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A note on the commutator of two

operators on a locally convex space

EDVARD KRAMAR

Abstract. Denote by C the commutator AB — BA of two bounded operators A
and B acting on a locally convex topological vector space. If AC — CA = 0,
we show that C' is a quasinilpotent operator and we prove that if AC — CA is
a compact operator, then C is a Riesz operator.
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1. Introduction

Let X be a complex Hausdorff locally convex topological vector space. A sys-
tem of seminorms P = {p, : @ € A} inducing the topology on X will be called
a calibration. We denote by P(X) the collection of all calibrations on X. For a
given seminorm p, we denote Uy = {z € X : po(x) < 1}. A calibration P is di-
rected if for each p,,pg € P there is some p, € P such that p, < py and pg < p,.
For a given calibration P the system of semiballs {eU, : ¢ > 0, € A} forms a
neighborhood base at 0. Let us denote by £(X) the set of all linear continuous
operators on X. An operator T' € £(X) is compact (T € K(X)) if there is some
open neighborhood W at 0 such that T(W) is a relatively compact set, and T'
is bounded (T € B(X)) if T(W) is a bounded set. If P is some given directed
calibration on X we can replace the set W by some semiball U, in the above def-
inition. If the set T'(U,) is bounded and p, € P is the corresponding seminorm
for U,, then for each p, € P there is some ¢, > 0 such that po(Tz) < capy(2),
z € X, a € A. We say that T is bounded with respect to the seminorm p,. For
a given P € P(X) we denote by Bp(X) the collection of all linear operators T
on X for which p,(Tz) < cpa(x), where z € X, po, € P, and ¢ > 0 is inde-
pendent of &« € A. Bp(X) is a unital normed algebra with respect to the norm
TP = sup{pa(Tz) : pa(z) <1, x € X, p, € P}. For a given p, € P let J,
denote the null space of p,. The quotient space X, = X/J, is a normed space
with the norm ||#alla = pa(z), where zo = z + Ju, and X, denotes the com-
pletion of X,. Let T' € L£(X) be such that T'(J,) C J,, then the corresponding
operator T, on X, is well-defined by T, (z4) = Tx + Ja, its continuous extension
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to X, will be denoted by T,. For a given T € £(X) the number A € C is in
the resolvent set of T iff (A\I — T')~! exists in £(X). The spectrum o(T) is the
complement of the resolvent set. An operator T is quasinilpotent if o(T) = {0}.
For an associative algebra A and any a,b € A the commutator ab — ba will be
denoted by [a, b] or also by ,(b).

2. The results

Lemma 1. Let X be a locally convex space and let F = {A; : i € N} be a finite
family of operators in B(X), where N = {1,2,...,n}. Let A be the algebra of
operators generated by F. Then there exists a calibration P € P(X) such that
the following hold:

(i) A is contained in Bp(X),
ii) there is some € P such that all operators from A are bounded with
D~ p
respect to the seminorm p..

PRrROOF: (i) Let Py = {qo : @ € A} be a directed calibration on X. For any
A; € F there exists some qu) € Py such that for each a € A the following holds

gda(A;z) < agf)qgi) (), xeX

for some al) > 0. Write Ao = max{agf) i€ N}, o€ Ay and let ¢, € Py
be a common successor of qgl), i € N. Then, clearly for each i € N we have
do(Aiz) < Aagy(x), x € X, and for any T € A there is some t, > 0 such that

(1) 4a(T2) < tagy(x), @ € X,

Let us define a new family of seminorms P = {p, : « € A}, where p,(z) =
max{qa(z), \agy(z)}, © € X, @ € A. For each o € A, ¢o < po and p, <
max{1l, Ao} max{qa, ¢, }, thus P is a calibration on X. For any p, € P and any
A; € Fwehave po(A4;x) = max{qa(4:ix), Aagy(Aiz)} < max{Aaq,(z), \aryqy(2)}
< cora@y () < copalx), ® € X, where ¢g = max{1, \y}, hence A; € Bp(X).
Then we have, for any T € A, po(Tx) < cpo(x), where ¢ is independent of
a € A. Thus, T € Bp(X).

(ii) Choose any p, € P and any T' € A. By (1) and by the relationship between
Py and P we obtain p(Tz) < max{l, Ao} max{qa(T2),q(T2)} < dagy(z) <
dop~(z), € X, where d,, = max{1, Ao} max{tq,t,}. O

In the following lemma we specify some properties of the passage to the quotient

space on which the induced operators are well-defined.

