A note on the commutator of two operators on a locally convex space

Edvard Kramar

Abstract. Denote by C the commutator AB - BA of two bounded operators A and B acting on a locally convex topological vector space. If AC - CA = 0, we show that C is a quasinilpotent operator and we prove that if AC - CA is a compact operator, then C is a Riesz operator.

Keywords: locally convex space; commutator; nilpotent operator; compact operator; Riesz operator

Classification: 46A03, 47B47, 47B06

1. Introduction

Let X be a complex Hausdorff locally convex topological vector space. A system of seminorms $P = \{p_{\alpha} : \alpha \in \Delta\}$ inducing the topology on X will be called a calibration. We denote by $\mathcal{P}(X)$ the collection of all calibrations on X. For a given seminorm p_{α} we denote $U_{\alpha} = \{x \in X : p_{\alpha}(x) < 1\}$. A calibration P is directed if for each $p_{\alpha}, p_{\beta} \in P$ there is some $p_{\gamma} \in P$ such that $p_{\alpha} \leq p_{\gamma}$ and $p_{\beta} \leq p_{\gamma}$. For a given calibration P the system of semiballs $\{\varepsilon U_{\alpha} : \varepsilon > 0, \alpha \in \Delta\}$ forms a neighborhood base at 0. Let us denote by $\mathcal{L}(X)$ the set of all linear continuous operators on X. An operator $T \in \mathcal{L}(X)$ is compact $(T \in \mathcal{K}(X))$ if there is some open neighborhood W at 0 such that T(W) is a relatively compact set, and T is bounded $(T \in \mathcal{B}(X))$ if T(W) is a bounded set. If P is some given directed calibration on X we can replace the set W by some semiball U_{γ} in the above definition. If the set $T(U_{\gamma})$ is bounded and $p_{\gamma} \in P$ is the corresponding seminorm for U_{γ} , then for each $p_{\alpha} \in P$ there is some $c_{\alpha} > 0$ such that $p_{\alpha}(Tx) \leq c_{\alpha}p_{\gamma}(x)$, $x \in X, \alpha \in \Delta$. We say that T is bounded with respect to the seminorm p_{γ} . For a given $P \in \mathcal{P}(X)$ we denote by $B_P(X)$ the collection of all linear operators T on X for which $p_{\alpha}(Tx) \leq cp_{\alpha}(x)$, where $x \in X$, $p_{\alpha} \in P$, and c > 0 is independent of $\alpha \in \Delta$. $B_P(X)$ is a unital normed algebra with respect to the norm $||T||_P = \sup\{p_\alpha(Tx): p_\alpha(x) \le 1, x \in X, p_\alpha \in P\}$. For a given $p_\alpha \in P$ let J_α denote the null space of p_{α} . The quotient space $X_{\alpha} = X/J_{\alpha}$ is a normed space with the norm $||x_{\alpha}||_{\alpha} = p_{\alpha}(x)$, where $x_{\alpha} = x + J_{\alpha}$, and X_{α} denotes the completion of X_{α} . Let $T \in \mathcal{L}(X)$ be such that $T(J_{\alpha}) \subseteq J_{\alpha}$, then the corresponding operator T_{α} on X_{α} is well-defined by $T_{\alpha}(x_{\alpha}) = Tx + J_{\alpha}$, its continuous extension

DOI 10.14712/1213-7243.2015.155

Kramar E.

to \widetilde{X}_{α} will be denoted by \widetilde{T}_{α} . For a given $T \in \mathcal{L}(X)$ the number $\lambda \in \mathbb{C}$ is in the resolvent set of T iff $(\lambda I - T)^{-1}$ exists in $\mathcal{L}(X)$. The spectrum $\sigma(T)$ is the complement of the resolvent set. An operator T is *quasinilpotent* if $\sigma(T) = \{0\}$. For an associative algebra \mathcal{A} and any $a, b \in \mathcal{A}$ the commutator ab - ba will be denoted by [a, b] or also by $\delta_a(b)$.

2. The results

Lemma 1. Let X be a locally convex space and let $\mathcal{F} = \{A_i : i \in N\}$ be a finite family of operators in $\mathcal{B}(X)$, where $N = \{1, 2, ..., n\}$. Let \mathcal{A} be the algebra of operators generated by \mathcal{F} . Then there exists a calibration $P \in \mathcal{P}(X)$ such that the following hold:

- (i) \mathcal{A} is contained in $B_P(X)$,
- (ii) there is some $p_{\gamma} \in P$ such that all operators from \mathcal{A} are bounded with respect to the seminorm p_{γ} .

