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Comaximal graph of C(X)

Mehdi Badie

Abstract. In this article we study the comaximal graph Γ′

2
C(X) of the ring C(X).

We have tried to associate the graph properties of Γ′

2
C(X), the ring properties

of C(X) and the topological properties of X. Radius, girth, dominating num-
ber and clique number of the Γ′

2
C(X) are investigated. We have shown that

2 ≤ Rad Γ′

2
C(X) ≤ 3 and if |X| > 2 then girth Γ′

2
C(X) = 3. We give some

topological properties of X equivalent to graph properties of Γ′

2
C(X). Finally

we have proved that X is an almost P -space which does not have isolated points
if and only if C(X) is an almost regular ring which does not have any principal
maximal ideals if and only if Rad Γ′

2
C(X) = 3.

Keywords: rings of continuous functions; comaximal graph; radius; girth; domi-
nating number; clique number; zero cellularity; P -space; almost P -space; con-
nected space; regular ring

Classification: 54C40

1. Introduction

Throughout this paper, G stands for an undirected graph. Distance between
two vertices u and v is defined as the length of shortest path between u and v,
and is denoted by d(u, v), then the diameter of G is denoted by diam(G), and is
defined to be the supremum of {d(u, v) : u, v ∈ G}. If u is a vertex of a graph
G, then eccentricity of u, denoted by ecc(u), is defined max{d(u, v) : v ∈ G}.
The set of all vertices with the smallest eccentricity is called center of G and
min{ecc(u) : u ∈ G} is called the radius of G and is denoted by Rad(G). The
minimum length of cycles in a graph G is called the girth of G and is denoted by
girth (G). For every u, v ∈ G, let us denote by gi(u, v) the length of the shortest
cycle containing u and v. It is clear that girth (G) = min{gi(u, v) : u, v ∈ G}. G is
called triangulated (hypertriangulated) if each vertex (edge) of G is a vertex (edge)
of a triangle. A subset A of G is called a dominating set if for each u ∈ G \ A,
there exists v in A such that u is adjacent to v. The dominating number of G,
denoted by dt(G), is the smallest cardinal number of the form |A|, where A is a
dominating set of G. It is said that two vertices u and v of G are orthogonal ,
written u ⊥ v, if u and v are adjacent and there is no a vertex w of G which is
adjacent to both u and v. A graph G is called complemented if for each vertex u
of G, there is a vertex v of G such that u ⊥ v. A clique of a graph G is defined as
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a maximal complete subgraph of G and the supremum of |A|, where A is clique
of G, is called the clique number of G, and is denoted by clique G.

Let R be a commutative ring with unity. R is called an almost ring if each
non-unit element of R is a zero-divisor element of R. Comaximal graph Γ(R) is
defined as a graph with vertices of elements of R, where two distinct vertices a
and b are adjacent if and only if Ra + Rb = R. Also consider a subgraph Γ2(R)
of Γ(R) which consists of all non-unit elements of R. If J(R) is Jacobson radical
of R, then Γ2(R) \ J(R) is denoted by Γ′

2(R).
We assume throughout the paper that C(X) is the ring of all real valued

continuous functions on a Tychonoff space X . The density (weight) of X , denoted
by d(X) (w(X)), is the infimum of the cardinalities of dense subsets (bases) of
X . The character of X at a point p, denoted by χ(p, X), is the infimum of the
cardinalities of neighborhood bases at x and the character of space X , denoted
by χ(X), is the supremum of χ(p, X), where p ∈ X . A space X is called first

(second) countable if w(X) (χ(X)) is countable. The cellularity of X , denoted by
c(X), is defined by

sup{|U| : U is a family of mutually disjoint nonempty open subsets of X}.

