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Summation equations with sign changing kernels and

applications to discrete fractional boundary value problems

Christopher S. Goodrich

Abstract. We consider the summation equation, for t ∈ [µ − 2, µ + b]Nµ−2
,

y(t) = γ1(t)H1

(
n∑

i=1

aiy (ξi)

)
+ γ2(t)H2

(
m∑

i=1

biy (ζi)

)

+ λ

b∑

s=0

G(t, s)f(s + µ − 1, y(s + µ − 1))

in the case where the map (t, s) 7→ G(t, s) may change sign; here µ ∈ (1, 2] is
a parameter, which may be understood as the order of an associated discrete
fractional boundary value problem. In spite of the fact that G is allowed to
change sign, by introducing a new cone we are able to establish the existence of
at least one positive solution to this problem by imposing some growth conditions
on the functions H1 and H2. Finally, as an application of the abstract existence
result, we demonstrate that by choosing the maps t 7→ γ1(t), γ2(t) in particular
ways, we can recover the existence of at least one positive solution to various
discrete fractional- or integer-order boundary value problems possessing Green’s
functions that change sign.

Keywords: summation equation; sign-changing kernel; discrete fractional calcu-
lus; positive solution; nonlocal boundary condition

Classification: Primary 39A05, 39A12, 39A99; Secondary 26A33, 47H07

1. Introduction

Let λ > 0 and 1 < µ ≤ 2 be parameters, and let {ξi}n
i=1, {ζi}m

i=1 ⊆ [µ − 1, µ +
b − 1]Nµ−2

and {ai}n
i=1, {bi}m

i=1 ⊆ R be given sequences of numbers; here we use
the standard notation Nr := {r, r + 1, r + 2, . . . } for a fixed number r ∈ R. We
then consider the summation equation, for t ∈ [µ − 2, µ + b]Nµ−2

,

y(t) = γ1(t)H1

(
n∑

i=1

aiy (ξi)

)
+ γ2(t)H2

(
m∑

i=1

biy (ζi)

)

+ λ

b∑

s=0

G(t, s)f(s + µ − 1, y(s + µ − 1)),

(1.1)
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where we note that the coefficients in the linear functionals y 7→ ∑n
i=1 aiy(ξi)

and y 7→∑m
i=1 biy(ζi) need not be nonnegative. The maps H1, H2 : [0, +∞) →

[0, +∞) and γ1, γ2 : [0, +∞) → [0, +∞) are continuous maps. Later we shall
impose some growth conditions on the maps H1 and H2. One of the principal
contributions of this work is to demonstrate that problem (1.1) may possess a
positive solution even in case the kernel G is sign changing.

As an application of this abstract existence result, we shall demonstrate that
by choosing the maps γ1 and γ2 in particular ways we can obtain existence of
at least one positive solution to fractional boundary value problems (FBVPs) in
the setting of the forward (or delta) fractional calculus. For example, letting
µ ∈ (1, 2), α < 0, and K ∈ [−1, b − 1]N−1

, if we select

γ1(t) =
1

Γ(µ − 1)
tµ−2 − (µ + b)µ−2

(µ + b)µ−1Γ(µ − 1)
tµ−1

and

γ2(t) =
1

(µ + b)µ−1 tµ−1 ,

and define G by (3.9), then we obtain that a solution of (1.1) is likewise a solution
of the FBVP

−∆µ
µ−2y(t) = f(t + µ − 1, y(t + µ − 1)), t ∈ [0, 10]N0

y(µ − 2) = H1

(
m∑

i=1

biy (ζi)

)

y(µ + b) − αy(µ + K) = −αγ1(µ + K)H1

(
n∑

i=1

aiy (ξi)

)

+ (1 − αγ2(µ + K))H2

(
m∑

i=1

biy (ζi)

)
.

(1.2)

If we then specialize to the case where µ = 2 and put γ1(t) := 1− t
12 , γ2(t) := t

12 ,
b := 10, K := 3, and α := −1, then problem (1.2) becomes

−∆2y(t) = f(t + 1, y(t + 1)), t ∈ [0, 10]N0

y(0) = H2

(
m∑

i=1

biy (ζi)

)

y(12) + y(5) =
7

12
H1

(
n∑

i=1

aiy (ξi)

)
+

17

12
H2

(
m∑

i=1

biy (ζi)

)
.

(1.3)

The point of the specific examples such as (1.2)–(1.3) is to show that by choosing
γ1 and γ2 in various ways, we obtain solutions to a variety of BVPs with nonlocal
boundary conditions. Since it is possible that the maps H1 and H2 are nonlinear,
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the boundary conditions allowable in our theory can be nonlinear in addition to
nonlocal. However, it should be emphasized, as will be clarified later, that the
maps H1 and H2 and hence the boundary conditions in our FBVPs need not be
nonlinear, for, in fact, H1 and H2 can be either affine or linear in ways described
later. Consequently, the results described herein are fairly generally applicable.
Moreover, even in the case where µ = 2, e.g., in (1.3), our results are new, to the
best of our knowledge, and so, we not only provide new results for discrete BVPs
of fractional order, but also provide new results in the integer-order setting —
see, for example, Example 3.7.

In our treatment of problem (1.1) we should like to impose growth conditions
on the maps H1 and H2 that are relatively flexible. In particular, we wish to
be able to include nonlinear, affine, and linear maps as part of our theory. As
part of this program, a typical condition we might impose is one on the ratio
Hi(z)

z
as z → +∞. However, this runs into an immediate difficulty since, for

example, H1 is composed with the nonlocal element
∑n

i=1 aiy(ξi), where the ai’s
are not necessarily of one sign. Consequently, in order to invoke an asymptotic-
type growth condition, we shall require some control (specifically a lower bound)
over the quantity

∑n
i=1 aiy(ξi) as ‖y‖ → +∞.

In previous work (for a simple example in the discrete setting, see [35]) we have
achieved this by utilizing a Harnack inequality approach. That is to say, denoting
by B the collection of all maps

B :=
{
y : [µ − 2, µ + b]Nµ−2

→ R
}

,

where we equip B with the usual maximum norm, henceforth denoted by ‖ · ‖, we
have utilized, roughly speaking, the cone

K0 :=

{
y ∈ B : y ≥ 0, min

t∈[m1,m2]Nµ−2

y(t) ≥ γ‖y‖
}

,

for some m1, m2 ∈ Nµ−2 satisfying µ − 2 < m1 ≤ m2 < b + µ, where b ≥ 2 is
some number and γ := γ(m1, m2, b, G) > 0 is an explicitly computable constant
in terms of initial data — see, for example, Erbe and Peterson [17, Lemma 6] and
[18] in the case where µ = 2. Then by means of the Harnack-like inequality

min
t∈[m1,m2]Nµ−2

y(t) ≥ γ‖y‖

we can obtain a coercivity-type bound that is sufficient for the purposes of utilizing
asymptotic conditions. For example, if µ = 2 (i.e., the integer-order setting) and
the argument of H1 is, say,

1

2
y(1) − 1

5
y(3) + y(10),
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then we might write

ϕ(y) :=
1

2
y(1) − 1

5
y(3) + y(10) =

(
1

2
y(1) − 1

5
y(3) +

1

2
y(10)

)

︸ ︷︷ ︸
=:ϕ1(y)

+
1

2
y(10)
︸ ︷︷ ︸
=:ϕ2(y)

.