Lemma 2. Let X be a locally convex space and let F be, as above, a finite family
of bounded operators. Let A be the algebra generated by F and let P € P(X) and
py € P be from the previous lemma. Then for each p,» € P for which p, < p,
the following hold.

(i) (S+T)y =8, +Ty, S,T € A
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(ii) (ST)y = STy, S,T € A.

(ii) |1l < |T)lp, T € A,

(iv) If T € A is a compact operator for which T'(U,/) is a relatively compact
set, then T is a compact operator, too.

PRroOF: By the preceding lemma, and by the assumption p, < p,/, eachT € Ais
also bounded with respect to the seminorm p,.. Especially we have T'(J,/) C J,.

Thus, the corresponding operator T, on X,  and its extension T,/ on X, are
well-defined and are bounded. By [4, p.413], we have the equalities (i) and (ii).
Let us prove (iii). The algebra A is contained in Bp(X), hence for each T' € A it
follows
Pa(Tx) < T\ ppa(z), v € X, pa € P.

Especially, py(Tz) < ||T||ppy(x), x € X, then also ||T%y/ ||, < ||T||p, and also
||iyx|\7/ < ||IT||p. Since each relatively compact set is also totally bounded, the
statement (iv) follows by [4, p.413]. O

Let A be an associative algebra and a,b € A such that 62(b) = [a, d,(b)] = 0.
Then the following is true (see e.g. [1, p. 86])

2) ST (b") = nld,(b)", n € N.

Proposition 1. Let A be an associative algebra and assume that a,b € A satisfy
the conditions 62(b) = 0 and [b,a"] = 0 for some n € N. Then

6a (b)2n—1 =0.

PROOF: By the assumption §2(b) = 0 we have [a,dy(a)] = —[a, d.(b)] = 0. Then
it is easy to show by induction that [b,a*] = ka*~1[b,a], for each k € N. Thus
for k = n, and by the above assumption we obtain a”b = a™ 'ba. If we multiply
this equality by a on the left, we have a®*1b = ba”*!. In the same way we obtain
by induction

a"tfp = ba"tF Kk =0,1,2,...

Denoting ¢ := b2~ we have 6271 (¢) = 32" 1 (1) (2”jf1)a2”_1_jcaj. For 0 <

§=0
j <n—1wehave a® el = ca® ! = a®" ¢, and for n < j < 2n— 1 we have
n—1-—j .5 _ ,2n— : n— _ 2n— 2n—1 j(2n—1\ _
a®17Jcal = a®~Lc. Hence it follows 02" 1(c) = a? 1czj:0 (—1)7( p ) =
0. Then by (2) we obtain (2n — 1)!§,(b)?"~1 = §2"~1(p?n~1) = 0. O

Corollary 1. Let A be an associative algebra. If a,b € A are such that §2(b) = 0
and a™ = 0 for some n € N, then §,(b)*"~1 =0.

The following theorem is the classical Kleinecke-Shirokov theorem if X is a
Banach space.

Theorem 1. Let X be a sequentially complete locally convex space and let
A, B € B(X) be such that §%(B) = 0. Then §4(B) is a quasinilpotent operator.
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PROOF: It may be supposed that X is not a normed space. By Lemma 1, there
is some P € P(X) such that A, B € Bp(X). Since X is sequentially complete,
Bp(X) is a Banach algebra (see, e.g. [2]). Write T = §4(B), then by (2) for each
A # 0 there exists (T — A\)~! € Bp(X) C £(X), hence o(T) C {0}. Now, T is
a bounded operator acting on a non-normable locally convex space, hence, by a
consequence of Kolmogorov theorem on normability of topological vector spaces,
T is not invertible. Thus, 0 € o(T). O

In the following theorem we shall assume that A is an algebraic operator with
the minimal polynomial p. This means g is a monic polynomial with minimal
degree such that p(A) = 0. This theorem was formulated and proved in [3] for
the algebra of bounded operators on a Banach space, actually, the proof is valid
for operators on any complex vector space. We prove the same result by partially
alternative arguments based on Proposition 1.

Theorem 2. Let X be a complex vector space and A, B € L(X) be such that
5%(B) = 0. Let A be an algebraic operator with the minimal polynomial u(\) =
H?Zl()\ — X;)", where {\;} are distinct. Then for m = 2max{n;} — 1 holds

(5A(B)m =0.