For any f ∈ C(X), we denote f−1{0} and X \ f−1{0} by Z(f) and Coz(f),
respectively. Every set of the form Z(f) (Coz(f)) is called zeroset (cozeroset).
A subset S of X is C-embedded in X if for every f in C(S), there exists g in
C(X) such that g|

S
= f . It is clear that every clopen subset of X is C-embedded

in X . Suppose p ∈ βX , then by Mp we mean the set {f ∈ C(X) : p ∈ clβXZ(f)}.
By [18, Theorem 7.3 (Gelfand-Kolmogoroff)], {Mp : p ∈ βX} is the family of all
maximal ideal of C(X). X is a P -space if every prime ideal of X is maximal and
we say that X is an almost P -space if the interior of every nonempty zeroset of X
is nonempty. It is easy to check that X is an almost P -space if and only if C(X)
is an almost regular ring. By [18, Theorem 14.28], X is a P -space if and only if
every zeroset of X is open. For more details we refer the reader to [15], [18], [11]
and [29].

The study of translating graph properties to algebraic properties is an interes-
ting subject for mathematicians. In [14], linear algebra and some properties of
polynomials were used to describe properties of graphs. In [13], the studying of
zero-divisor graph of commutative rings has been started. The investigation on
zero-divisor graph of commutative rings was then continued in [7], [10], [20], [25],
[4], [9], [6], and [8].

In [27], comaximal graph of a commutative ring was defined. On later, in [21],
[26], [16], [28], [24], [22], [19], [2], [3], [1], [30], and [23], this investigation was
continued.

In [12] and in a section of [5] the zero-divisor graph and the comaximal ideal
graph of C(X) were studied, respectively. These investigations tried to associate
the ring properties of C(X), the graph properties of graphs on C(X) and the
topological properties of X .
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In this article we study the Γ′

2
C(X). Since J(C(X)) = 0, so Γ′

2
C(X) =

Γ2(C(X)) − {0}. If X is singleton, then Γ′

2
C(X) is empty. Thus, subsequently

we assume |X | > 1.
By [21, Theorem 3.1, Lemma 3.2 and Proposition 3.3] and [24, Corollary 3.4],

we can conclude the following.

Proposition 1.1. For each Tychonoff space X ,

(a) Γ′

2
C(X) is connected;

(b) diam Γ′

2
C(X) = 3;

(c) if X is infinite, then girth Γ′

2
C(X) = 3.

Lemma 1.2. Suppose f, g ∈ Γ′

2
C(X). Then f is adjacent to g if and only if

Z(f) ∩ Z(g) = ∅.

Proof: f is not adjacent to g if and only if both f and g are contained in a
maximal ideal, that is

∃p ∈ βX f, g ∈ Mp ⇔ ∃p ∈ βX p ∈ clβXZ(f) ∧ p ∈ clβXZ(g)

⇔ ∃p ∈ clβXZ(f) ∩ clβXZ(g) = clβX

(

Z(f) ∩ Z(g)
)

⇔ Z(f) ∩ Z(g) 6= ∅. �

In Section 2 we investigate the radius of Γ′

2
C(X) and show that 2≤ RadΓ′

2
C(X)

≤ 3. The girth of this graph is investigated in Section 3 and we show that if |X | >
2, then girth Γ′

2
C(X) = 3. In Section 4 we study the dominating number and the

clique number of the graph Γ′

2
C(X). We prove that d(X) ≤ dt Γ′

2
C(X) ≤ w(X),

introduce zeroset cellularity of X and show that it is equal to clique Γ′

2
C(X). In

Section 5 we use the notions of the previous sections to associate the topological
properties of X , the ring properties C(X) and the graph properties of Γ′

2
C(X).

In this section we observe that Γ′

2
C(X) is triangulated (hypertriangulated, com-

plemented) if and only if X does not have any isolated points (X is connected,
X is a P -space), and finally we conclude that X is an almost P -space which does
not have isolated points if and only if C(X) is regular ring which does not have
any principal maximal ideals if and only if Rad Γ′

2
C(X) = 3.

Similar results to Theorem 4.4, Proposition 4.7 and Corollary 4.8 devoted to
zero divisor graphs may be found in [12]. Here we prove them for comaximal
graphs.

2. Radius of the graph

Lemma 2.1. For any f and g in Γ′

2
C(X)

(a) d(f, g) = 1 if and only if Z(f) ∩ Z(g) = ∅;
(b) d(f, g) = 2 if and only if Z(f) ∩ Z(g) 6= ∅ and Z(f) ∪ Z(g) 6= X ;

(c) d(f, g) = 3 if and only if Z(f) ∩ Z(g) 6= ∅ and Z(f) ∪ Z(g) = X .