Now suppose that we add the condition ϕ1(y) ≥ 0 to the cone K0 and take
m1 ≤ m2 such that [m1, m2]N0

⊇ {10}. Then it would follow that

1

2
y(10) ≥ 1

2
γ‖y‖,

and so, using that ϕ1(y) ≥ 0 we may thus deduce that

ϕ(y) =
1

2
y(1) − 1

5
y(3) + y(10) =

(
1

2
y(1) − 1

5
y(3) +

1

2
y(10)

)

︸ ︷︷ ︸
=:ϕ1(y)

+
1

2
y(10)
︸ ︷︷ ︸
=:ϕ2(y)

≥ 1

2
γ‖y‖,

whenever y ∈ K0. Thus, we obtain a coercivity condition for the functional ϕ(y),
and this then allows the use of asymptotic growth conditions on H1 and H2 —
as an example of this procedure in the setting of ordinary differential equations,
see, for instance, [33], [34], [36].

A significant problem that we encounter in trying to transplant this previously
developed idea into the present setting of a sign-changing Green’s function is that
an approach that relied on a Harnack-like inequality would be severely restricted
in applications. Indeed, we would have to insist on the existence of numbers
m′

1, m
′
2 ∈ Nµ−2 such that the kernel G satisfied

min
t∈[m′

1
,m′

2]Nµ−2

G(t, s) > 0

for each s ∈ [0, b]N0
, which would be very restrictive and unnatural; indeed, the

necessity of this inequality would restrict greatly the sorts of nonlocal elements
that could be utilized in the application of (1.1) to boundary value problems. And,
in addition, evidently there would be sign-changing and vanishing kernels that
would not even satisfy this condition. So, all in all, it seems strongly preferable to
develop a new approach, which can more naturally accommodate a sign-changing
kernel and which relies neither on any Harnack-like inequality nor on any explicit
decomposition of the linear functionals.

To this end, in this work we introduce the cone K ⊆ B defined by

K :=

{
y ∈ B : y(t) ≥ 0,

n∑

i=1

aiy (ξi) ≥
(

min
s∈S0

1

G(s)

n∑

i=1

aiG (ξi, s)

)
‖y‖,

m∑

i=1

biy (ζi) ≥
(

min
s∈S0

1

G(s)

m∑

i=1

biG (ζi, s)

)
‖y‖
}

,
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where G(s) := maxs∈[0,b]N0
|G(t, s)|, and it is assumed that the coercivity constants

min
s∈S0

1

G(s)

n∑

i=1

aiG (ξi, s) and min
s∈S0

1

G(s)

m∑

i=1

biG (ζi, s)

exist as positive, finite numbers. Here the set S0 is defined by

S0 := {s ∈ [0, b]N0
: G(s) 6= 0} .

We identify two mathematical advantages of incorporating the coercivity condi-
tions directly into the cone; there are additional advantages that for the sake of
length we intend to detail in other works — for additional details, see [37].

• First of all and most evidently, the development of the cone K allows us to
treat the case of sign-changing and vanishing kernels, as explained earlier.

• Second of all, it should also be mentioned that by utilizing K as above,
we dispense with having to identify and check a particular decomposi-
tion of the nonlocal elements, as above, for example. Rather, we have
identified a constant, in some sense internal to the problem (1.1) under
study, that provides the control needed over the nonlocal elements. Thus,
in particular, we do not need to check to see if a Harnack-like inequality
holds, for it is never utilized in the proofs. Moreover, we do not need to
spend time constructing the interval over which the Harnack inequality
is taken so that its application is permitted with respect to the nonlocal
element. All of this is obviated by use of the new cone. Therefore, overall,
we feel this approach to be not only of pragmatic value in the particular
setting of problem (1.1), but also simply a more elegant and aesthetically
pleasing way to treat nonlocal boundary value problems in the difference
equations setting.

Having described the particular contributions of this work, we conclude the
introduction with a brief mention of the existing literature and its relationship to
this paper. In particular, insofar as discrete fractional calculus is concerned there
has been relatively intense research interest over the past several years. Beginning
with some initial work of Atici and Eloe [3], [4], [5], [6], [7], which established some
of the basic theoretical results in the field, many additional works have appeared.
These have included works on operational properties of fractional differences, such
as those by Atici and Acar [2], Atici and Eloe [8], Atici and Uyanik [10], Bastos,
et al. [13], Erbe, et al. [46], [47], [48], Dahal and Goodrich [15], [16], Ferreira [21],
Ferreira and Torres [24], Goodrich [31], Holm [41]; on boundary value problems,
such as Atici and Eloe [6], Dahal, et al. [14], Ferreira [19], [20], [22], Ferreira and
Goodrich [23], Goodrich [26], [27], [29], [30], Graef and Kong [40]; on modeling,
which was explored in a paper by Atici and Sengül [9]; and on chaos in discrete
fractional calculus, which was introduced by Wu and Baleanu [55]. At the same
time, the study of nonlocal boundary value problems, whether equipped with
linear, affine, or nonlinear boundary conditions, has seen much interest lately.
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Recent studies have included those by Anderson [1], Goodrich [33], Infante, et al.
[42], [43], [44], Jankowski [45], Karakostas [49], and Yang [56], [57]; furthermore,
some classical works of interest are those by Picone [51] and Whyburn [54].

As concerns the study of boundary value problems with sign-changing Green’s
functions in the discrete setting, or, more generally as we treat here, summation
equations with sign-changing kernels, the results seem very scarce. While there
are a few such studies in the differential equations and Hammerstein integral
equation settings, see, for example, [25], [39], [50], [52], [59], the only work of
which the author is aware in the discrete setting is the relatively recent paper by
Wang and Gao [53], which treats a third-order problem.

Thus, there seems to be a gap in the difference equations literature in this
regard. Part of this may be attributed to the fact that deducing existence of
positive solutions in the setting of a sign-changing kernel (or Green’s function) is
not as easy in the case where these maps are nonnegative, and so, extra difficulties
are encountered, just as we encounter here — see, for example, the proof of
Lemma 2.6. So, in this sense, this paper fills a gap in the literature and makes a
connection back to the differential equations literature, whose development seems
more complete. Moreover, since at the same time we treat the nonlocal boundary
conditions setting, we are able to demonstrate ways in which those elements can
be used profitably in the sign-changing setting — again, see, for example, the
proof of Lemma 2.6. And since we must use a novel cone to achieve these ends,
we believe this to be one of the contributions of this work.

2. Preliminaries

We begin by recalling fundamental definitions in discrete fractional calculus;
the textbook by Goodrich and Peterson [38] is an excellent source for the basic
theory of both the delta and nabla discrete fractional calculus as well as the
classical difference calculus. After the preliminary definitions, we also introduce
some notational conventions that shall be utilized in this work.

Definition 2.1. We define the falling factorial function , denoted t 7→ tν , by

tν :=
Γ(t + 1)

Γ(t + 1 − ν)
,

for any t and ν for which the right-hand side is defined. We also appeal to the
convention that if t + 1 − ν is a pole of the Gamma function and t + 1 is not a
pole, then tν := 0.

Definition 2.2. The ν-th fractional sum , ν > 0, of a function f : Na → R,
where a ∈ R is given, is

∆−ν
a f(t) :=

1

Γ(ν)

t−ν∑

s=a

(t − s − 1)ν−1f(s),
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for t ∈ Na+ν . We also define the ν-th fractional difference of f , for ν > 0, by

∆ν
af(t) := ∆N∆ν−N

a f(t),

where t ∈ Na−ν+N and N ∈ N1 is the unique number satisfying N − 1 < ν ≤ N .