PROOF: (i) Let $P_0 = \{q_\alpha : \alpha \in \Delta\}$ be a directed calibration on X. For any $A_i \in \mathcal{F}$ there exists some $q_{\gamma}^{(i)} \in P_0$ such that for each $\alpha \in \Delta$ the following holds

$$q_{\alpha}(A_i x) \le a_{\alpha}^{(i)} q_{\gamma}^{(i)}(x), \ x \in X$$

for some $a_{\alpha}^{(i)} > 0$. Write $\lambda_{\alpha} = \max\{a_{\alpha}^{(i)} : i \in N\}, \alpha \in \Delta$, and let $q_{\gamma} \in P_0$ be a common successor of $q_{\gamma}^{(i)}, i \in N$. Then, clearly for each $i \in N$ we have $q_{\alpha}(A_i x) \leq \lambda_{\alpha} q_{\gamma}(x), x \in X$, and for any $T \in \mathcal{A}$ there is some $t_{\alpha} > 0$ such that

(1)
$$q_{\alpha}(Tx) \leq t_{\alpha}q_{\gamma}(x), \ x \in X.$$

Let us define a new family of seminorms $P = \{p_{\alpha} : \alpha \in \Delta\}$, where $p_{\alpha}(x) = \max\{q_{\alpha}(x), \lambda_{\alpha}q_{\gamma}(x)\}, x \in X, \alpha \in \Delta$. For each $\alpha \in \Delta, q_{\alpha} \leq p_{\alpha}$ and $p_{\alpha} \leq \max\{1, \lambda_{\alpha}\} \max\{q_{\alpha}, q_{\gamma}\}$, thus P is a calibration on X. For any $p_{\alpha} \in P$ and any $A_i \in \mathcal{F}$ we have $p_{\alpha}(A_i x) = \max\{q_{\alpha}(A_i x), \lambda_{\alpha}q_{\gamma}(A_i x)\} \leq \max\{\lambda_{\alpha}q_{\gamma}(x), \lambda_{\alpha}\lambda_{\gamma}q_{\gamma}(x)\} \leq c_0\lambda_{\alpha}q_{\gamma}(x) \leq c_0p_{\alpha}(x), x \in X$, where $c_0 = \max\{1, \lambda_{\gamma}\}$, hence $A_i \in B_P(X)$. Then we have, for any $T \in \mathcal{A}, p_{\alpha}(Tx) \leq cp_{\alpha}(x)$, where c is independent of $\alpha \in \Delta$. Thus, $T \in B_P(X)$.

(ii) Choose any $p_{\alpha} \in P$ and any $T \in \mathcal{A}$. By (1) and by the relationship between P_0 and P we obtain $p_{\alpha}(Tx) \leq \max\{1, \lambda_{\alpha}\} \max\{q_{\alpha}(Tx), q_{\gamma}(Tx)\} \leq d_{\alpha}q_{\gamma}(x) \leq d_{\alpha}p_{\gamma}(x), x \in X$, where $d_{\alpha} = \max\{1, \lambda_{\alpha}\} \max\{t_{\alpha}, t_{\gamma}\}$. \Box

In the following lemma we specify some properties of the passage to the quotient space on which the induced operators are well-defined.

Lemma 2. Let X be a locally convex space and let \mathcal{F} be, as above, a finite family of bounded operators. Let \mathcal{A} be the algebra generated by \mathcal{F} and let $P \in \mathcal{P}(X)$ and $p_{\gamma} \in P$ be from the previous lemma. Then for each $p_{\gamma'} \in P$ for which $p_{\gamma} \leq p_{\gamma'}$ the following hold.

(i) $(\widetilde{S+T})_{\gamma'} = \widetilde{S}_{\gamma'} + \widetilde{T}_{\gamma'}, S, T \in \mathcal{A}.$

164

A note on the commutator of two operators on a locally convex space

- (ii) $(\widetilde{ST})_{\gamma'} = \widetilde{S}_{\gamma'}\widetilde{T}_{\gamma'}, S, T \in \mathcal{A}.$
- (iii) $\|T_{\gamma'}\|_{\gamma'} \leq \|T\|_P, T \in \mathcal{A}.$
- (iv) If $T \in \mathcal{A}$ is a compact operator for which $T(U_{\gamma'})$ is a relatively compact set, then $\widetilde{T}_{\gamma'}$ is a compact operator, too.