Proof: (a) By Lemma 1.2, it is clear.
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(b) ⇒ Since d(f, g) = 2, f is not adjacent to g, thus Z(f) ∩ Z(g) 6= ∅, by
Lemma 1.2. We now show that Z(f)∪Z(g) 6= X . Suppose that, on the contrary
Z(f) ∪ Z(g) = X . From d(f, g) = 2 it follows that h in Γ′

2
C(X) exists such that

h is adjacent to both f and g, hence by Lemma 1.2,
{

Z(h) ∩ Z(f) = ∅

Z(h) ∩ Z(g) = ∅
⇒ Z(h) = Z(h) ∩ X = Z(h) ∩

[

Z(f) ∪ Z(g)
]

= ∅

which is a contradiction.
(b) ⇐ Since Z(f) ∩ Z(g) 6= ∅, d(f, g) > 1, by Lemma 1.2. Since Z(fg) =

Z(f)∪Z(g) 6= X , p ∈ X \Z(fg) exists, hence there is some h in C(X) such that
p ∈ Z(h) and Z(fg) ∩ Z(h) = ∅, thus h ∈ Γ′

2
C(X) and

∅ =
[

Z(f) ∪ Z(g)
]

∩ Z(h) =
[

Z(f) ∩ Z(h)
]

∪
[

Z(g) ∩ Z(h)
]

⇒

{

Z(f) ∩ Z(h) = ∅

Z(g) ∩ Z(h) = ∅.

Hence h is adjacent to both f and g, thus d(f, g) = 2.
(c) By Proposition 1.1(b), it is clear. �

Lemma 2.2. For every f ∈ Γ′

2
C(X), ecc(f) ≥ 2.

Proof: Since Z(f) ∩ Z(2f) = Z(f) 6= ∅ and Z(f) ∪ Z(2f) = Z(f) 6= X ,
d(f, 2f) = 2, by Lemma 2.1. This implies that ecc(f) ≥ 2. �

Proposition 2.3. Suppose f ∈ Γ′

2
C(X). Then ecc(f) = 2 if and only if either

intZ(f) = ∅ or Z(f) = {p}, in which p is an isolated point.

Proof: ⇒ By Lemma 2.2, d(f, g) 6= 3, for every g ∈ Γ′

2
C(X). From Lemma 2.1,

it follows that

∀g ∈ Γ′

2
C(X) Z(f) ∪ Z(g) 6= X ∨ Z(f) ∩ Z(g) = ∅

≡ ∀g ∈ Γ′

2
C(X) Z(f) ∪ Z(g) = X ⇒ Z(f) ∩ Z(g) = ∅

≡ ∀g ∈ Γ′

2
C(X) Coz(g) ⊆ Z(f) ⇒ Z(f) = Coz(g) (1)

If intZ(f) 6= ∅, then Z(f) is open. It is sufficient to show that Z(f) is singleton.
Suppose, on the contrary, there are two distinct points p and q in Z(f), thus
there is a function h : Z(f) → R, such that h(p) = 0 and h(q) = 1. Since Z(f) is
clopen, Z(f) is C-embedded in X , thus k in C(X) exists such that k|

Z(f) = h.
Let g : X → R be given by

g(x) =

{

1 x ∈ Z(f)

0 x /∈ Z(f).

Since Z(f) is clopen, g ∈ Γ′

2
C(X) and therefore gk ∈ Γ′

2
C(X). Coz(gk) =

Coz(g) ∩ Coz(k) ⊆ Z(f), but Z(f) 6= Coz(gk) since p ∈ Z(f) \ Coz(gk). This
contradicts the fact (1).
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⇐ By Proposition 1.1, it suffices to prove that

∀g ∈ Γ′

2
C(X) d(f, g) 6= 3.

According to the first part of the proof, the above statement is equivalent to

∀g ∈ Γ′

2
C(X) Coz(g) ⊆ Z(f) ⇒ Z(f) = Coz(g).

By the assumption, the above statement is clear. �

An immediate conclusion of Proposition 1.1, and Lemma 2.2, is the following
corollary.

