Some remarks on the interpolation spaces A^{θ}, A_{θ}

Mohammad Daher

Abstract. Let (A_0, A_1) be a regular interpolation couple. Under several different assumptions on a fixed A^{β} , we show that $A^{\theta} = A_{\theta}$ for every $\theta \in (0, 1)$. We also deal with assumptions on \overline{A}^{β} , the closure of A^{β} in the dual of $(A_0^*, A_1^*)_{\beta}$.

Keywords: interpolation

Classification: 46B70

Introduction

We are looking for sufficient conditions on a regular interpolation couple (A_0, A_1) implying that $A^{\theta} = A_{\theta}$ for every $\theta \in (0, 1)$. We already considered such questions in [Da1] and [Da2]. Unhappily, there was a mistake in a crucial lemma at the beginning of [Da2]. A corrected version of this paper was put on arXiv as [Da3]. The present paper uses the same machinery, which we essentially reproduce in part 2, with simplifications.

In the first part we recall the definitions and some known properties of A^{θ} and A_{θ} . In the second part, we collect results about the mapping $\tau \in \mathbb{R} \to g'(\theta + i\tau)$, where $g \in \mathcal{G}(A_0, A_1)$, and give in Theorem 5 a key abstract condition on a fixed A^{β} , stronger than $A^{\beta} = A_{\beta}$, implying that $A^{\theta} = A_{\theta}$ for every $\theta \in (0, 1)$. We also define and study the maps $R^{\theta} : A^{\theta} \to [(A_0^*, A_1^*)_{\theta}]^*$. In the third part we deduce that $A^{\theta} = A_{\theta}$ for every $\theta \in (0, 1)$ under geometric

In the third part we deduce that $A^{\theta} = A_{\theta}$ for every $\theta \in (0, 1)$ under geometric conditions on a fixed A^{β} , or on \overline{A}^{β} , defined as the norm closure of $R^{\beta}(A^{\beta})$ in the dual space of $(A_0^*, A_1^*)_{\beta}$.

1. Notation, definitions and properties of interpolation spaces

We denote by X^* the dual of a Banach space X, by $\mathcal{C}_0(\mathbb{R}, X)$ the space of X-valued continuous functions on \mathbb{R} that tend to 0 at infinity. We denote by $\mathcal{B}_1(\mathbb{R}, \mathbb{C})$ the space of first Baire class functions $f : \mathbb{R} \to \mathbb{C}$. Let \mathcal{B} be the σ -algebra of Borel subsets of \mathbb{R} , completed by sets with Lebesgue measure zero. An a.s. defined map $f : \mathbb{R} \to X$ is strongly measurable if there exists a sequence $(f_n)_n$ of finitely valued maps $f_n : \mathbb{R} \to X$ such that, for every open ball B in X and $n \in \mathbb{N}, f_n^{-1}(B) \in \mathcal{B}$, and a.s. $\|f - f_n\|_X \to_{n \to \infty} 0$.

DOI 10.14712/1213-7243.2015.173

Let $S = \{z \in \mathbb{C} \mid 0 \leq \operatorname{Re}(z) \leq 1\}$ and S^0 its interior. Given a map $f: S \to X$, we denote by $f(\theta + i \cdot) : \mathbb{R} \to X$ the restriction of f to the line $\operatorname{Re} z = \theta, \theta \in [0, 1]$ and by f_{τ} the translated map $f_{\tau}(z) = f(z + i\tau), \tau \in \mathbb{R}$.

Let $\overline{C} = (C_0, C_1)$ be a complex interpolation couple in the sense of [BL]. We first recall the definition of the interpolation space $C_{\theta}, \theta \in (0, 1)$ [BL, Chapter 4]. Let $\mathcal{F}(\overline{C})$ be the space of functions f with values in $C_0 + C_1$, which are bounded and continuous on S, holomorphic on S^0 , such that, for $j \in \{0, 1\}$, the maps $f(j + i \cdot)$ lie in $\mathcal{C}_0(\mathbb{R}, C_j)$. We equip $\mathcal{F}(\overline{C})$ with the norm

$$\|f\|_{\mathcal{F}(\overline{C})} = \max\left[\sup_{\tau \in \mathbb{R}} \|f(i\tau)\|_{C_0}, \sup_{\tau \in \mathbb{R}} \|f(1+i\tau)\|_{C_1}\right].$$

The space $C_{\theta} = (C_0, C_1)_{\theta} = \{f(\theta) \mid f \in \mathcal{F}(\overline{C})\}, 0 < \theta < 1$, is a Banach space [BL, Theorem 4.1.2] for the norm defined by

$$||a||_{C_{\theta}} = \inf \{ ||f||_{\mathcal{F}(\overline{C})} \mid f(\theta) = a \}.$$