PROOF: By the preceding lemma, and by the assumption $p_{\gamma} \leq p_{\gamma'}$, each $T \in \mathcal{A}$ is also bounded with respect to the seminorm $p_{\gamma'}$. Especially we have $T(J_{\gamma'}) \subseteq J_{\gamma'}$. Thus, the corresponding operator $T_{\gamma'}$ on $X_{\gamma'}$ and its extension $\widetilde{T}_{\gamma'}$ on $\widetilde{X}_{\gamma'}$ are well-defined and are bounded. By [4, p. 413], we have the equalities (i) and (ii). Let us prove (iii). The algebra \mathcal{A} is contained in $B_P(X)$, hence for each $T \in \mathcal{A}$ it follows

 $p_{\alpha}(Tx) \leq ||T||_P p_{\alpha}(x), \ x \in X, \ p_{\alpha} \in P.$

Especially, $p_{\gamma'}(Tx) \leq ||T||_P p_{\gamma'}(x)$, $x \in X$, then also $||T_{\gamma'}||_{\gamma'} \leq ||T||_P$, and also $||\widetilde{T}_{\gamma'}||_{\gamma'} \leq ||T||_P$. Since each relatively compact set is also totally bounded, the statement (iv) follows by [4, p. 413].

Let \mathcal{A} be an associative algebra and $a, b \in \mathcal{A}$ such that $\delta_a^2(b) = [a, \delta_a(b)] = 0$. Then the following is true (see e.g. [1, p. 86])

(2)
$$\delta_a^n(b^n) = n! \delta_a(b)^n, \ n \in \mathbb{N}.$$

Proposition 1. Let \mathcal{A} be an associative algebra and assume that $a, b \in \mathcal{A}$ satisfy the conditions $\delta_a^2(b) = 0$ and $[b, a^n] = 0$ for some $n \in \mathbb{N}$. Then

$$\delta_a(b)^{2n-1} = 0$$

PROOF: By the assumption $\delta_a^2(b) = 0$ we have $[a, \delta_b(a)] = -[a, \delta_a(b)] = 0$. Then it is easy to show by induction that $[b, a^k] = ka^{k-1}[b, a]$, for each $k \in \mathbb{N}$. Thus for k = n, and by the above assumption we obtain $a^n b = a^{n-1}ba$. If we multiply this equality by a on the left, we have $a^{n+1}b = ba^{n+1}$. In the same way we obtain by induction

$$a^{n+k}b = ba^{n+k}, \ k = 0, 1, 2, \dots$$

Denoting $c := b^{2n-1}$ we have $\delta_a^{2n-1}(c) = \sum_{j=0}^{2n-1} (-1)^j {\binom{2n-1}{j}} a^{2n-1-j} ca^j$. For $0 \le j \le n-1$ we have $a^{2n-1-j} ca^j = ca^{2n-1} = a^{2n-1}c$, and for $n \le j \le 2n-1$ we have $a^{2n-1-j} ca^j = a^{2n-1}c$. Hence it follows $\delta_a^{2n-1}(c) = a^{2n-1}c \sum_{j=0}^{2n-1} (-1)^j {\binom{2n-1}{j}} = 0$. Then by (2) we obtain $(2n-1)! \delta_a(b)^{2n-1} = \delta_a^{2n-1}(b^{2n-1}) = 0$.

Corollary 1. Let \mathcal{A} be an associative algebra. If $a, b \in \mathcal{A}$ are such that $\delta_a^2(b) = 0$ and $a^n = 0$ for some $n \in \mathbb{N}$, then $\delta_a(b)^{2n-1} = 0$.

The following theorem is the classical Kleinecke-Shirokov theorem if X is a Banach space.

Theorem 1. Let X be a sequentially complete locally convex space and let $A, B \in \mathcal{B}(X)$ be such that $\delta_A^2(B) = 0$. Then $\delta_A(B)$ is a quasinilpotent operator.

Kramar E.

PROOF: It may be supposed that X is not a normed space. By Lemma 1, there is some $P \in \mathcal{P}(X)$ such that $A, B \in B_P(X)$. Since X is sequentially complete, $B_P(X)$ is a Banach algebra (see, e.g. [2]). Write $T = \delta_A(B)$, then by (2) for each $\lambda \neq 0$ there exists $(T - \lambda I)^{-1} \in B_P(X) \subseteq \mathcal{L}(X)$, hence $\sigma(T) \subseteq \{0\}$. Now, T is a bounded operator acting on a non-normable locally convex space, hence, by a consequence of Kolmogorov theorem on normability of topological vector spaces, T is not invertible. Thus, $0 \in \sigma(T)$.

In the following theorem we shall assume that A is an algebraic operator with the minimal polynomial μ . This means μ is a monic polynomial with minimal degree such that $\mu(A) = 0$. This theorem was formulated and proved in [3] for the algebra of bounded operators on a Banach space, actually, the proof is valid for operators on any complex vector space. We prove the same result by partially alternative arguments based on Proposition 1.