Notation 2.3. To facilitate the discussion in Section 3, we introduce the following
notation. This shall be used throughout the remainder of the paper without
further mention.

• Given a function a : X ⊂ R → R, with |X | < +∞, we denote by ãm
X

and ãM
X , respectively, the quantities

ãm
X := min

s∈X
a(s) and ãM

X := max
s∈X

a(s).

• Given a continuous function f : X × [0, +∞) → [0, +∞), for some set
X ⊆ R with |X | < +∞, for real numbers 0 ≤ a < b ≤ +∞ we denote by

f̃m
[a,b] and f̃M

[a,b], respectively, the quantities

f̃m
[a,b] := min

(t,y)∈X×[a,b]
f(t, y) and f̃M

[a,b] := max
(t,y)∈X×[a,b]

f(t, y).

• Denote by Γ0 the quantity

Γ0 := min
t∈[µ−2,µ+b]Nµ−2

(γ1(t) + γ2(t)) .

• As already suggested in Section 1, given a real number r0, we denote by
Nr0

the set

Nr0
:= {r0, r0 + 1, r0 + 2, . . . } .

Furthermore, given an interval [a, b] with −∞ ≤ a < b ≤ +∞ we denote
by [a, b]Nr0

the set

[a, b]Nr0
:= [a, b] ∩ Nr0

.

• Given a map G : X × Y → R, we denote by G+ : X × Y → [0, +∞)
and G− : X × Y → [0, +∞) the maps

G+(t, s) := max{0, G(t, s)},
G−(t, s) := max{0,−G(t, s)}.

Thus, in particular G+ and G− are, respectively, the positive and negative
parts of G.

• For ρ > 0, we denote by Ωρ ⊆ K the open set Ωρ := {y ∈ K : ‖y‖ < ρ}.
We next list the growth and regularity assumptions imposed on the various

maps involved in the summation equation (1.1). In particular, condition (A1)
places a natural restriction on the kernel G. Condition (A2) provides some growth
conditions on the maps H1 and H2. Conditions (A3)–(A4) are assumptions about
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the existence of the coercivity constants C0 and D0. Finally, condition (A5)
facilitates the computation of the admissible range of the parameter λ appearing in
(1.1) so that the existence result is not merely abstract, citing some uncomputable
“sufficiently small” λ.

A1: Denote by G : [0, b]N0
→ [0, +∞) the quantity

G(s) := max
t∈[µ−2,µ+b]Nµ−2

|G(t, s)|,

and assume that G(s) < +∞ for each s ∈ [0, b]N0
.

A2: There exist numbers A0, B0 ∈ (0, +∞) such that

+∞ > lim
z→+∞

H1(z)

z
> A0 and + ∞ > lim

z→+∞

H2(z)

z
> B0.

A3: Define the set S0 ⊆ [0, b]N0
by

S0 := {s ∈ [0, b]N0
: G(s) 6= 0} .

Then assume that the quantities

C0 := min
s∈S0

1

G(s)

n∑

i=1

aiG (ξi, s)

and

D0 := min
s∈S0

1

G(s)

m∑

i=1

biG (ζi, s)

satisfy C0, D0 ∈ (0, +∞).
A4: For each j = 1, 2 it holds that

n∑

i=1

aiγj (ξi) ≥ C0‖γj‖ and
m∑

i=1

biγj (ζi) ≥ D0‖γj‖.

A5: Let ρ1 be defined by

ρ1 := inf

{
ρ̃ ∈ [0, +∞) :

H1(z)

z
> A0,

H2(z)

z
> B0,

f(t, y)

y
< 1

for all t ∈ [µ − 2, µ + b]Nµ−2
, whenever y, z ∈ [ρ̃, +∞)

}
,

and assume that ρ1 is selected so that ρ1 ≥ 1. Put

ρ∗1 := max

{
1,

ρ1

min {C0, D0}

}
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and define the number λ0 > 0 as the minimum of

{
1

2
Γ0 min {A0C0, B0D0}

(
max

t∈[µ−2,µ+b]Nµ−2

b∑

s=0

G−(t, s)

)−1

min

{
1,

1

f̃M
[0,ρ1]

}
,

Γ0

[
H̃m

1,[0,C1ρ∗

1]
+ H̃m

2,[0,D1ρ∗

1]

]

f̃M

[0,ρ∗

1]

(
max

t∈[µ−2,µ+b]Nµ−2

b∑

s=0

G−(t, s)

)−1}
,

where we assume that
(1) Γ0 min {A0C0, B0D0} > 0;

(2) min{f̃M
[0,ρ1]

, f̃M
[0,ρ∗

1
]} > 0;

(3) H̃m
1,[0,C1ρ∗

1
] + H̃m

2,[0,D1ρ∗

1
] > 0; and

(4) maxt∈[µ−2,µ+b]Nµ−2

∑b
s=0 G−(t, s) > 0.

Remark 2.4. We emphasize that, as the example of Section 3 shall demonstrate,
all of the above constants and conditions can be computed and checked.

Remark 2.5. Note that assumption (4) in condition (A5) essentially asserts that
there is at least one point (t, s) such that G(t, s) < 0. That is, G is actually a
sign-changing kernel.

We next describe the cone utilized in this work. As explained in detail in
Section 1 we use the cone defined by

K :=

{
y ∈ B : y(t) ≥ 0,

n∑

i=1

aiy (ξi) ≥ C0‖y‖,
m∑

i=1

biy (ζi) ≥ D0‖y‖
}

,

where C0, D0 ∈ (0, +∞) are as defined above as in condition (A3); note that K
is neither empty nor trivial due to the fact that γ1, γ2 ∈ K with at least one of
them not zero identically, which follows from the assumption above that Γ0 > 0.
We will also make use of the operator T : B → B defined by

(2.1)

(Ty)(t) = γ1(t)H1

(
n∑

i=1

aiy (ξi)

)
+ γ2(t)H2

(
m∑

i=1

biy (ζi)

)

+λ

b∑

s=0

G(t, s)f(s + µ − 1, y(s + µ − 1)).

Obviously a fixed point of the operator T will be a solution of the summation
equation (1.1). Thus, in Section 3 we will search for nonnegative, nontrivial fixed
points of T in order to identify positive solutions of (1.1). The next lemma will
be essential in this endeavor. While in many problems it is trivial to argue that
T (K) ⊆ K, here we provide a thorough proof of this fact since the use of the new



210 Goodrich C.S.

cone as well as the fact that G is allowed to change sign jointly cause the proof
to be more technical.

Lemma 2.6. Let T be the operator defined by (2.1) and assume that conditions

(A1)–(A5) hold. Define the numbers C1, D1 > 0 by the following.

(2.2)

C1 :=

n∑

i=1

|ai|

D1 :=
m∑

i=1

|bi| .

Then whenever λ ∈ (0, λ0), it holds that T (K) ⊆ K.

Proof: We begin by demonstrating that for each y ∈ K it holds both that

(2.3)
n∑

i=1

ai(Ty) (ξi) ≥ C0‖Ty‖

and that

(2.4)

m∑

i=1

bi(Ty) (ζi) ≥ D0‖Ty‖,

as these are the easier verifications. Then we shall show that (Ty)(t) ≥ 0, for
each t ∈ [µ − 2, µ + b]Nµ−2

, which is the more technical verification.
So, to demonstrate that (2.3) holds, let y ∈ K be fixed but otherwise arbitrary.