We now recall the definition of the complex interpolation space C^{θ} [BL, Chapter 4]. Let $\mathcal{G}(\overline{C})$ be the space of functions g with values in $C_0 + C_1$, which are continuous on S, holomorphic on S^0 , such that the map $z \to (1+|z|)^{-1} ||g(z)||_{C_0+C_1}$ is bounded on S (this condition will be denoted by (C)), such that $g(j + i\tau) - g(j + i\tau') \in C_j$ for every $\tau, \tau' \in \mathbb{R}, j \in \{0, 1\}$, and such that the following quantity is finite:

$$\begin{split} \|g^{\boldsymbol{\cdot}}\|_{Q\mathcal{G}(\overline{C})} \\ &= \max\left[\sup_{\tau\neq\tau'\in\mathbb{R}} \left\|\frac{g(i\tau)-g(i\tau')}{\tau-\tau'}\right\|_{C_0}, \sup_{\tau\neq\tau'\in\mathbb{R}} \left\|\frac{g(1+i\tau)-g(1+i\tau')}{\tau-\tau'}\right\|_{C_1}\right]. \end{split}$$

This defines a norm on the space $Q\mathcal{G}(\overline{C})$, quotient of $\mathcal{G}(\overline{C})$ by the subspace of constant functions with values in $C_0 + C_1$, and $Q\mathcal{G}(\overline{C})$ is complete with respect to this norm [BL, Lemma 4.1.3]. We recall [BL, proof of Lemma 4.1.3] that every $g \in \mathcal{G}(\overline{C})$ satisfies

(1)
$$||g'(z)||_{C_0+C_1} \le ||g'||_{Q\mathcal{G}(\overline{C})}, z \in S.$$

The space $C^{\theta} = \{a \in C_0 + C_1 \mid \exists g \in \mathcal{G}(\overline{C}), a = g'(\theta)\}$ is a Banach space [BL, Theorem 4.1.4] with respect to the norm defined by:

$$||a||_{C^{\theta}} = \inf \{ ||g^{\cdot}||_{Q\mathcal{G}(\overline{C})} | g'(\theta) = a \}.$$

By (1), the canonical map $C^{\theta} \to C_0 + C_1$ is a one to one contraction. By [B], C_{θ} is isometrically identified with a subspace of C^{θ} , and by [BL, Theorem 4.2.2], $C_0 \cap C_1$ is dense in C_{θ} , $0 < \theta < 1$.

Every function $f\in \mathcal{F}(\overline{C})$ admits an integral representation involving the harmonic measure

(2)
$$f(z) = \int_{\mathbb{R}} f(it)Q_0(z,t) \, dt + \int_{\mathbb{R}} f(1+it)Q_1(z,t) \, dt, \quad z \in S^0.$$

where $t \to \frac{Q_0(z,t)}{1-\operatorname{Re} z}$ and $\frac{Q_1(z,t)}{\operatorname{Re} z}$, $z \in S^0$, $t \in \mathbb{R}$ are probability densities. By [BL, Lemma 4.3.2], every $f \in \mathcal{F}(\overline{C})$ satisfies

(3)
$$||f(\theta)||_{C_{\theta}} \leq \left(\int_{\mathbb{R}} ||f(it)||_{C_{0}} \frac{Q_{0}(\theta, t)}{1-\theta} dt\right)^{1-\theta} \left(\int_{\mathbb{R}} ||f(1+it)||_{C_{1}} \frac{Q_{1}(\theta, t)}{\theta} dt\right)^{\theta}.$$

For $x \in C_0 \cap C_1$, taking $f = \varphi \otimes x$ for a suitable φ , (3) implies

(4)
$$||x||_{C_{\theta}} \le ||x||_{C_{0}}^{1-\theta} ||x||_{C_{1}}^{\theta}.$$

Let $\overline{A} = (A_0, A_1)$ be an interpolation couple. If $A_0 \cap A_1$ is dense in A_0 and A_1 , \overline{A} is called a *regular* interpolation couple. Then we have [BL, Theorem 2.7.1]

(5)
$$(A_0 \cap A_1)^* = A_0^* + A_1^*, \qquad A_0^* \cap A_1^* = (A_0 + A_1)^*$$

(in general, there is only a canonical contraction $A_0^* + A_1^* \to (A_0 \cap A_1)^*$). Moreover we may apply the reiteration theorem [BL, Theorem 4.6.1] and the dual of A_{θ} is the space $(A_0^*, A_1^*)^{\theta}$, $0 < \theta < 1$ [BL, Theorem 4.5.1].

When \overline{A} is a regular interpolation couple, let B_j be the closure of $A_0^* \cap A_1^*$ in A_j^* , j = 0, 1. It is clear that

(6)
$$B_0 \cap B_1 = A_0^* \cap A_1^*$$

isometrically and the couple $\overline{B} = (B_0, B_1)$ is regular. By (5) and (6), isometrically,

(7)
$$B_0^* + B_1^* = (B_0 \cap B_1)^* = (A_0^* \cap A_1^*)^* = (A_0 + A_1)^{**}$$

By [BL, Theorem 4.2.2 b] we have isometrically, for $0 < \theta < 1$,

(8)
$$B_{\theta} = (A_0^*, A_1^*)_{\theta}.$$

Since \overline{B} is regular, for $0 < \theta < 1$,

(9)
$$(B_{\theta})^* = (B_0^*, B_1^*)^{\theta}.$$

We now define maps $\tilde{\rho}$: $\mathcal{G}(A_0, A_1) \to \mathcal{G}(B_0^*, B_1^*)$ and R: $\mathcal{QG}(A_0, A_1) \to \mathcal{QG}(B_0^*, B_1^*)$. Let ρ be the canonical isometry $A_0 + A_1 \to (A_0 + A_1)^{**}$. By (7), ρ is also an isometry $A_0 + A_1 \to B_0^* + B_1^*$. Since $A_j, j \in \{0, 1\}$, embeds in $A_0 + A_1$, for $a_j \in A_j, \rho(a_j)$ is well defined as a continuous linear form on $B_0 \cap B_1 = A_0^* \cap A_1^*$.