Theorem 2. Let X be a complex vector space and $A, B \in \mathcal{L}(X)$ be such that $\delta_A^2(B) = 0$. Let A be an algebraic operator with the minimal polynomial $\mu(\lambda) = \prod_{j=1}^n (\lambda - \lambda_j)^{n_j}$, where $\{\lambda_j\}$ are distinct. Then for $m = 2 \max\{n_j\} - 1$ holds

$$\delta_A(B)^m = 0.$$

PROOF: For the algebraic operator A with the above minimal polynomial the following decomposition holds $A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$ on $X = X_1 \oplus X_2 \oplus \cdots \oplus X_n$, where, for $j = 1, \ldots, n$, $X_j = ker((A - \lambda_j I)^{n_j})$, $A_j = A|_{X_j}$ and $(A - \lambda_j I)|_{X_j}$ is a nilpotent operator of order n_j (see e.g. [5]). Choose any $j \in \{1, 2, \ldots, n\}$. By the equality $\delta^2_{A-\lambda_j I}(B)X_j = \{0\}$ we can prove in the same way as in [3] that $B(X_j) \subseteq X_j$. Thus, by Corollary 1, $(\delta_{A-\lambda_j I}(B)|_{X_j})^{2n_j-1} = 0$. Hence $\delta_A(B)^m = 0$, where $m = 2 \max\{n_j\} - 1$.

Corollary 2. Let X be a complex vector space and let $A, B \in \mathcal{L}(X)$ be such that $\delta_A^2(B) = 0$. Let A be an algebraic operator for which the minimal polynomial has only simple zeroes. Then A commutes with B.

We can find in [4, p. 405] a definition of a Riesz operator acting on a Hausdorff topological vector space. The following theorem is a generalization to locally convex spaces of a result proven in [6] for the Banach spaces.

Theorem 3. Let X be a sequentially complete locally convex space and let $A, B \in \mathcal{B}(X)$. If $\delta_A^2(B)$ is a compact operator, then $\delta_A(B)$ is a Riesz operator.

PROOF: Let us denote by \mathcal{A} the algebra of operators generated by A and B. Denoting $C = \delta_A^2(B)$, we shall prove that

(3)
$$\delta_A^n(B^n) = n! \delta_A(B)^n + K_n, \ n = 2, 3, \dots,$$

where K_n can be written as

(4)
$$K_n = E_n C + C E'_n + \sum_{i \in M_n} F_i C F'_i, \ n = 2, 3, \dots,$$

where M_2 is an empty set, for $n \geq 3$, M_n is some finite set of natural numbers, and all operators belong to the algebra \mathcal{A} . Indeed, for n = 2 we have $\delta_A^2(B^2) = B\delta_A^2(B) + 2\delta_A(B)^2 + \delta_A^2(B)B = 2\delta_A(B)^2 + K_2$, where $K_2 = BC + CB$. For a given $n \geq 2$, let (3) be true and let K_n be of the form (4). Then by the Leibniz formula it follows

$$\delta_A^n(B^{n+1}) = n!\delta_A(B)^n B + n\delta_A^{n-1}(B^n)\delta_A(B) + S_n,$$

where $S_n = K_n B + \sum_{k=2}^n {n \choose k} \delta_A^{n-k}(B^n) \delta_A^k(B)$. Applying the operator δ_A on both sides of the above equality, and taking into account (3) for the given n, we obtain by a simple calculation

$$\delta_A^{n+1}(B^{n+1}) = n!\delta_A(B)^{n+1} + n(n!\delta_A(B)^n + K_n)\delta_A(B) + n!(\delta_A^2(B)\delta_A(B)^{n-1} + \delta_A(B)\delta_A^2(B)\delta_A(B)^{n-2} + \dots + \delta_A(B)^{n-1}\delta_A^2(B))B + n\delta_A^{n-1}(B^n)\delta_A^2(B) + \delta_A(S_n) = (n+1)!\delta_A(B)^{n+1} + K_{n+1}.$$