First observe that

(2.5)

‖Ty‖ ≤ ‖γ1‖H1

(
n∑

i=1

aiy (ξi)

)
+ ‖γ2‖H2

(
m∑

i=1

biy (ζi)

)

+ max
t∈[µ−2,µ+b]Nµ−2

λ

b∑

s=0

|G(t, s)|f(s + µ − 1, y(s + µ − 1))

≤ ‖γ1‖H1

(
n∑

i=1

aiy (ξi)

)
+ ‖γ2‖H2

(
m∑

i=1

biy (ζi)

)

+ λ

b∑

s=0

G(s)f(s + µ − 1, y(s + µ − 1)).

At the same time we calculate

n∑

i=1

ai(Ty) (ξi) = H1

(
n∑

i=1

aiy (ξi)

)(
n∑

i=1

aiγ1 (ξi)

)
(2.6)
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+ H2

(
m∑

i=1

biy (ζi)

)(
n∑

i=1

aiγ2 (ξi)

)

+ λ

n∑

i=1

b∑

s=0

aiG (ξi, s) f(s + µ − 1, y(s + µ − 1))

≥ C0‖γ1‖H1

(
n∑

i=1

aiy (ξi)

)
+ C0‖γ2‖H2

(
m∑

i=1

biy (ζi)

)

+ λ
∑

s∈S0

[
min
s∈S0

1

G(s)

n∑

i=1

aiG (ξi, s)

]

︸ ︷︷ ︸
:=C0

G(s)f(s + µ − 1, y(s + µ − 1)),

where we have used both the definition of the set S0 as well as the fact that
γ1, γ2 ∈ K by assumption. Then putting (2.5)–(2.6) together we deduce that

n∑

i=1

ai(Ty) (ξi) ≥ C0

[
‖γ1‖H1

(
n∑

i=1

aiy (ξi)

)
+ ‖γ2‖H2

(
m∑

i=1

biy (ζi)

)

+ λ

b∑

s=0

G(s)f(s + µ − 1, y(s + µ − 1))

]
≥ C0‖Ty‖,

(2.7)

whence (2.3) holds, as claimed. A nearly identical calculation reveals that (2.4)
holds, for we simply write, as in (2.5)–(2.7),

m∑

i=1

bi(Ty) (ζi) = H1

(
n∑

i=1

aiy (ξi)

)(
m∑

i=1

biγ1 (ζi)

)

+ H2

(
m∑

i=1

biy (ζi)

)(
m∑

i=1

biγ2 (ζi)

)

+ λ

m∑

i=1

b∑

s=0

biG (ζi, s) f(s + µ − 1, y(s + µ − 1))

≥ D0‖γ1‖H1

(
n∑

i=1

aiy (ξi)

)
+ D0‖γ2‖H2

(
m∑

i=1

biy (ζi)

)

+ λ
∑

s∈S0

[
min
s∈S0

1

G(s)

m∑

i=1

biG (ζi, s)

]

︸ ︷︷ ︸
:=D0

G(s)f(s + µ − 1, y(s + µ − 1))

≥ D0‖Ty‖,

as desired.
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So, it remains to demonstrate that (Ty)(t) ≥ 0 for each t ∈ [µ − 2, µ +
b]Nµ−2

. To accomplish this, we shall consider cases. Therefore, first suppose
that y ∈ K satisfying ‖y‖ ≥ ρ∗1 is otherwise arbitrary and fixed; recall that
ρ∗1 := max{1, ρ1

min{C0,D0}
}, where ρ1 is defined as in condition (A5) earlier. Let us

first observe that by using the coercivity of the linear functionals we obtain

n∑

i=1

aiy (ξi) ≥ C0‖y‖ ≥ ρ1 and

m∑

i=1

biy (ζi) ≥ D0‖y‖ ≥ ρ1.

Now, for notational convenience in the sequel define the set E1 ⊆ [0, b]N0
by

E1 := {s ∈ [0, b]N0
: y(s + µ − 1) ≥ ρ1} .

Then we may write, recalling that Γ0 > 0,

(Ty)(t) ≥ γ1(t)A0

n∑

i=1

aiy (ξi) + γ2(t)B0

m∑

i=1

biy (ζi)

+ λ

b∑

s=0

G(t, s)f(s + µ − 1, y(s + µ − 1))

≥ Γ0 min {A0C0, B0D0} ‖y‖ − λ
∑

s∈E1

G−(t, s)f(s + µ − 1, y(s + µ − 1))

− λ
∑

s∈[0,b]N0
\E1

G−(t, s)f(s + µ − 1, y(s + µ − 1))

≥ Γ0 min {A0C0, B0D0} ‖y‖ − λ
∑

s∈E1

G−(t, s)y(s + µ − 1)

− λ
∑

s∈[0,b]N0
\E1

G−(t, s)f̃M
[0,ρ1]

≥
[
Γ0 min {A0C0, B0D0} − λ max

t∈[µ−2,µ+b]Nµ−2

b∑

s=0

G−(t, s)

]

︸ ︷︷ ︸
≥ 1

2
Γ0(A0C0,B0D0)

‖y‖

− 1

2
Γ0 (A0C0 + B0D0)

≥ 0,

(2.8)

for each t ∈ [µ − 2, µ + b]Nµ−2
, using both the fact that

λ ≤ 1

2
Γ0 min {A0C0, B0D0}

(
max

t∈[µ−2,µ+b]Nµ−2

b∑

s=0

G−(t, s)

)−1

min

{
1,

1

f̃M
[0,ρ1]

}
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and the fact that

ρ∗1 = ‖y‖ ≥ 1.

On the other hand, we next consider the case in which ‖y‖ ≤ ρ∗1. Recall the
definition of C1 and D1 from (2.2). Then using the fact that

0 ≤
n∑

i=1

aiy (ξi) ≤ ‖y‖
n∑

i=1

|ai| ≤ ρ∗1

n∑

i=1

|ai| = C1ρ
∗
1

and similarly with respect to the argument of H2, we compute

(Ty)(t) = γ1(t)H1

(
n∑

i=1

aiy (ξi)

)
+ γ2(t)H2

(
m∑

i=1

biy (ζi)

)

+ λ

b∑

s=0

G(t, s)f(s + µ − 1, y(s + µ − 1))

≥ Γ0

[
H̃m

1,[0,C1ρ∗

1]
+ H̃m

2,[0,D1ρ∗

1 ]

]
+ λ

b∑

s=0

G(t, s)f(s + µ − 1, y(s + µ − 1))

≥ Γ0

[
H̃m

1,[0,C1ρ∗

1]
+ H̃m

2,[0,D1ρ∗

1 ]

]
− λ

b∑

s=0

G−(t, s)f(s + µ − 1, y(s + µ − 1))

≥ Γ0

[
H̃m

1,[0,C1ρ∗

1]
+ H̃m

2,[0,D1ρ∗

1 ]

]
− λ max

t∈[µ−2,µ+b]Nµ−2

b∑

s=0

G−(t, s)f̃M

[0,ρ∗

1]

≥ 0,

(2.9)

using that

λ <

Γ0

[
H̃m

1,[0,C1ρ∗

1]
+ H̃m

2,[0,D1ρ∗

1 ]

]

f̃M

[0,ρ∗

1]

(
max

t∈[µ−2,µ+b]Nµ−2

b∑

s=0

G−(t, s)

)−1

.