Let $i_j : B_j \to A_j^*$ be the canonical isometry and let $i_j^* : A_j^{**} \to B_j^*$ be the conjugate onto contraction (which is not one to one in general). Note that B_j^* embeds in $B_0^* + B_1^*$. If $a_j \in A_j$, $i_j^*(a_j) = \rho(a_j)$ is in $B_0^* + B_1^*$ (in particular i_j^* is one

to one on A_j), hence ρ is also a one to one contraction $A_j \to B_j^*$. Consequently the map $g(z) \to \rho(g(z))$ defines a one to one map $\tilde{\rho} : \mathcal{G}(A_0, A_1) \to \mathcal{G}(B_0^*, B_1^*)$ and a one to one contraction $R : Q\mathcal{G}(A_0, A_1) \to Q\mathcal{G}(B_0^*, B_1^*)$. We shall see in Lemma 6 below that R induces a one to one contraction $R^{\theta} : A^{\theta} \to (B_0^*, B_1^*)^{\theta}$, $0 < \theta < 1$.

2. Properties of $g'(\theta + i \cdot)$, $g \in \mathcal{G}(C_0, C_1)$; the map R^{θ}

We first collect some basic properties.

Lemma 1. Let $\overline{C} = (C_0, C_1)$ be an interpolation couple.

- a) Let $f \in \mathcal{F}(\overline{C})$. Then, for every $\theta \in (0,1)$, $\tau \in \mathbb{R}$, we have that $||f(\theta + i\tau)||_{C_{\theta}} \leq ||f||_{\mathcal{F}(\overline{C})}$ and $f(\theta + i\cdot) : \mathbb{R} \to C_{\theta}$ is continuous.
- b) If moreover $f(\beta + i \cdot)$ lies in $\mathcal{C}_0(\mathbb{R}, C_\beta)$ and $f(\gamma + i \cdot)$ in $\mathcal{C}_0(\mathbb{R}, C_\gamma)$ for some $\beta, \gamma \in [0, 1]$, then the map $F : z \to f((\gamma \beta)z + \beta)$ belongs to $\mathcal{F}(C_\beta, C_\gamma)$, with norm less than $\|f\|_{\mathcal{F}(\overline{C})}$.
- c) Let $G \in \mathcal{G}(\overline{C})$ be such that $G(j + i \cdot)$ is valued in C_j , $j \in \{0, 1\}$. Let $\delta \in (0, 1]$. Then the map $f_{\delta}(z) = e^{\delta z^2} G(z)$, $z \in S$, lies in $\mathcal{F}(\overline{C})$. In particular, for every $\theta \in (0, 1)$, $G(\theta + i \cdot) : \mathbb{R} \to C_{\theta}$ is continuous.

PROOF: a) Since $||f||_{\mathcal{F}(\overline{C})} = ||f_{\tau}||_{\mathcal{F}(\overline{C})}$ for every $\tau \in \mathbb{R}$, the first assertion follows from the definition of C_{θ} . By (3), for $\tau, \tau' \in \mathbb{R}$,

$$\|f_{\tau}(\theta) - f_{\tau'}(\theta)\|_{C_{\theta}} \le \left(\int_{\mathbb{R}} \|f_{\tau}(it) - f_{\tau'}(it)\|_{C_{0}} \frac{Q_{0}(\theta, t)}{1 - \theta} dt\right)^{1 - \theta} (2\|f\|_{\mathcal{F}(\overline{C})})^{\theta}.$$

Since functions in $\mathcal{C}_0(\mathbb{R}, C_0)$ are uniformly continuous, this implies the (uniform) continuity of $f(\theta + i \cdot) : \mathbb{R} \to C_{\theta}$.

b) The function F has on S^0 the integral representation, with values in $C_0 + C_1$:

(10)
$$F(z) = \int_{\mathbb{R}} F(i\tau) Q_0(z,\tau) \, d\tau + \int_{\mathbb{R}} F(1+i\tau) Q_1(z,\tau) \, d\tau.$$

Indeed, since $F(j + i \cdot)$ lies in $\mathcal{C}_0(\mathbb{R}, C_0 + C_1)$, the RHS of (10) is well defined, harmonic, bounded: $S^0 \to C_0 + C_1$ and extends as a continuous function: $S \to C_0 + C_1$ (by conformal mapping this follows from the well known analogous result on the unit disk). It coincides with F on the boundary of S, hence on S^0 since $F : S^0 \to C_0 + C_1$ is holomorphic (harmonic). Since $F(i \cdot)$ lies in $\mathcal{C}_0(\mathbb{R}, C_\beta)$ and $F(1 + i \cdot)$ in $\mathcal{C}_0(\mathbb{R}, C_\gamma)$, with norm less than $\|f\|_{\mathcal{F}(\overline{C})}$, the RHS of (10) lies in $C_\beta + C_\gamma$, with norm less than $\|f\|_{\mathcal{F}(\overline{C})}$ and, as before, extends as a bounded continuous function: $S \to C_\beta + C_\gamma$.