Since (4) is closed for left/right multiplications by elements from \mathcal{A} , and δ_A is inner derivation, so K_{n+1} is again of the form (4). Note, that (3) follows directly from the relation (2) considering the quotient algebra $\mathcal{L}(X)/\mathcal{K}(X)$, but we need also the form of operators K_n given in (4). By Lemma 1 there is some $P \in \mathcal{P}(X)$, and $p_{\gamma} \in P$ such that $\mathcal{A} \subseteq B_P(X)$ and all operators from \mathcal{A} are bounded with respect to the seminorm p_{γ} . Since $C \in \mathcal{K}(X)$, we can find some semiball $U_{\gamma'} \subseteq U_{\gamma}$ such that $C(U_{\gamma'})$ is relatively compact. Clearly, $p_{\gamma} \leq p_{\gamma'}$, hence

$$p_{\alpha}(Tx) \leq d_{\alpha}p_{\gamma}(x) \leq d_{\alpha}p_{\gamma'}(x), \ \alpha \in \Delta, \ T \in \mathcal{A},$$

for some $d_{\alpha} > 0$. Especially for $\alpha = \gamma'$ we have $p_{\gamma'}(Tx) \leq d_{\gamma'}p_{\gamma'}(x)$, consequently $T(U_{\gamma'}) \subseteq d_{\gamma'}U_{\gamma'}$, for all $T \in \mathcal{A}$. Now, it is easy to see, by (4), that $K_n(U_{\gamma'})$ is relatively compact set for each $n \geq 2$. The relation (3) implies

$$\delta_A(B)^n - C_n = \frac{1}{n!} \delta^n_A(B^n), \ n = 2, 3, \dots,$$

where $C_n = -K_n/n!$ are compact operators contained in \mathcal{A} . Clearly, $U_{\gamma'}$ is a semiball for which $C_n(U_{\gamma'})$ are relatively compact sets for all n. Fix any $n \geq 2$, then

$$\|\delta_A(B)^n - C_n\|_P = \frac{1}{n!} \|\delta_A^n(B^n)\|_P \le \frac{1}{n!} \|\delta_A\|^n \|B\|_P^n.$$

Using Lemma 2, we get

$$\|\widetilde{\delta_A(B)_{\gamma'}}^n - \widetilde{(C_n)_{\gamma'}}\|_{\gamma'} \le \|\delta_A(B)^n - C_n\|_P \le \frac{c^n}{n!},$$

where $c = \|\delta_A\| \|B\|_P$, and $(\widetilde{C_n})_{\gamma'}$ is compact operator. Therefore also holds

$$\inf_{T_{\gamma'} \in \mathcal{K}(\tilde{X}_{\gamma'})} \| \widetilde{\delta_A(B)_{\gamma'}}^n - T_{\gamma'} \|_{\gamma'} \le \frac{c^n}{n!} \,.$$

Letting $n \to \infty$ we obtain

$$\lim_{n \to \infty} \{ \inf_{T_{\gamma'} \in \mathcal{K}(\widetilde{X}_{\gamma'})} \| \widetilde{\delta_A(B)_{\gamma'}}^n - T_{\gamma'} \|_{\gamma'} \}^{1/n} = 0.$$

Thus, $\delta_A(B)_{\gamma'}$ is by [8] an asymptotically quasi-compact operator on $\widetilde{X}_{\gamma'}$, which means by [8] that it is a Riesz operator on $\widetilde{X}_{\gamma'}$. Therefore, $\delta_A(B)$ is then by [7, Theorems 6.2, 4.2 and 6.3] a Riesz operator on X.

Acknowledgment. The author wishes to thank the referee for many useful remarks and suggestions.

References

- Bonsall F.F., Duncan J., Complete Normed Algebras, Springer, New York-Heidelberg-Berlin, 1973.
- [2] Chilana A.K., Invariant subspaces for linear operators in locally convex spaces, J. London Math. Soc. 2 (1970), 493–503.
- [3] Bračič J., Kuzma B., Localizations of the Kleinecke-Shirokov Theorem, Oper. Matrices 1 (2007), 385–389.
- [4] de Bruyn G.F.C., Asymptotic properties of linear operators, Proc. London Math. Soc. 18 (1968), 405–427.
- [5] Kramar E., On reducibility of sets of algebraic operators on locally convex spaces, Acta Sci. Math. (Szeged) 74 (2008), 729–742.
- [6] Lin C.S., A note on the Kleinecke-Shirokov theorem and the Wintner-Halmos theorem, Proc. Amer. Math. Soc. 27 (1971), 529–530.
- [7] Pietsch A., Zur Theorie der σ-Transformationen in lokalkonvexen Vektorräumen, Math. Nachr. 21 (1960), 347–369.
- [8] Ruston A.F., Operators with a Fredholm theory, J. London Math. Soc. 29 (1954), 318–326.

FACULTY OF MATHEMATICS AND PHYSICS, UNIVERSITY OF LJUBLJANA, JADRANSKA 19, 1000 LJUBLJANA, SLOVENIA

E-mail: edvard.kramar@fmf.uni-lj.si

(Received July 2, 2014, revised January 15, 2016)

168