Corollary 2.4. 2 ≤ RadΓ′

2
C(X) ≤ 3.

3. Girth of the graph

Lemma 3.1. Let f ∈ Γ′

2
C(X). Then Coz(f) is not singleton if and only if f is

a vertex of a triangle.

Proof: ⇒ Let p and q be distinct elements of Coz(f). There are two disjoint
zerosets Z1 and Z2 containing p and q, respectively. Since p, q /∈ Z(f), there are
two zerosets Z3 and Z4 containing p and q, respectively, such that Z3 ∩ Z(f) =
Z4 ∩ Z(f) = ∅. Put Z(g) = Z3 ∩ Z1 and Z(h) = Z4 ∩ Z2. Consequently,
g, h ∈ Γ′

2
C(X), Z(f)∩Z(g) = ∅, Z(g)∩Z(h) = ∅ and Z(h)∩Z(f) = ∅. Lemma 1.2

now shows that f is adjacent to g, g is adjacent to h and h is adjacent to f , thus
f is vertex of a triangle.

⇐ There are vertices g and h in Γ′

2
C(X) such that f is adjacent to g, g is

adjacent to h and h is adjacent to f . By Lemma 1.2










Z(f) ∩ Z(g) = ∅

Z(f) ∩ Z(h) = ∅

Z(g) ∩ Z(h) = ∅

⇒











∅ 6= Z(g) ⊆ Coz(f)

∅ 6= Z(h) ⊆ Coz(f)

Z(g) ∩ Z(h) = ∅.

Hence Coz(f) is not singleton. �

Theorem 3.2. If |X | > 2, then girth Γ′

2
C(X) = 3.

Proof: Since X has some non-singleton cozeroset, girth Γ′

2
C(X) = 3, by Lem-

ma 3.1. �

Example 3.3. If |X | > 2 and finite, then C(X) has finitely many maximal ideal
and girth Γ′

2
C(X) = 3, by Theorem 3.2. This is a counterexample to the converse

of [24, Corollary 3.4].

4. Dominating and clique number

Lemma 4.1. Let f, g ∈ Γ′

2
C(X).

(a) If Z(f) ∩ Z(g) = ∅ and Z(f) ∪ Z(g) = X , then gi(f, g) = 4.

(b) If Z(f) ∩ Z(g) = ∅ and Z(f) ∪ Z(g) 6= X , then gi(f, g) = 3.
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(c) If Z(f) ∩ Z(g) 6= ∅ and Z(f) ∪ Z(g) 6= X , then gi(f, g) = 4.

(d) If Z(f) ∩ Z(g) 6= ∅ and Z(f) ∪ Z(g) = X , then gi(f, g) = 6.

Proof: (a) Z(f) ∩ Z(g) = ∅, Z(g) ∩ Z(2f) = ∅, Z(2f) ∩ Z(2g) = ∅ and Z(2g) ∩
Z(f) = ∅. By Lemma 1.2, f is adjacent to g, g is adjacent to 2f , 2f is adjacent to
2g and 2g is adjacent to f , it follows that gi(f, g) ≤ 4. We claim that gi(f, g) 6= 3
and therefore gi(f, g) = 4. On the contrary, suppose gi(f, g) = 3, then h in
Γ′

2
C(X) exists such that h is adjacent to both f and g, by Lemma 1.2

{

Z(h) ∩ Z(f) = ∅

Z(h) ∩ Z(g) = ∅
⇒ Z(h) = Z(h) ∩ X = Z(h) ∩

[

Z(f) ∪ Z(g)
]

= ∅

which is impossible.
(b) Suppose x ∈ X \ [Z(f) ∪ Z(g)]. There is some h in Γ′

2
C(X) such that

x ∈ Z(h) and

Z(h) ∩
[

Z(f) ∪ Z(g)
]