Let us verify that $F : S^0 \to C_\beta + C_\gamma$ is holomorphic. More generally, if a function $F : S^0 \to X$ is holomorphic, bounded by K as mapping: $S^0 \to Y$ where Y continuously embeds in X, then $F : S^0 \to Y$ is holomorphic. Indeed let $\overline{D}(z_0, r) \subset S^0$ be a closed disk, with 0 < r < 1. Since F is holomorphic with

Some remarks on the interpolation spaces A^{θ}, A_{θ}

values in X, we have $F(z) = \sum_{k \ge 0} c_k (z - z_0)^k$ in X for $z \in D(z_0, r)$. Since

$$\|c_k\|_Y = \left\| \int_0^{2\pi} F(z_0 + re^{it}) e^{-ikt} \frac{dt}{2\pi} \right\|_Y \le K,$$

the series converges normally in Y on $\overline{D}(z_0, r)$, hence its sum $F : D(z_0, r) \to Y$ is holomorphic. Taking $Y = C_\beta + C_\gamma$, $X = C_0 + C_1$, $K = ||f||_{\mathcal{F}(\overline{C})}$ ends the verification.

c) In order to show that f_{δ} lies in $\mathcal{F}(\overline{C})$ we only have to verify that $f_{\delta}(j+i\cdot)$ lies in $\mathcal{C}_0(\mathbb{R}, C_j), j \in \{0, 1\}$, and that $f_{\delta} : S \to C_0 + C_1$ is bounded. By assumption $G(j+i\cdot)$ is valued and Lipschitz in C_j , hence continuous: $\mathbb{R} \to C_j$. Moreover

$$\begin{aligned} \|f_{\delta}(j+i\tau)\|_{C_{j}} &\leq e^{1-\tau^{2}} (\|G(j+i\tau)-G(j)\|_{C_{j}}+\|G(j)\|_{C_{j}}) \\ &\leq e^{1-\tau^{2}} (|\tau|\|G^{\cdot}\|_{Q\mathcal{G}(\overline{C})}+\|G(j)\|_{C_{j}}), \end{aligned}$$

which proves the first assertion. Condition (C) gives the desired boundedness since, for $z = \theta + i\tau \in S$,

$$\|f_{\delta}(\theta + i\tau)\|_{C_0 + C_1} \le K(G)e^{1 - \tau^2} (1 + \sqrt{1 + \tau^2}).$$

By a), $f_{\delta}(\theta + i \cdot) : \mathbb{R} \to C_{\theta}$ is continuous, hence so is $G(\theta + i \cdot)$.

Lemma 2. Let $\overline{C} = (C_0, C_1)$ be an interpolation couple and let $g \in \mathcal{G}(\overline{C})$. Let $F_h(z) = \frac{1}{h}[g(z+ih) - g(z)], z \in S^0$ and $h \neq 0$. Then, for every $0 < \theta < 1$, for every $\tau \in \mathbb{R}$,

i) in $C_0 + C_1$, one has that

(11)
$$hF_h(\theta + i\tau) = g(\theta + i\tau + ih) - g(\theta + i\tau) = i \int_{\tau}^{\tau+h} g'(\theta + it) dt,$$

and letting n be in \mathbb{N}^* ,

(12)
$$F_{\frac{1}{n}}(\theta + i\tau) \to_n ig'(\theta + i\tau).$$

ii) $F_h(\theta+i\cdot): \mathbb{R} \to C_\theta$ is continuous (hence (11) holds in C_θ) and is bounded by $\|g\cdot\|_{Q\mathcal{G}(\overline{C})}$.

iii)
$$\|g'(\theta + i\tau)\|_{C^{\theta}} \le \|g\cdot\|_{Q\mathcal{G}(\overline{C})}.$$

Note that in general the map $g'(\theta + i \cdot) : \mathbb{R} \to C^{\theta}$ is not strongly measurable.

PROOF: i) The function $g: S^0 \to C_0 + C_1$ is holomorphic, which implies (11) and the continuity of $t \to g'(\theta + it) : \mathbb{R} \to C_0 + C_1$, hence (12).

ii) The map F_h lies in $\mathcal{G}(\overline{C})$; on $\operatorname{Re} z = j$ its values in C_j are bounded by $\|g^{\cdot}\|_{\mathcal{QG}(\overline{C})}, j \in \{0,1\}$. Lemma 1 c) applied to $G = F_h$ gives the first assertion.