All in all, then, putting (2.8) and (2.9) together we deduce that (Ty)(t) ≥ 0
for each t ∈ [µ − 2, µ + b]Nµ−2

. And this completes the proof that T (K) ⊆ K. �

Finally, in the proof of the existence result we make use of Fréchet derivatives
in the context of asymptotically linear operator theory; this is a general approach
that we have used previously in [32], [36]. Therefore, we conclude this section by
presenting the general results we utilize in the existence proof in Section 3.

Definition 2.7 ([58, Definition 7.32.b]). Let X and Y be Banach spaces over R.
Suppose that X has an order cone K, and that T : K → K is an operator. Then
the operator T ′(+∞) ∈ L(X ,Y), where L(X ,Y) is the collection of all linear
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transformations between X and Y, is called the positive Fréchet derivative

of T at +∞ along the cone K if and only if

‖Tx− T ′(+∞)x‖
‖x‖ → 0 as ‖x‖ → +∞ for x ∈ K.

Lemma 2.8 ([58, Corollary 7.34]). Suppose that

(1) T : K ⊆ X → K is a compact operator on the Banach space X with

order cone K; and

(2) T ′(+∞) : K → K exists as a positive Fréchet derivative of T at +∞
along the cone K, and if µ is an eigenvalue for T ′(+∞), then |µ| < 1.

Then the operator T has a fixed point in the cone K.

3. Main results and discussion

3.1 Existence result. In this section we begin by stating and proving the exis-
tence result for the abstract summation equation (1.1). We then spend some time
detailing the application of this result to specific BVPs. As indicated in Section 1
we shall accomplish this by selecting the maps γ1, γ2, and G in a particular way,
thereby relating solutions of specific incarnations of (1.1) to particular BVPs.

Theorem 3.1. Assume that conditions (A1)–(A5) hold. In addition, suppose

both that

lim
y→+∞

f(t, y)

y
= 0,

uniformly for t ∈ [µ − 2, µ + b]Nµ−2
, and that

C0 > Ã0C1

(
n∑

i=1

aiγ1 (ξi)

)
+ B̃0D1

(
n∑

i=1

aiγ2 (ξi)

)
,

where the numbers Ã0 and B̃0 are such that

lim
z→+∞

H1(z)

z
= Ã0 and lim

z→+∞

H2(z)

z
= B̃0.

Finally, for fixed λ ∈ (0, λ0), where λ0 is as in condition (A5), assume that there

exists t0 ∈ [µ − 2, µ + b]Nµ−2
such that

γ1 (t0)H1(0) + γ2 (t0) H2(0) + λ

b∑

s=0

G (t0, s) f(s + µ − 1, 0) > 0.

Then problem (1.1) has at least one positive solution.

Proof: Letting, as in the statement of the theorem, the numbers Ã0 and B̃0

represent the positive, finite limits of Hi(z)
z

as z → +∞, for each i = 1, 2, re-
spectively, we begin the proof by identifying the operator L : B → B defined
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by

(3.1) (Ly)(t) := γ1(t)Ã0

n∑

i=1

aiy (ξi) + γ2(t)B̃0

m∑

i=1

biy (ζi)

as the Fréchet derivative of T at +∞ along the cone K. It is obvious that the
operator L defined by (3.1) is a linear operator in y. Moreover, it is also easy to
see that L(K) ⊆ K.

So, to show that L is, in fact, the Fréchet derivative of T at +∞ along the
cone K, we begin by writing

|(Ty)(t) − (Ly)(t)|
‖y‖ ≤

∣∣∣∣∣Ã0

n∑

i=1

aiy (ξi) − H1

(
n∑

i=1

aiy (ξi)

)∣∣∣∣∣
‖y‖ ‖γ1‖

+

∣∣∣∣∣B̃0

m∑

i=1

biy (ζi) − H2

(
m∑

i=1

biy (ζi)

)∣∣∣∣∣
‖y‖ ‖γ1‖

+
λ

‖y‖

b∑

s=0

|G(t, s)|f(s + µ − 1, y(s + µ − 1))

=: I1 + I2 + I3.

(3.2)

Let ε > 0 be a constant to be fixed later. Then using the fact that limz→+∞
H1(z)

z

= Ã0 and limz→+∞
H2(z)

z
= B̃0 yields both that

(3.3) I1 ≤ ‖γ1‖
‖y‖ ε

n∑

i=1

aiy (ξi) ≤ ε‖γ1‖
n∑

i=1

|ai| = ε‖γ1‖C1

and, similarly, that

(3.4) I2 ≤ ‖γ2‖
‖y‖ ε

m∑

i=1

biy (ζi) ≤ ε‖γ2‖
m∑

i=1

|bi| = ε‖γ2‖D1,

whenever ‖y‖ ≥ ρ1 for some ρ1 := ρ1(ε) > 0 sufficiently large. At the same time

since limy→+∞
f(t,y)

y
= 0 uniformly in t, it follows that f(t, y) ≤ εy whenever

y ≥ ρ1 and t ∈ [µ − 1, µ + b − 1]Nµ−1
, perhaps by selecting ρ1 even larger if

necessary. We then write

I3 ≤ λ

‖y‖

[
∑

{s : y(s+µ−1)≥ρ1}

|G(t, s)|f(s + µ − 1, y(s + µ − 1))(3.5)
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+
∑

{s : y(s+µ−1)<ρ1}

|G(t, s)|f(s + µ − 1, y(s + µ − 1))

]

≤ λ

‖y‖

[
ε

b∑

s=0

|G(t, s)|‖y‖ +

b∑

s=0

|G(t, s)|f̃M
[0,ρ1]

]

≤ λ

[
ε +

f̃M
[0,ρ1]

‖y‖

]
b∑

s=0

G(s)

≤ 2ελ

b∑

s=0

G(s),

where we use the fact (see, for example, [36, Lemma 3.2]) that

lim
ρ→+∞

f̃M
[0,ρ]

ρ
= 0

so that for ρ1 sufficiently large we have for each y with ‖y‖ ≥ ρ1 that

f̃M
[0,ρ1]

‖y‖ ≤
f̃M
[0,ρ1]

ρ1
< ε.

All in all, then, putting estimates (3.3)–(3.5) into estimate (3.2) we deduce that

(3.6)
|(Ty)(t) − (Ly)(t)|

‖y‖ ≤ ε

[
‖γ1‖C1 + ‖γ2‖D1 + 2λ

b∑

s=0

G(s)

]

︸ ︷︷ ︸
=:κ0

= εκ0.

Now, observe that κ0 := κ0(γ1, γ2, G, λ, {ai}n
i=1, {bi}m

i=1). In particular, the num-
ber κ0 is a constant that depends only on initial data; it does not depend on ρ1

or ε itself. Therefore, we can make the right-hand side of (3.6) as small as we
like by simply selecting ε sufficiently small. Since this estimate holds for each
t ∈ [µ− 2, µ + b]Nµ−2

, it thus follows that L is the Fréchet derivative of T at +∞
along the cone K, as claimed.

In order to deduce by means of Lemma 2.8 that T has a fixed point, it remains
to argue that L has no eigenvalue greater than or equal unity. To this end, suppose
for contradiction that there exists µ ≥ 1 such that (µ, y) is an eigenpair for the
operator L. Then it holds that µy(t) = (Ly)(t), for each t ∈ [µ − 2, µ + b]Nµ−2

,
with ‖y‖ 6= 0. Consequently, we may write

µ

n∑

i=1

aiy (ξi) = Ã0

(
n∑

i=1

aiγ1 (ξi)

)(
n∑

i=1

aiy (ξi)

)
(3.7)
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+ B̃0

(
n∑

i=1

aiγ2 (ξi)

)(
m∑

i=1

biy (ζi)

)
.