PROOF: For the algebraic operator A with the above minimal polynomial the
following decomposition holds A = A1 AP+ - PA, on X = X1 XoB-- - DX,
where, for j =1,...,n, X; = ker((A—X1)"), A; = Alx, and (A— \1)lx,
is a nilpotent operator of order n; (see e.g. [5]). Choose any j € {1,2,...,n}.
By the equality 51%1_/\jI(B)Xj = {0} we can prove in the same way as in [3]
that B(X;) € X;. Thus, by Corollary 1, (0a—x,1(B)|x,;)*" " = 0. Hence
04(B)™ =0, where m = 2max{n;} — 1. O

Corollary 2. Let X be a complex vector space and let A, B € L(X) be such that
5%(B) = 0. Let A be an algebraic operator for which the minimal polynomial has
only simple zeroes. Then A commutes with B.

We can find in [4, p.405] a definition of a Riesz operator acting on a Hausdorff
topological vector space. The following theorem is a generalization to locally
convex spaces of a result proven in [6] for the Banach spaces.

Theorem 3. Let X be a sequentially complete locally convex space and let
A, B € B(X). If 6%(B) is a compact operator, then §4(B) is a Riesz operator.

PRrROOF: Let us denote by A the algebra of operators generated by A and B.
Denoting C = §%(B), we shall prove that

(3) 04 (B™) =nloa(B)" + K, n=2,3,...,
where K, can be written as

(4) Kn:EnC+CE;+ZFiC’Fi’,n:Z,Z},...,
€M,
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where M is an empty set, for n > 3, M, is some finite set of natural numbers,
and all operators belong to the algebra A. Indeed, for n = 2 we have 6% (B?) =
B&%4(B) + 254(B)? + 6%4(B)B = 254(B)? + K2, where Ky = BC + CB. For a
given n > 2, let (3) be true and let K,, be of the form (4). Then by the Leibniz
formula it follows

8% (B™) = nlda(B)"B +nd"y ' (B™)da(B) + S,

where S, = K,B+3",_, (}) §"%(B™)8% (B). Applying the operator 64 on both
sides of the above equality, and taking into account (3) for the given n, we obtain
by a simple calculation

S"HBY) = nloa(B)" T + n(nlda(B)" + K,)64(B) +nl(65(B)da(B)" !
+04(B)0%(B)oA(B)" % + -+ +04(B)"'63(B))B + nd; ' (B")0%(B) + 64(Sn)
= (n+D104(B)"" + Kpy1.

Since (4) is closed for left/right multiplications by elements from A, and 04 is
inner derivation, so K, 1 is again of the form (4). Note, that (3) follows directly
from the relation (2) considering the quotient algebra £(X)/K(X), but we need
also the form of operators K, given in (4). By Lemma 1 there is some P € P(X),
and p, € P such that A C Bp(X) and all operators from A are bounded with
respect to the seminorm p,. Since C' € K(X), we can find some semiball U,. C U,
such that C(U,) is relatively compact. Clearly, p, < p,+, hence

Pa(T2) < dopy(x) < dapy(z), € A, T € A,

for some d, > 0. Especially for @ = 4’ we have p,.(Tz) < dyp(x), consequently
T(U,) CdyU,y, forall T € A. Now, it is easy to see, by (4), that K,(Uy) is
relatively compact set for each n > 2. The relation (3) implies

1
0A(B)" —C, = —'52(3”), n=23,...,
n!
where C, = —K,,/n! are compact operators contained in A. Clearly, U, is a

semiball for which C,,(U,) are relatively compact sets for all n. Fix any n > 2,
then

n 1 n n 1 n n
164(B)" = Cullp = SITA(B")lp < —ll0al"[| Bl
Using Lemma 2, we get

P 11 —— " Cn
104(B)y = (Cn)ylly < 104(B)" = Cullp < —,

where ¢ = ||04]||| Bl p, and (fcf) , is compact operator. Therefore also holds

~

—_—~— N C"
inf  |[0a(B)y — Tyl < —.
T’y’GIC(X»y’) n:
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Letting n — oo we obtain

lim { inf_ [|0a(B)y — Tyl /" =0.
n—oo T_Y/EIC(X_Y/)

Thus, 64(B) .+ is by [8] an asymptotically quasi-compact operator on )N(Vr, which

means by [8] that it is a Riesz operator on )27/. Therefore, §4(B) is then by
[7, Theorems 6.2, 4.2 and 6.3] a Riesz operator on X. O
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