Let $f_{h,\delta}(z) = e^{\delta z^2} F_h(z), \, z \in S, \, \delta > 0$. By Lemma 1 c) again

(13)
$$\begin{aligned} \|F_{h}(\theta)\|_{C_{\theta}} &= \|e^{-\delta\theta^{2}}f_{h,\delta}(\theta)\|_{C_{\theta}} \leq \|f_{h,\delta}\|_{\mathcal{F}(\overline{C})} \\ &\leq \max\left(\sup_{\tau\in\mathbb{R}}\|F_{h}(it)\|_{C_{0}}, e^{\delta}\sup_{\tau\in\mathbb{R}}\|F_{h}(1+it)\|_{C_{1}}\right) \\ &\leq e^{\delta}\|g^{\cdot}\|_{Q\mathcal{G}(\overline{C})}. \end{aligned}$$

Let $g_{\tau}(z) = g(z+i\tau)$, so that $\|g_{\tau}^{\cdot}\|_{Q\mathcal{G}(\overline{C})} = \|g^{\cdot}\|_{Q\mathcal{G}(\overline{C})}$, and $(g_{\tau}(z+ih)-g_{\tau}(z))/h = F_h(z+i\tau)$. By (13) applied to g_{τ} we get

$$\|F_h(\theta + i\tau)\|_{C_{\theta}} \le e^{\delta} \|g^{\cdot}\|_{Q\mathcal{G}(\overline{C})}.$$

Taking $\delta \to 0$ ends the proof.

iii) Keeping the notation of ii), by definition,

$$\|g'(\theta+it)\|_{C^{\theta}} \le \|g_t^{\cdot}\|_{Q\mathcal{G}(\overline{C})} = \|g^{\cdot}\|_{Q\mathcal{G}(\overline{C})}.$$

Lemma 3. Let \overline{A} be a regular interpolation couple.

- a) Every x^* in the unit ball of $(A_{\theta})^*$, $0 < \theta < 1$, is w^* -limit of a sequence in the unit ball of $(A_0^*, A_1^*)_{\theta}$.
- b) Let $g \in \mathcal{G}(\overline{A})$ and assume that, for some $\beta \in (0, 1)$, for every $t \in \mathbb{R}$, $g'(\beta + it) \in A_{\beta}$. Then, for every $x^* \in (A_{\beta})^*$, $\langle g'(\beta + i\cdot), x^* \rangle$ lies in $\mathcal{B}_1(\mathbb{R}, \mathbb{C})$. In particular the function $g'(\beta + i\cdot) : \mathbb{R} \to A_{\beta}$ is weakly measurable.

PROOF: a) Let x^* be in the open unit ball of $(A_{\theta})^* = (A_0^*, A_1^*)^{\theta}$ and let $h \in \mathcal{G}(A_0^*, A_1^*)$ be such that $h'(\theta) = x^*$ and $\|h^\cdot\|_{Q\mathcal{G}(A_0^*, A_1^*)} \leq 1$. Let $H_{1/n}$ be associated to h as in Lemma 2. By Lemma 2 ii), i), the sequence $(H_{1/n}(\theta))_n$ lies in the closed unit ball of $(A_0^*, A_1^*)_{\theta}$, hence of $(A_0^*, A_1^*)^{\theta}$ and converges to $h'(\theta)$ in $A_0^* + A_1^*$, hence w^* on $A_0 \cap A_1$. Since $A_0 \cap A_1$ is dense in A_{θ} , $(H_{1/n}(\theta))_n$ converges w^* in $(A_{\theta})^*$ to $h'(\theta) = x^*$.

b) The map $\phi_{\beta} = g'(\beta + i \cdot) : \mathbb{R} \to A_0 + A_1$ is continuous, bounded: $\mathbb{R} \to A^{\beta}$ by Lemma 2 iii), hence by assumption it is bounded: $\mathbb{R} \to A_{\beta}$. Hence $\langle \phi_{\beta}(.), a^* \rangle$ is continuous on \mathbb{R} for every $a^* \in A_0^* \cap A_1^*$ and even for every $a^* \in (A_0^*, A_1^*)_{\beta}$, since $(A_0^*, A_1^*)_{\beta}$ is the closure of $A_0^* \cap A_1^*$ in $(A_{\beta})^* = (A_0^*, A_1^*)^{\beta}$. Let x^* be in the open unit ball of $(A_{\beta})^*$. By a) there exists a sequence $(b_n^*)_n$ in the unit ball of $(A_0^*, A_1^*)_{\beta}$ such that

$$\forall t \in \mathbb{R} \qquad \langle \phi_{\beta}(t), b_{n}^{*} \rangle \xrightarrow[n]{} \langle \phi_{\beta}(t), x^{*} \rangle \,.$$

The functions $\langle \phi_{\beta}(.), b_n^* \rangle$ are continuous and uniformly bounded on \mathbb{R} , hence $\langle \phi_{\beta}(.), x^* \rangle$ belongs to $\mathcal{B}_1(\mathbb{R}, \mathbb{C})$.

Lemma 4. Let \overline{C} be an interpolation couple, $g \in \mathcal{G}(\overline{C})$, let $F_{\frac{1}{n}}$ be associated to g as in Lemma 2, $0 < \beta < 1$. Let us consider the following properties:

306

Some remarks on the interpolation spaces A^{θ}, A_{θ}

- a) for almost every τ the sequence $(F_{\frac{1}{\tau}}(\beta + i\tau))$ converges in C_{β} ,
- b) $g'(\beta + i \cdot) : \mathbb{R} \to C_{\beta}$ is strongly measurable,
- c) there is a closed separable subspace E of C_{β} such that $g'(\beta + it) \in E$ for every $t \in \mathbb{R}$.

Then b) \Leftrightarrow a). If \overline{C} is a regular couple, then $c) \Rightarrow b$).

Let a'), b') be analogous to a), b) with C^{β} instead of C_{β} . Then we have that b') \Leftrightarrow b) \Leftrightarrow a') \Leftrightarrow a).