Now using both the fact that 1 ≤ µ and, seeing as y ∈ K, the coercivity condition,
we thus obtain from (3.7) the estimate

C0‖y‖ ≤
[
Ã0

(
n∑

i=1

aiγ1 (ξi)

)(
n∑

i=1

|ai|
)

+ B̃0

(
n∑

i=1

aiγ2 (ξi)

)(
m∑

i=1

|bi|
)]

‖y‖,

whence

C0 ≤ Ã0C1

(
n∑

i=1

aiγ1 (ξi)

)
+ B̃0D1

(
n∑

i=1

aiγ2 (ξi)

)
,

which is a contradiction. Therefore, we conclude that L cannot have an eigenvalue
greater than or equal to unity, as claimed.

All in all, then, we deduce from Lemma 2.8 that there exists y0 ∈ K such that
Ty0 = y0. Finally, to demonstrate that y0 is not identically zero and hence is not
a trivial solution, we note that if it held that y0 ≡ 0, then we would obtain

(3.8) 0 = y0(t) = (Ty0) (t) = γ1(t)H1(0)+γ2(t)H2(0)+λ

b∑

s=0

G(t, s)f(s+µ−1, 0),

for each t ∈ [µ − 2, µ + b]Nµ−2
. But then putting t = t0, where t0 is as in the

statement of this theorem, we obtain from (3.8) that

0 = γ1 (t0)H1(0) + γ2 (t0)H2(0) + λ

b∑

s=0

G (t0, s) f(s + µ − 1, 0) > 0,

which is a contradiction. Consequently, the fixed point is nontrivial, and this
completes the proof of the theorem. �

Remark 3.2. By altering the auxiliary condition

γ1 (t0) H1(0) + γ2 (t0)H2(0) + λ

b∑

s=0

G (t0, s) f(s + µ − 1, 0) > 0

appearing in the statement of Theorem 3.1, one can easily write down several
variants of this existence theorem. We omit the statements of these, however.

3.2 Applications. We conclude this paper by presenting some applications of
the existence theorem. In particular, the examples demonstrate that by choosing
γ1, γ2, and G we can identify solutions of (1.1) with solutions of specific boundary
value problems. We give a example worked in detail in the case where µ = 2.

For notational convenience in the sequel, just as in [28] here we put

Ω0 := (b + µ)µ−1 − α(K + µ)µ−1 > 0.
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In our applications we will make use of the function G : [µ − 2, µ + b]Nµ−2
×

[0, b]N0
→ R defined by

(3.9) G(t, s) :=






g1(t, s), 0 ≤ s ≤ min{t − µ, K}
g2(t, s), 0 ≤ t − µ < s ≤ K ≤ b

g3(t, s), 0 < K < s ≤ t − µ ≤ b

g4(t, s), max{t − µ, K} < s ≤ b

,

where

g1(t, s) :=
1

Γ(µ)

[
− (t − s − 1)µ−1 +

tµ−1

Ω0

[
(b + µ − s − 1)µ−1

−α(K + µ − s − 1)µ−1
] ]

g2(t, s) :=
1

Γ(µ)

[
tµ−1

Ω0

[
(b + µ − s − 1)µ−1 − α(K + µ − s − 1)µ−1

]]

g3(t, s) :=
1

Γ(µ)

[
−(t − s − 1)µ−1 +

tµ−1

Ω0
(b + µ − s − 1)µ−1

]

g4(t, s) :=
1

Γ(µ)

[
tµ−1

Ω0
(b + µ − s − 1)µ−1

]
.

The function G was studied extensively in [28, Theorems 4.2, 4.3, 4.4] in the
case where α ≥ 0. There it was shown — see [28, Lemma 3.1] — that G was the
Green’s function associated to the boundary value problem

(3.10)

−∆µ
µ−2y(t) = f(t + µ − 1, y(t + µ − 1)), t ∈ [0, b]N0

y(µ − 2) = 0

y(µ + b) = αy(µ + K),

where α was nonnegative, subject to some upper bound restrictions detailed in
[28], and K ∈ [1, b − 1]N0

. Moreover, the order of the fraction difference, µ, was
required to satisfy 1 < µ ≤ 2.

By contrast, here we shall take α < 0. This causes the Green’s function to be
negative on part of its domain. Consequently, the analysis performed in [28] is no
longer valid and must be modified. To facilitate and streamline the presentation
of the example, we shall first present some relevant lemmata, which characterize
the properties of G that are needed to apply Theorem 3.1 in this special case.

Lemma 3.3. Let G be defined as in (3.9) and let µ ∈ (1, 2] be fixed but otherwise

arbitrary. Then it holds that

(1) the partial map t 7→ g1(t, s), for each fixed admissible s, is decreasing on

its domain;

(2) the partial map t 7→ g2(t, s), for each fixed admissible s, is increasing on

its domain;
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(3) the partial map t 7→ g3(t, s), for each fixed admissible s, is decreasing on

its domain;

(4) the partial map t 7→ g4(t, s), for each fixed admissible s, is increasing on

its domain;

(5) the map (t, s) 7→ g2(t, s) is nonnegative on its domain; and

(6) the map (t, s) 7→ g4(t, s) is nonnegative on its domain.

Proof: Essentially the proof is similar to that provided in [28, Theorem 4.3].
However, we cannot repeat wholesale the argument given there since α < 0 is
assumed here, whereas in [28] it was assumed that α ≥ 0. This means that while
the argument has the same basic structure, in some cases certain calculations that
were utilized in [28] are not valid in this new setting.

Therefore, we begin by arguing that claims (2) and (4) hold, as these are the
easier cases, just as in the proof of [28, Theorem 4.3]. To this end we notice that

Γ(µ)∆tg4(t, s) = (µ − 1)Ω−1
0 tµ−2(b + µ − s − 1)µ−1 > 0,

which establishes claim (4). On the other hand, we also calculate

Γ(µ)∆tg2(t, s) = (µ − 1)Ω−1
0 tµ−2

[
(b + µ − s − 1)µ−1 − α(K + µ − s − 1)µ−1

]
,

which since −α > 0 evidently establishes claim (2). Thus, it remains to argue
that claims (1) and (3) hold, which are the more technical cases.

So, we next argue that Γ(µ)∆tg1(t, s) ≤ 0 for each pair (t, s) in the domain
of g1. To this end we calculate

(3.11) Γ(µ)∆tg1(t, s) =

(µ− 1)

[
−(t − s − 1)µ−2 +

tµ−2

Ω0

[
(b + µ − s − 1)µ−1 − α(K + µ − s − 1)µ−1

]]
.

From (3.11) we deduce that ∆tg1(t, s) ≤ 0 if and only if

(3.12) tµ−2
[
(b + µ − s − 1)µ−1 − α(K + µ − s − 1)µ−1

]

< (t − s − 1)µ−2
[
(b + µ)µ−1 − α(K + µ)µ−1

]
.

To establish (3.12) we demonstrate that each of the following inequalities hold:

(3.13)
tµ−2(b + µ − s − 1)µ−1 < (t − s − 1)µ−2(b + µ)µ−1

−αtµ−2(K + µ − s − 1)µ−1 < −α(t − s − 1)µ−2(K + µ)µ−1 ,

whereupon by addition we shall obtain inequality (3.12).
To establish (3.13)1 we note that it is equivalent to

tµ−2

(t − s − 1)µ−2 <
(b + µ)µ−1

(b + µ − s − 1)µ−1 ,
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which is true only if

0∏

j=−s

(t + j)

0∏

j=−s

(t − µ + 2 + j)

·

0∏

j=−s

(b + 1 + j)

0∏

j=−s

(b + µ + j)

< 1.