= ∅ ⇒ Z(h) ∩ Z(f) = ∅ and Z(h) ∩ Z(g) = ∅

thus h ∈ Γ′

2
C(X) and h is adjacent to both f and g, by Lemma 1.2, hence

gi(f, g) = 3.
(c) Suppose x ∈ X \ [Z(f) ∪ Z(g)], then there is some h ∈ Γ2C(X), such that

x ∈ Z(h) and

Z(h) ∩
[

Z(f) ∪ Z(g)
]

= ∅ ⇒ Z(h) ∩ Z(f) = ∅ and Z(h) ∩ Z(g) = ∅

thus Z(f) ∩ Z(2h) = ∅ and Z(2h) ∩ Z(g) = ∅. From Lemma 4.1, we deduce that
f is adjacent to h, h is adjacent to g, g is adjacent to 2h and 2h is adjacent to f ,
this gives gi(f, g) ≤ 4. Since Z(f) ∩ Z(g) 6= ∅, so f is not adjacent to g and
therefore gi(f, g) 6= 3, and so gi(f, g) = 4.

(d) By Lemma 2.1, d(f, g) = 3, thus gi(f, g) ≤ 6 and there are h and k in
Γ′

2
C(X) such that f is adjacent to h, h is adjacent to k and k is adjacent to g.

It is easily seen that g is adjacent to 2k, 2k is adjacent to 2h and 2h is adjacent
to f . This clearly forces gi(f, g) = 6. �

• •

•

•

2ff

g

2g

Z(f) ∩ Z(g) = ∅
Z(f) ∪ Z(g) = X

gi(f, g) = 4

• •

•

gf

h

Z(f) ∩ Z(g) = ∅
Z(f) ∪ Z(g) 6= X

gi(f, g) = 3
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• •

•

•

gf

h

2h

Z(f) ∩ Z(g) 6= ∅
Z(f) ∪ Z(g) 6= X

gi(f, g) = 4

• •

•

•

•

•

gf

h k

2h 2k

Z(f) ∩ Z(g) 6= ∅
Z(f) ∪ Z(g) = X

gi(f, g) = 6

Corollary 4.2. (a) Every cycle in Γ′

2
C(X) has length 3 or 4.

(b) Every edge of Γ′

2
C(X) is edge of a cycle with length 3 or 4.

(c) Every vertex of Γ′

2
C(X) is vertex of a square.

Proof: (a) and (b) are immediate conclusions of Lemma 4.1.
(c) For each f ∈ Γ′

2
C(X), we have

{

Z(f) ∩ Z(2f) 6= ∅

Z(f) ∪ Z(2f) 6= X.

By Lemma 4.1, gi(f, 2f) = 4, and therefore f is vertex of a square. �

Lemma 4.3. If X is an infinite space, then every dominating set of Γ′

2
C(X) is

infinite.

Proof: We show that none of the finite subsets of Γ′

2
C(X) is a dominating

set. Suppose A = {f1, f2, . . . , fn} is a finite subset of Γ′

2
C(X). Each Z(fi) is

nonempty, thus pi in Z(fi) exists. Since X is infinite, p0 in X distinct from pi’s
exists. Thus there are zerosets Z0, Z1, . . . , Zn in Γ′

2
C(X) such that pi ∈ Zi, for

every 0 ≤ i ≤ n, and i 6= j implies Zi ∩ Zj = ∅. Set Z(g) = Z1 ∪ Z2 ∪ · · · ∪ Zn.
Then p0 /∈ Z(g) 6= X and pi ∈ Z(g) ∩ Z(fi) 6= ∅, thus g ∈ Γ′

2
C(X) and not

adjacent to any fi. This follows that A is not a dominating set. �

Theorem 4.4. d(X) ≤ dt Γ′

2
C(X) ≤ w(X). In particular, whenever d(X) =

w(X), then dt Γ′

2
C(X) = w(X).

Proof: If X is finite, then it is easy to check d(X) = dtΓ′

2
C(X) = w(X), thus

we assume X is infinite. Let A be a dominating set in Γ′

2
C(X). For each f ∈ A,

we pick xf ∈ Z(f) and yf ∈ Coz(f). Set D = {xf : f ∈ A} ∪ {yf : f ∈ A}. For
every cozeroset Coz(g), if g ∈ A, then yg ∈ D ∩ Coz(g), if g /∈ A, then f ∈ A
exists such that

Z(f) ∩ Z(g) = ∅ ⇒ Z(f) ⊆ Coz(g) ⇒ xf ∈ Z(f) ∩ D ⊆ Coz(g) ∩ D.