Comments. We shall prove in Theorem 5 that a) implies c) if \overline{C} is regular.

The sequence $(F_{\frac{1}{n}}(\beta + i\tau))$ always lies in C_{β} by Lemma 2 ii). Condition b) obviously implies that $g'(\beta + i\cdot)$ is a.s. valued in a closed separable subspace E of C_{β} , but b) \Rightarrow c) is less obvious. In the proof of c) \Rightarrow b) we actually use that $g'(\beta + it) \in C_{\beta}$ for every $t \in \mathbb{R}$ and $g'(\beta + i\cdot)$ is a.s. valued in a closed separable subspace of C_{β} . In the appendix we shall remove the regularity assumption in c) \Rightarrow b) and the same proof will give c') \Rightarrow b'), where in c') F is a closed subspace of C^{β} .

PROOF: b) \Rightarrow b') and a) \Rightarrow a') are obvious.

b') \Rightarrow a): By Lemma 2 iii), $\phi_{\beta} = g'(\beta + i \cdot)$ is uniformly bounded in C^{β} . Hence, by assumption, $\phi_{\beta} : \mathbb{R} \to C^{\beta}$ is locally Bochner integrable. By the Lebesgue differentiation theorem [DU, Chapter II, Theorem 9, p. 49] in C^{β} ,

$$\lim_{n} n \int_{\tau}^{\tau + \frac{1}{n}} \phi_{\beta}(t) dt = \phi_{\beta}(\tau), \text{ a.s. in } \tau.$$

By Lemma 2 i) and ii), the integral lies in C_{β} for every τ and coincides with $-\frac{i}{n}F_{\frac{1}{2}}(\beta + i\tau)$. Since C_{β} is closed in C^{β} , the limit holds in C_{β} , implying a).

a) \Rightarrow b): The a.s. limit coincides a.s. with $ig'(\beta + i \cdot)$ by (12). By Lemma 2 ii), $F_{\frac{1}{n}}(\beta + i \cdot) : \mathbb{R} \to C_{\beta}$ is continuous, hence the a.s. limit is strongly measurable: $\mathbb{R} \to C_{\beta}$. The same argument shows that a') \Rightarrow b').

c) \Rightarrow b): By assumption and Lemma 3 the map $g'(\beta + i \cdot) : \mathbb{R} \to C_{\beta}$ is weakly measurable and a.s. valued in a closed separable subspace of C_{β} . By Pettis' theorem [DU, Chapter II, p. 42] it is strongly measurable.

By the equivalence a) \Leftrightarrow b) in Lemma 4, the next theorem was proved in [Da3], in a more intricate way. The proof below closely follows the proof of [BL, Lemma 4.3.3].

Theorem 5. Let $\beta \in (0,1)$. Let \overline{A} be a regular interpolation couple.

a) Let $g \in \mathcal{G}(\overline{A})$, let $F_{\frac{1}{n}}$ be associated to g as in Lemma 2. Assume that for almost every τ , the sequence $(F_{\frac{1}{n}}(\beta + i\tau))_n$, which is valued in A_β by Lemma 2 ii), converges in A_β (necessarily to $ig'(\beta + i\tau)$ by Lemma 2 i)). Then, for every $\theta \in (0, 1)$ and every $\tau \in \mathbb{R}$, the sequence $(F_{\frac{1}{n}}(\theta + i\tau))_n$ converges in A_θ (necessarily to $ig'(\theta + i\tau)$, which thus lies in A_θ). Moreover $g'(\theta + i\cdot)$ is valued in a closed separable subspace of A_θ .

b) If the assumption of a) holds for every $g \in \mathcal{G}(\overline{A})$, then $A_{\theta} = A^{\theta}$ for every $\theta \in (0, 1)$.

PROOF: a) By Lemma 2 ii), the sequence $(F_{\frac{1}{n}}(\beta + i \cdot))_n$ is uniformly bounded by $\|g\cdot\|_{Q\mathcal{G}(\overline{A})}$ and it is continuous: $\mathbb{R} \to A_\beta$. Let $f_{\frac{1}{n}}(z) = e^{z^2}F_{\frac{1}{n}}(z)$. Then $f_{\frac{1}{n}}(\beta + i \cdot) = e^{(\beta + i \cdot)^2}F_{\frac{1}{n}}(\beta + i \cdot)$ lies in $\mathcal{C}_0(\mathbb{R}, A_\beta)$. Let $\gamma \in \{0, 1\}$. By Lemma 1, $f_{\frac{1}{n}}((\gamma - \beta)z + \beta)$ lies in $\mathcal{F}(A_\beta, A_\gamma)$, with norm less than $e\|g\cdot\|_{Q\mathcal{G}(\overline{A})}$. By (3) applied in $\mathcal{F}(A_\beta, A_\gamma)$, for $\eta \in (0, 1)$,

$$\begin{split} \|(f_{\frac{1}{n}} - f_{\frac{1}{m}})((\gamma - \beta)\eta + \beta)\|_{(A_{\beta}, A_{\gamma})\eta} \\ & \leq \left(\int_{\mathbb{R}} \|(f_{\frac{1}{n}} - f_{\frac{1}{m}})((\gamma - \beta)it + \beta)\|_{A_{\beta}} \frac{Q_{0}(\eta, t)}{1 - \eta} \, dt\right)^{1 - \eta} (2e\|g^{\cdot}\|_{Q\mathcal{G}(\overline{A})})^{\eta}. \end{split}$$