But the latter inequality is true, since

min





0∏

j=−s

(t + j)

0∏

j=−s

(t − µ + 2 + j)

,

0∏

j=−s

(b + 1 + j)

0∏

j=−s

(b + µ + j)





< 1.

Thus, (3.13)1 holds. Similarly, using the fact that −α > 0 we see that (3.13)2 is
equivalent to the inequality

tµ−2

(t − s − 1)µ−2 <
(K + µ)µ−1

(K + µ − s − 1)µ−1 ,

which, likewise, is true only if

0∏

j=−s

(t + j)

0∏

j=−s

(t − µ + 2 + j)

·

0∏

j=−s

(K + 1 + j)

0∏

j=−s

(K + µ + j)

< 1.

But, once again, since

min





0∏

j=−s

(t + j)

0∏

j=−s

(t − µ + 2 + j)

,

0∏

j=−s

(K + 1 + j)

0∏

j=−s

(K + µ + j)





< 1,

it follows that (3.13)2 holds. All in all, we see that (3.12) is true, and so, we
conclude that ∆tg1(t, s) ≤ 0, as claimed, and claim (1) follows.

Finally, we argue that claim (3) holds. To this end we calculate

Γ(µ)∆tg3(t, s) = (µ − 1)

[
−(t − s − 1)µ−2 +

tµ−2

Ω0
(b + µ − s − 1)µ−1

]
.
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But notice that since −α > 0 it follows from (3.12) that

− (t − s − 1)µ−2 +
tµ−2

Ω0
(b + µ − s − 1)µ−1

≤ −(t − s − 1)µ−2 +
tµ−2

Ω0

[
(b + µ − s − 1)µ−1 − α(K + µ − s − 1)µ−1

]
≤ 0.

Thus, because µ − 1 > 0 it follows that since Γ(µ)∆tg1(t, s) ≤ 0, we have that
Γ(µ)∆tg3(t, s) ≤ 0. Consequently, claim (3) is true.

Finally, the proof of claims (5)–(6) is nearly immediate. In the case of (5) we
merely use the fact that −α > 0, whereas in the case of (6) it is a triviality. And
this completes the proof. �

Remark 3.4. One may observe that the conclusion of Lemma 3.3 is identical to
that of [28, Theorem 4.3]. However, it should be noted that in [28] an additional
constraint was imposed on the value of α — see [28, (4.15)]. Here, by contrast,
for any α < 0 the result holds. Thus, we need not impose a lower bound on α in
order to obtain Lemma 3.3.

If µ = 2, then we can provide some additional analysis of G beyond that
which Lemma 3.3 establishes. In particular, we obtain the following result in this
integer-order setting. As mentioned in Section 1, so far as we are aware, problem
(3.10), in the case where α < 0, has not been studied even in case µ = 2. For
reference in the sequel, let us note that if we put µ = 2, then (3.9) becomes

G(t, s) :=






g1(t, s), 0 ≤ s ≤ min{t − 2, K}
g2(t, s), 0 ≤ t − 2 < s ≤ K ≤ b

g3(t, s), 0 < K < s ≤ t − 2 ≤ b

g4(t, s), max{t − 2, K} < s ≤ b

,

where

g1(t, s) := −(t − s − 1) +
t

b + 2 − α(K + 2)
[(b + 1 − s) − α(K + 1 − s)]

g2(t, s) :=
t

b + 2 − α(K + 2)
[(b + 1 − s) − α(K + 1 − s)]

g3(t, s) := −(t − s − 1) +
t

b + 2 − α(K + 2)
(b + 1 − s)

g4(t, s) :=
t

b + 2 − α(K + 2)
(b + 1 − s),

using the fact that t1 = t.

Lemma 3.5. Suppose that µ = 2. Then

(1) g1(t, s) is negative whenever t >
b+2−α(K+2)

1−α
; and
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(2) g3(t, s) is negative whenever s <
(t−1)

(
b+2−α(K+2)

)
−t(b+1)

b+2−α(K+2)−t
.

Proof: In order to prove claim (1) we begin by noting that g1(t, s) < 0 if and
only if

− (t − s − 1) +
t

b + 2 − α(K + 2)
[(b + 1 − s) − α(K + 1 − s)]

=
−(t − s − 1)

[
b + 2 − α(K + 2)

]
+ t
[
(b + 1 − s) − α(K + 1 − s)

]

(b + 2) − α(K + 2)︸ ︷︷ ︸
>0

< 0.

So, we see that g1(t, s) is negative if and only if

−(t − s − 1)
[
b + 2 − α(K + 2)

]
+ t
[
(b + 1 − s) − α(K + 1 − s)

]
< 0.

From the above inequality a routine exercise yields

t >
b + 2 − α(K + 2)

1 − α
,

and this proves claim (1).
Similarly, to prove claim (2) we notice that g3(t, s) < 0 if and only if

−(t − s − 1)
[
b + 2 − α(K + 2)

]
+ t(b + 1 − s) < 0

if and only if

s
(
− t + b + 2 − α(K + 2)

)
< (t − 1)

[
b + 2 − α(K + 2)

]
− t(b + 1).

Solving for s in the above inequality we deduce that

s <
(t − 1)

(
b + 2 − α(K + 2)

)
− t(b + 1)

b + 2 − α(K + 2) − t
,

which proves claim (2). And this completes the proof. �

Remark 3.6. In the case where µ = 2, Lemmata 3.3 and 3.5 completely char-
acterize the subsets of [0, b + 2]N0

× [0, b]N0
on which G is positive, negative, or

zero.

By putting the preceding lemmata together, we can generate the following ex-
ample, which will also illustrate the application of the existence theory developed
in subsection 3.1 earlier.

Example 3.7. Let us consider summation equation (1.1) in case we put γ1(t) :=
1 − t

12 , γ2(t) := t
12 , and G as in (3.9) with µ = 2, α := −1, b := 10, and K := 3.
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Note also that Γ0 = 1. We shall also assume for definiteness that (with, evidently,
n = m = 2)

2∑

i=1

aiy (ξi) := 2y(7)− 1

10
y(2) and

2∑

i=1

biy (ζi) :=
2

3
y(6) − 1

9
y(1).

In addition, define the maps H1 and H2 as follows.

H1(z) :=
1

30
z,

H2(z) :=
1

20
z + 1.

Then, recalling that b = 10, summation equation (1.1) becomes

y(t) =

(
1 − t

12

)
H1

(
2y(7) − 1

10
y(2)

)
+

t

12
H2

(
2

3
y(6) − 1

9
y(1)

)

+ λ

10∑

s=0

G(t, s)f(s + 1, y(s + 1))

=

(
1 − t

12

)(
1

15
y(7) − 1

300
y(2)

)
+

t

12

(
1

30
y(6) − 1

180
y(1) + 1

)

+ λ

10∑

s=0

G(t, s)f(s + 1, y(s + 1)),

for each t ∈ [0, 12]N0
. Recalling the choices above for K and b, it is easy to show

that each solution of the preceding integral equation is likewise a solution of the
nonlocal boundary value problem

(3.14)

−∆2y(t) = f(t + 1, y(t + 1)), t ∈ [0, 10]N0

y(0) = H1

(
2y(7) − 1

10
y(2)

)

y(12) + y(5) =
7

12
H1

(
2y(7) − 1

10
y(2)

)
+

17

12
H2

(
2

3
y(6) − 1

9
y(1)

)
.