Hence D is dense in X . Since D is infinite, d(X) ≤ dt Γ′

2
C(X).

We now suppose that B is a base for X . Without loss of generality we can
assume that B does not have any empty members. Then for every B ∈ B, there
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is some fB in Γ′

2
C(X) such that Z(fB) ⊆ B. For each f in Γ′

2
C(X) there is some

B in B such that

Z(fB) ⊆ B ⊆ Coz(f) ⇒ Z(fB) ∩ Z(f) = ∅.

By Lemma 1.2, f is adjacent to fB. Therefore {fB : B ∈ B} is a dominating set
and finally that dt Γ′

2
C(X) ≤ w(X). �

An immediate conclusion of the above theorem is the following corollary.

Corollary 4.5. If X is an infinite second countable space, then dt Γ′

2
C(X) = ω.

Example 4.6. Let X be Moore plane. For every (x◦, y◦) in X , set fx◦,y◦
:

X → R as fx◦,y◦
(x, y) =

√

(x − x◦)2 + (y − y◦)2. It is clear that f ∈ Γ′

2
C(X)

and Z(fx◦,y◦
) = {(x◦, y◦)}. Suppose A = {fx,y : x, y ∈ Q and y > 0}. If

Z(f)∩Z(fx,y) 6= ∅, for each fx,y ∈ A, then Q×Q>0 ⊆ Z(f) and therefore XZ(f).
This implies that A is a dominating set and therefore dt Γ′

2
C(X) = ω 6= c = ω(X).

Proposition 4.7. Suppose ΓC(X) is the zero divisor graph of C(X). If χ(X) ≤
d(X), then dt Γ′

2
C(X) = d(X) = dt ΓC(X).

Proof: According to Theorem 4.4, we only need to show that d(X) ≥ dt Γ′

2
C(X).

Clearly, if X is finite, then dt Γ′

2
C(X) = d(X).

Now suppose X is infinite, then every dominating set is infinite, by Lemma 4.3.
Let D be a dense subset of X and Bx is a neighborhood base at x, for each x
in D. For every x ∈ D and B ∈ Bx, there is some fx,B ∈ Γ′

2
C(X) such that

x ∈ Z(fx,B) ⊆ B. Put A = {fx,B : x ∈ D and B ∈ Bx}. If g ∈ Γ′

2
C(X),

then Coz(g) 6= ∅, and it follows that x ∈ D ∩ Coz(g) exits. Hence there is
a B ∈ Bx such that Z(fB,x) ⊆ B ⊆ Coz(g), thus Z(fB,x) ∩ Z(g) = ∅, and,
in consequence, fB,x is adjacent to g. This implies that A is dominating set.
Since |A| ≤ χ(X)|D| ≤ d(X)d(X) = d(X), d(X) ≥ dt Γ′

2
C(X). The equality

dt ΓC(X) = d(X) was shown in [12, Proposition 3.4]. �

By [17, Thorem 1.5.7], w(X) ≤ exp d(X), hence the following corollary is
immediate.

Corollary 4.8. d(X) ≤ dt Γ′

2
C(X) ≤ expd(X).

Definition 4.9. We define zero cellularity of X , denoted by zc(X), by the supre-
mum of {|Z| : Z is a family of pairwise disjoint nonempty zero subsets of X}.

Theorem 4.10. We have clique Γ′

2
C(X) = zc(X) ≤ |X |. In particular if X is

first countable, then clique Γ′

2
C(X) = zc(X) = |X |.

Proof: By Lemma 1.2, A ⊆ Γ′

2
C(X) is a complete subgraph of Γ′

2
C(X) if and

only if Z(A) = {Z(f) : f ∈ A} is a family of pairwise disjoint zerosets, thus clique
number of Γ′

2
C(X) is the supremum of

{|Z| : Z is a family of pairwise disjoint zero sets of X},

hence clique Γ′

2
C(X) = zc(X). It is clear that zc(X) ≤ |X |.
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If X is first countable, then for every p in X , {p} is a zeroset and thus zc(X) =
|X |. �

5. Some applications

Theorem 5.1. Γ′

2
C(X) is triangulated if and only if X does not have any isolated

points.

