Nirenberg inequality leads to, for any ε > 0

‖ϕ − ixN ◦ iyNϕ‖∞,Λ3 = ‖ϕ − ixN ◦ iyNϕ‖L∞(Λ;L∞(Λ2))

≤ ‖ϕ − ixN ◦ iyNϕ‖
1
2

H
1
2
−ε(Λ;L∞(Λ2))

‖ϕ − ixN ◦ iyNϕ‖
1
2

H
1
2
+ε(Λ;L∞(Λ2))

.
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It follows from (33) that for s > 7
4

‖ϕ − ixN ◦ iyNϕ‖∞,Λ3 ≤ cN
3
2
−s‖ϕ‖

1
2

H
1
2
−ε(Λ;Hs− 1

2
+ε(Λ2))

‖ϕ‖
1
2

H
1
2
+ε(Λ;Hs− 1

2
−ε(Λ2))

.

The same arguments lead to the following estimate for s > 7
4

‖ϕ − izNϕ‖∞,Λ3 ≤ cN
3
2
−s‖ϕ‖

1
4

H
1
2
−ε(Λ;H

1
2
−ε(Λ;Hs−1+2ε(Λ)))

× ‖ϕ‖
1
4

H
1
2
−ε(Λ;H

1
2
+ε(Λ;Hs−1(Λ)))

× ‖ϕ‖
1
4

H
1
2
+ε(Λ;H

1
2
−ε(Λ;Hs−1(Λ)))

‖ϕ‖
1
4

H
1
2
+ε(Λ;H

1
2
+ε(Λ;Hs−1−2ε(Λ)))

.

For the last term, using (33) and (32) respectively for s′ > 5
4 and s > s′ + 3

4 , we
obtain

‖(id − ixN ◦ iyN ) ◦ (id − izN )ϕ‖L∞(Λ;L∞(Λ2)) ≤ cN1−s′‖(ϕ − izNϕ)‖L∞(Λ;Hs′ (Λ2))

≤ cN
3
2
−s‖ϕ‖Hs−s′ (Λ;Hs′ (Λ2)).

We conclude by using the embeddings Hs(Λ2) ⊂ Hr(Λ; Hs−r(Λ)) and Hs(Λ3) ⊂
Hr(Λ; Hs−r(Λ2)) for 0 ≤ r ≤ s. �

Theorem 5.4. Assume that the data f belong to C0([0, T ], Hσ(Ω)) for a real

number σ > d
2 , λ belongs to C0([0, T ], Hν(Ω)) for a real number ν > 3d−1

4 , u0 is

continuous on Ω and the solution (uk)0≤k≤K of problem (8)–(9) is such that the

restrictions uk|Ωr
, 1 ≤ r ≤ R, belong to Hs(Ωr) for a real number s ≥ 1. Then

the following a priori error estimate holds

[[(uℓ − uℓ
N)]]k ≤ c

R
∑

r=1

(

N1−s

(

‖uk‖s,Ωr
+ (|τ |λmax)

1
2

k
∑

ℓ=1

‖uℓ‖s,Ωr

)

+ N1−s
(

1 +
λmax

λmin

)
1
2

×
(

‖u0‖s,Ωr
+
(

1 +
λmax

λmin

)
1
2
( |τ |

λmin

)
1
2

k
∑

ℓ=1

(

‖wℓ‖s,Ωr
+ λmax‖uℓ‖s,Ωr

)

)

+
(

1 +
λmax

λmin

)( |τ |
λmin

)
1
2

λmax

×
k
∑

ℓ=1

(

N
d
2
−ν
(

R
∑

r=1

k
∑

ℓ=1

‖λℓ‖Hν(Ωr)

)

‖uℓ‖1,Ωr
+ N−σ‖f ℓ‖σ,Ωr

)

)

.

Note that this estimate is optimal in the sense that if λ is constant, we find
the results obtained for the usual heat equation.
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Proof: The bound for the terms in the right hand sides of (25), (27) and (28)
obviously follows from (29), (30), (31), Lemma 5.2 and Lemma 5.3.

Back to (23), by the definition of the norm [[·]]k, we observe that

[[(uℓ − pℓ
N−1)]]k ≤ ‖uk − pk

N−1‖0,Ω +
k
∑

ℓ=1

(

τℓλ
ℓ
max)

1
2 |uℓ − pℓ

N−1|1,Ω.

Using once more the approximation properties (30) and (31), we obtain

[[(uℓ − uℓ
N )]]k ≤ c

(

N1−s

( R
∑

r=1

‖uk‖s,Ωr
+

k
∑

ℓ=1

(

τℓλ
ℓ
max)

1
2

R
∑

r=1

‖uℓ‖s,Ωr

)

+ N1−s
(

1 +
λmax

λmin

)
1
2

( R
∑

r=1

‖u0‖s,Ωr
+
(

1 +
λmax

λmin

)
1
2

k
∑

ℓ=1

( τℓ

λℓ
min

)
1
2

R
∑

r=1

‖wℓ‖s,Ωr

)

+ (N1−s + Ñ1−s)
(

1 +
λmax

λmin

)

k
∑

ℓ=1

( τℓ

λℓ
min

)
1
2

λℓ
max

R
∑

r=1

‖uℓ‖s,Ωr

+
(

1 +
λmax

λmin

)

k
∑

ℓ=1

( τℓ

λℓ
min

)
1
2

λℓ
max

(

Ñ
d
2
−ν
(

R
∑

r=1

k
∑

ℓ=1

‖λℓ‖Hν(Ωr)

)

R
∑

r=1

‖uℓ‖1,Ωr

+ N−σ

R
∑

r=1

‖f ℓ‖Hσ(Ωr)

)

)

,

taking into account the relationship between Ñ and N , we get the desired result.
�
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