With the choices for H1 and H2 as above, problem (3.14) becomes

−∆2y(t) = f(t + 1, y(t + 1)), t ∈ [0, 10]N0

y(0) =
1

15
y(7) − 1

300
y(2)

y(12) + y(5) = − 17

2160
y(1) − 7

3600
y(2) +

17

360
y(6) +

7

180
y(7) +

17

12
.

Thus, in particular, the boundary conditions are linear at t = 0 and affine at
t = 12.
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By means of Lemmata 3.3 and 3.5 we know that each of g2 and g4 is a non-
negative function everywhere on its respective domain, whereas g1 is negative
whenever

t >
17

2
,

and g3 is negative whenever

s <
17(t − 1) − 11t

17 − t
=

6t − 17

17 − t
.

In fact, this latter result implies that, as collected in the following table, for each
of the following t-values it follows that g3(t, s) < 0 for the associated collection of
s-values.

t = 12 11 10 9 8 7 6 5 4
s ∈ N

10
4 N

8
4 N

6
4 N

4
4 ∅ ∅ ∅ ∅ ∅

In light of this table as well as the definition of the map (t, s) 7→ g1(t, s), we thus
calculate

max
t∈[0,12]N0

10∑

s=0

G−(t, s)

= −min

{
3∑

s=0

g1(12, s) +

10∑

s=4

g3(12, s),

3∑

s=0

g1(11, s) +

8∑

s=4

g3(11, s),

3∑

s=0

g1(10, s) +

6∑

s=4

g3(10, s),

3∑

s=0

g1(9, s) +

4∑

s=4

g3(9, s)

}

=
210

17
,

which will be used in the calculation of the number λ∗
0. Furthermore, for any

nonnegative function f we calculate

γ1(1)H1(0) + γ2(1)H2(0) + λ

b∑

s=0

G(1, s)f(s + 1, 0) > 0

so that the auxiliary condition in Theorem 3.1 holds. In addition, here we may
set

Ã0 =
1

30
and B̃0 =

1

20
.

Then we see that

Γ0 min {A0C0, B0D0} > 0.

We also compute both that C1 = 21
10 , D1 = 7

9 ,

C0 = min
s∈[0,10]N0

1

G(s)

[
2G(7, s) − 1

10
G(2, s)

]
=

13

150
,
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and

D0 = min
s∈[0,10]N0

1

G(s)

[
2

3
G(6, s) − 1

9
G(1, s)

]
=

1

9
.

Observe, therefore, that

2∑

i=1

aiγj (ξi) =

{
19
24 , j = 1
23
20 , j = 2

≥ 13

150
= C0‖γj‖ and

2∑

i=1

biγj (ζi) =

{
25
108 , j = 1
35
108 , j = 2

≥ 1

9
= D0‖γj‖.

Thus, condition (A4) holds. Finally, we note that

13

150
= C0 > Ã0C1

(
n∑

i=1

aiγ1 (ξi)

)
+ B̃0D1

(
n∑

i=1

aiγ2 (ξi)

)
=

151

1800
,

from which it follows that the first auxiliary condition in the statement of Theo-
rem 3.1 is satisfied.

All in all, then, with the preceding computations in hand we estimate, to three
decimal places of accuracy, that

λ0 := min





221

2205000
min

{
1,

1

f̃M
[0,ρ1]

}
,

17

210
·
H̃m

1,[0, 21

10
ρ∗

1]
+ H̃m

2,[0, 7

9
ρ∗

1]

f̃M

[0,ρ∗

1]



 ,

where we have taken A0 := 1
35 and B0 := 1

25 . Thus, for example, if we put

f(t, y) := t
√

y, then we compute that ρ1 = 1 so that ρ∗1 = 150
13 . Thus, in this

specific case we estimate

λ0 := min





221

2205000
min

{
1,

1

f̃M
[0,1]

}
,

17

210
·
H̃m

1,[0, 21

10
· 150

13 ]
+ H̃m

2,[0, 7

9
· 150

13 ]

f̃M

[0, 150

13 ]





= min

{
221

2205000
,

17

210

√
13

150

}

=
221

2205000
≈ 0.0001,

to three decimal places of accuracy. Consequently, when f is so selected, by means
of Theorem 3.1 we deduce that for each

λ ∈
(

0,
221

2205000

)

boundary value problem (3.14) has at least one positive solution.
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Remark 3.8. On the one hand, in general the number λ0 may be rather small,
as is the case in Example 3.7. In part, this is due to the fact that C0 and D0

may be quite small in some cases, and, if they are not, then C1 and D1 may
be correspondingly large, in which case to ensure that the auxiliary inequality in

Theorem 3.1 holds it may be necessary to require Ã0 and B̃0 to be rather small.
On the other hand, it is certainly possible to find examples in which λ0 is larger

than in Example 3.7. For instance, if one chooses the nonlocal elements

2∑

i=1

aiy (ξi) = 10y(7)− 1

100
y(2)

and

2∑

i=1

biy (ζi) = 20y(6)− 1

90
y(1),

then one calculates C0 ≈ 1.9913 and D0 ≈ 6.6556. If, in addition, we may select
A0 = 1

30 , as in Example 3.7, and B0 = 1
200 , then we find that λ0 ≈ 0.0013.

Remark 3.9. We wish to emphasize, as Example 3.7 demonstrates and as was
mentioned in Section 1, that the existence results do not require that either H1

or H2 be nonlinear. They can be linear or affine, as the example demonstrates.

Remark 3.10. In the preceding example we focused on the case where G is defined
by (3.9), γ1(t) := 1 − t

12 , and γ2(t) := t
12 . Of course, by choosing these maps

in different ways we would recover existence of solution to a variety of other
boundary value problems with associated sign-changing Green’s functions in both
the integer- and fractional-order setting. However, as mentioned in Section 1
since the problem defined by (3.10) has not even been analyzed when µ = 2 and
α < 0, we felt it best to focus on this one particular application. Needless to say,
however, the existence theory is widely applicable due to the very general form of
the summation equation in (1.1).

Remark 3.11. Considering problem (1.2), we wish to note that in this work we
have considered only the case where b is finite. If one allows b → +∞, then
(1.2) becomes a half-line problem, and the methodology utilized in this work is
no longer entirely valid. This could form the basis for further analysis of problem
(1.2), but we do not consider this type of investigation in this paper.

Moreover, although we chose only one particular value of α in Example 3.7,
one could study the effect of changing the value of α on the Green’s function G

in (3.9). For example, notice that

(3.15) lim
α→−∞

b + 2 − α(K + 2)

1 − α
= K + 2,



Summation equations with sign changing kernels 227

whereas

(3.16)
b + 2 − α(K + 2)

1 − α

∣∣∣∣∣
α=0

= b + 2.

Thus, from part (1) of Lemma 3.5 (i.e., in case µ = 2) we see that (3.15)–(3.16)
suggest that as α → −∞ the set of points (t, s) for which g1(t, s) < 0 “enlarges”,
seeing as the collection of t-values for which g1(t, s) < 0 holds increases in size.
A similar analysis may be performed for the map (t, s) 7→ g3(t, s) by means of part
(2) of Lemma 3.5. All in all, then, some additional analysis could be performed
analyzing the behavior of G, in a sort-of asymptotic sense, as α → −∞. But we
omit this detailed analysis in the present work.
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