Proof: ⇒ If p is an isolated point of X , then there is some f in Γ′

2
C(X) such that

Coz(f) = {p}, thus f is not a vertex of a triangle, by Lemma 3.1. Consequently,
Γ′

2
C(X) is not triangulated.
⇐ Suppose Γ′

2
C(X) is not triangulated, hence there is some f in Γ′

2
C(X) such

that f is not a vertex of any triangle. By Lemma 3.1, Coz(f) = {p} is singleton,
hence p is an isolated point of X . �

Theorem 5.2. Γ′

2
C(X) is hypertriangulated if and only if X is connected.

Proof: ⇒ If X is disconnected, then there are zerosets Z(f) and Z(g) such that
Z(f)∩Z(g) = ∅ and Z(f)∪Z(g) = X . From Lemma 4.1, gi(f, g) = 4, which yields
{f, g} is not edge of any triangle, and therefore Γ′

2
C(X) is not hypertriangulated.

⇐ Suppose Γ′

2
C(X) is not hypertriangulated. Then there is an edge {f, g} of

Γ′

2
C(X), which is not an edge of any triangle, thus gi(f, g) = 4. Lemma 4.1 now

shows that Z(f)∪Z(g) = X and Z(f)∩Z(g) = ∅, this implies X is disconnected.
�

Theorem 5.3. Γ′

2
C(X) is complemented if and only if X is a P -space.

Proof: ⇒ For every zeroset Z(f) there is a zeroset Z(g) such that f ⊥ g,
thus gi(f, g) = 3. We conclude from Lemma 4.1 that Coz(f) ∩ Coz(g) = ∅ and
Coz(f) ∪ Coz(g) = X , therefore Z(f) is open. This follows that X is a P -space.

⇐ For every vertex f in Γ′

2
C(X), Z(f) is open, thus g in Γ′

2
C(X) exists such

that Z(f)∩Z(g) = ∅ and Z(f)∪Z(g) = X . Now Lemma 4.1 becomes gi(f, g) = 3,
thus f ⊥ g and consequently Γ′

2
C(X) is complemented. �

Lemma 5.4. Suppose Mp is a maximal ideal of C(X), for some p ∈ βX . Then

Mp is principal if and only if p is an isolated point.

Proof: ⇒ Let Mp = 〈f〉, for some f ∈ C(X). Z(f) = {p}, since
⋂

Z∈Z(Mp) Z =

Z(f). If p is not an isolated point, then p ∈ Coz(f), and therefore there is a

net (xλ) in Coz(f), which converges to p. We conclude from Z(f
1

3 ) = Z(f) that

there is some g in C(X) such that f
1

3 = gf , hence that g(x) = 1/f
2

3 (x), for each
x in Coz(f), therefore g(p) = lim g(xλ) = ∞, which is a contradiction.

⇐ It is straightforward. �

Proposition 5.5. Let p be a Gδ-point of X . If Z(f) = {p}, then

Mp = {g ∈ Γ′

2
C(X) : d(f, g) = 2} ∪ {0, f}.
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Proof: Set I = {g ∈ Γ′

2
C(X) : d(f, g) = 2} ∪ {0, f}. If g ∈ Mp, then p ∈ Z(g),

hence Z(f)∪Z(g) 6= X and Z(f)∩Z(g) 6= ∅. Lemma 2.1 shows that d(f, g) = 2,
and therefore Mp ⊆ I (1).

Now suppose g ∈ I. Since d(f, g) = 2, {p} ∩ Z(g) = Z(f) ∩ Z(g) 6= ∅. This
implies p ∈ Z(g), and thus g ∈ Mp. Hence I ⊆ Mp (2). By (1) and (2),
Mp = I. �

Theorem 5.6. The following are equivalent.