By the assumption and Lebesgue's convergence theorem the above integral tends to 0 as $n, m \to \infty$, hence so does the LHS. Let $\theta = (1 - \eta)\beta + \eta\gamma \in (\beta, \gamma)$ (so θ runs through $(0, \beta) \cup (\beta, 1)$). By the reiteration theorem [BL, Theorem 4.6.1] $(A_{\beta}, A_{\gamma})_{\eta} = A_{\theta}$, and the LHS is $e^{\theta^2} ||(F_{\frac{1}{n}} - F_{\frac{1}{m}})(\theta)||_{A_{\theta}}$. Hence $(F_{\frac{1}{n}}(\theta))_n$ is a Cauchy sequence in A_{θ} , so it converges in A_{θ} , to $ig'(\theta)$ by Lemma 2 i). Applying this to $g_{\tau}, \tau \in \mathbb{R}$, instead of g, one gets $F_{\frac{1}{n}}(\theta+i\tau) \to ig'(\theta+i\tau)$ in A_{θ} . In particular the assumption of a) also holds at θ instead of β . Since $F_{\frac{1}{n}}(\theta+i\cdot) : \mathbb{R} \to A_{\theta}$ is continuous by Lemma 2 ii), it takes values in a closed separable subspace E_n of A_{θ} and $g'(\theta+i\cdot)$ is valued in the (separable) closure of $\cup_n E_n$ in A_{θ} . This proves a) for $\theta \neq \beta$. Since the assumption of a) holds at θ , the conclusion also holds at β . b) is obvious from a).

Lemma 6. Let \overline{A} be a regular interpolation couple. Then the mapping R: $Q\mathcal{G}(A_0, A_1) \to Q\mathcal{G}(B_0^*, B_1^*)$ (defined in part 1) induces a one to one contraction $R^{\theta}: A^{\theta} \to (B_0^*, B_1^*)^{\theta}$, for $\theta \in (0, 1)$.

PROOF: We identify A^{θ} and $(B_0^*, B_1^*)^{\theta}$ with quotients of

 $QG(A_0, A_1) \text{ and } QG(B_0^*, B_1^*)$

respectively. We define R^{θ} by $R^{\theta}(g'(\theta)) = (R(g^{\cdot}))'(\theta)$. Since R is a contraction: $Q\mathcal{G}(A_0, A_1) \to Q\mathcal{G}(B_0^*, B_1^*), R^{\theta}$ is a contraction: $A^{\theta} \to (B_0^*, B_1^*)^{\theta}$. Let us verify that it is one to one. For $a \in A^{\theta}$ and $b \in B_0 \cap B_1 = A_0^* \cap A_1^* = (A_0 + A_1)^*$, we have

 $\langle R^{\theta}(a), b \rangle = \langle a, b \rangle.$

If $R^{\theta}(a) = 0$ in $(B_0^*, B_1^*)^{\theta} = (B_{\theta})^*$, then $\langle a, b \rangle = 0$ for every b as above, thus a = 0 in $A_0 + A_1$, hence in A^{θ} .

We denote by \overline{A}^{θ} the norm closure of $R^{\theta}(A^{\theta})$ in $(B_0^*, B_1^*)^{\theta}$. Note that \overline{A}^{θ} embeds in $A_0 + A_1$ since A^{θ} does, and $(B_0^*, B_1^*)^{\theta}$ embeds in $B_0^* + B_1^* = (A_0 + A_1)^{**}$. Thus $A_0^* \cap A_1^*$ is a subspace of $(\overline{A}^{\theta})^*$. Let $\sigma_{\theta} : \overline{A}^{\theta} \to (B_0^*, B_1^*)^{\theta} = (B_{\theta})^*$ be the isometric inclusion map. Its adjoint is onto, i.e. $(\overline{A}^{\theta})^* = \sigma_{\theta}^*[(B_{\theta})^{**}]$. Let U, respectively U_0 , be the unit balls of $(\overline{A}^{\theta})^*$, respectively B_{θ} . Since $B_0 \cap B_1$ is dense in B_{θ} , it follows that $\sigma_{\theta}^*(U_0 \cap (B_0 \cap B_1))$ is w^* -dense in U. Since σ_{θ}^* coincides with the identity on $B_0 \cap B_1 = A_0^* \cap A_1^*$, we get that

(14)
$$U_0 \cap (A_0^* \cap A_1^*) \text{ is } w^* \text{ dense in } U \subset (\overline{A}'')^*.$$

Lemma 7. Let \overline{A} be a regular interpolation couple. For every $\theta \in (0,1)$, R^{θ} : $A_{\theta} \to (B_0^*, B_1^*)^{\theta} = [(A_0^*, A_1^*)_{\theta}]^*$ is an isometry. In particular A_{θ} is closed in \overline{A}^{θ} .