(a) X is an almost P -space which does not have any isolated points.

(b) C(X) is almost regular ring which does not have any principal maximal

ideals.

(c) Rad Γ′

2
C(X) = 3.

(d) For each f ∈ Γ′

2
C(X), there is some g ∈ Γ′

2
C(X) such that gi(f, g) = 6.

Proof: (a) ⇔ (b) By Lemma 5.4 it is obvious.
(a) ⇒ (c) For each f ∈ Γ′

2
C(X), intZ(f) 6= ∅, thus ecc(f) = 3. Hence

Rad Γ′

2
C(X) = 3.

(c) ⇒ (a) Since RadΓ′

2
C(X) = 3, for every f ∈ Γ′

2
C(X) we have ecc(f) = 3.

We conclude from Proposition 2.3, that intZ(f) 6= ∅ and X does not have any
isolated points, hence that X is an almost P -space without any isolated points.

(d) ⇒ (b) For each f ∈ Γ′

2
C(X), there is some g ∈ Γ′

2
C(X) such that gi(f, g) =

6, thus Z(f) ∩ Z(g) 6= ∅ and Z(f) ∪ Z(g) = X . We conclude that f is a zero
divisor and consequently C(X) is an almost regular ring.

(c) ⇒ (d) Since RadΓ′

2
C(X) = 3, for each f ∈ Γ′

2
C(X) we have ecc(f) = 3,

thus g in Γ′

2
C(X) exists such that d(f, g) = 3 and therefore gi(f, g) = 6. �

Proposition 5.7. The following statements are equivalent.

(a) C(X) is almost regular ring which has some principal maximal ideal.

(b) X is an almost P -space which has some isolated point.

(c) Rad Γ′

2
C(X) = 2 and for each f in the center of Γ′

2
C(X) there is g ∈

Γ′

2
C(X) such that {f, g} is an edge of a square.

Proof: (a) ⇔ (b) By Lemma 5.4, it is evident.
(b) ⇒ (c) By Theorem 5.6, RadΓ′

2
C(X) = 2, thus for every f in center of

Γ′

2
C(X), ecc(f) = 2. Theorem 5.4 shows that Z(f) = {p}, for some isolated point

p. Hence g ∈ Γ′

2
C(X) exists such that Coz(g) = {p}. Since Z(f) ∩ Z(g) = ∅ and

Z(f) ∪ Z(g) = X , by Lemma 4.1, {f, g} is an edge of a square.
(c) ⇒ (b) If Z(f) = ∅, for some f ∈ Γ′

2
C(X), then f belongs to the center

of Γ′

2
C(X). This implies that there is a g ∈ Γ′

2
C(X) such that {f, g} is an

edge of some square, thus Z(f) is open, by Lemma 4.1, a contradiction. Since
Rad Γ′

2
C(X) = 2, from Theorem 5.6, X has some isolated point. �
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[24] Moconja S.M., Petrović Z., On the structure of comaximal graphs of commutative rings

with identity , Bull. Aust. Math. Soc. 83 (2011), no. 1, 11–21.
[25] Mulay Sh.B., Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7,

3533–3558.
[26] Petrovic Z.Z., Moconja S.M., On graphs associated to rings, Novi Sad J. Math. 38 (2008),

no. 3, 33–38.
[27] Sharma P.K., Bhatwadekar S.M., A note on graphical representation of rings, J. Algebra

176 (1995), no. 1, 124–127.



364 Badie M.

[28] Wang H.-J., Co-maximal graph of non-commutative rings, Linear Algebra Appl. 430

(2009), no. 2, 633–641.
[29] Willard S., General Topology , Addison-Wesley Publishing Co., Reading, Mass.-London-Don

Mills, Ont., 1970.
[30] Ye M., Wu T., Liu Q., Yu H., Implements of graph blow-up in co-maximal ideal graphs,

Comm. Algebra 42 (2014), no. 6, 2476–2483.

Department of Basic Sciences, Jundi-Shapur University of Technology, Dez-

ful, Iran

E-mail: Badie@jsu.ac.ir

(Received December 6, 2015, revised March 22, 2016)