PROOF: By Lemma 3 the unit ball of $(A_0^*, A_1^*)_{\theta} = B_{\theta}$ is w^* -dense in the unit ball of $(A_{\theta})^*$. Hence, for $a \in A_0 \cap A_1$,

$$||a||_{A_{\theta}} = \sup\{|\langle a, b \rangle| | ||b||_{B_{\theta}} \le 1\} = ||R^{\theta}(a)||_{(B_{\theta})^{*}}.$$

Comment. Though we shall not use it, note that by Lemma 7, B_{θ} may be isometrically identified with a (closed) subspace of $(\overline{A}^{\theta})^*$, hence, with the notation of (14), $U_0 \cap (A_0^* \cap A_1^*) = U \cap (A_0^* \cap A_1^*)$. Indeed, for $b \in B_0 \cap B_1$, by (8) for the first equality and Lemma 7 for the first inequality,

$$\|b\|_{B_{\theta}} = \|b\|_{(A_{\theta})^*} \le \|b\|_{(\overline{A}^{\theta})^*} \le \|b\|_{(B_{\theta})^{**}} = \|b\|_{B_{\theta}}.$$

Remark 8. Let $g \in \mathcal{G}(\overline{A})$ and let $F_{\frac{1}{n}}$ be associated to g as in Lemma 2. Then, for every $t \in \mathbb{R}$ and $b \in (A_0^*, A_1^*)_{\theta} = B_{\theta}$

(15)
$$\left\langle F_{\frac{1}{n}}(\theta+it), b \right\rangle \to_n i \left\langle R^{\theta} \circ g'(\theta+it), b \right\rangle.$$

In particular the RHS of (15) lies in $\mathcal{B}_1(\mathbb{R},\mathbb{C})$.

Indeed, by (12), (15) holds for every $t \in \mathbb{R}$, $a^* \in A_0^* \cap A_1^*$. By Lemma 2 ii) and Lemma 7, $\|F_{\frac{1}{2}}(\theta + it)\|_{(B_{\theta})^*} \leq \|g^{\cdot}\|_{QG(\overline{C})}$. By Lemma 6 and Lemma 2 iii)

$$\|R^{\theta} \circ g'(\theta + it)\|_{(B_{\theta})^*} \le \|g'(\theta + it)\|_{A^{\theta}} \le \|g\cdot\|_{Q\mathcal{G}(\overline{C})^*}$$

Then a 3ε argument proves the first claim since $A_0^* \cap A_1^*$ is norm dense in B_{θ} . Lemma 2 ii) proves the second claim.

Lemma 9. Let \overline{A} be a regular interpolation couple and let $g \in \mathcal{G}(\overline{A})$. If, for some β , $R^{\beta} \circ \phi_{\beta} = R^{\beta} \circ g'(\beta + i \cdot) : \mathbb{R} \to \overline{A}^{\beta}$ is strongly measurable: , then $\phi_{\beta} : \mathbb{R} \to A_{\beta}$ is strongly measurable.

PROOF: It is similar to the proof of b') \Rightarrow a) in Lemma 4, replacing A^{β} by \overline{A}^{β} , since A_{β} is closed in \overline{A}^{β} by Lemma 7.

The following lemma completes Lemma 9.

- **Lemma 10.** a) Let $\varphi : \mathbb{R} \to X^*$ be a strongly measurable function such that for every $x \in X$, $\langle \varphi(.), x \rangle = 0$ a.s.. Then $\varphi = 0$ a.s..
 - b) In particular, let $\varphi : \mathbb{R} \to \overline{A}^{\beta}$ be a strongly measurable function and $g \in \mathcal{G}(\overline{A})$. Then $R^{\beta} \circ \phi_{\beta} = \varphi$ a.s. as soon as, for every $a^* \in A_0^* \cap A_1^*$, $\langle \varphi(.), a^* \rangle = \langle R^{\beta} \circ \phi_{\beta}(.), a^* \rangle$ a.s.

PROOF: a) Since φ is strongly measurable, φ is a.s. valued in a closed separable subspace $E \subset X^*$. Then the closed unit ball of $E^* = X^{**}/E^{\perp}$, being compact and metrizable for its w^* -topology, is separable for this topology. Hence there exists a countable set (x_k) in the unit ball of X whose image is w^* -dense in X^* . By assumption, a.s. in $t, \langle \varphi(t), x_k \rangle = 0$ for every k. For such a $t, \varphi(t) = 0$.

b) Since R^{β} and the canonical map $(B_0^*, B_1^*)^{\beta} \to B_0^* + B_1^*$ are one to one, it is enough to show that $R^{\beta} \circ \phi_{\beta} = \varphi$ a.s. as functions with values in $B_0^* + B_1^*$. Note that $R^{\beta} \circ \phi_{\beta} = \phi_{\beta}$ is continuous: $\mathbb{R} \to B_0^* + B_1^* = (B_0 \cap B_1)^* = (A_0 + A_1)^{**}$ (see (7)). The claim follows from the assumption and from a) applied to $X = B_0 \cap B_1 = A_0^* \cap A_1^*$ and $R^{\beta} \circ \phi_{\beta} - \varphi$.

3. Conditions implying $A^{\theta} = A_{\theta}$ for every θ

Proposition 11. Let \overline{A} be a regular interpolation couple. Assume that A_{β} has the Radon-Nikodym property [DU] for some $0 < \beta < 1$. Then $A^{\theta} = A_{\theta}$ for every $0 < \theta < 1$.

PROOF: Since A_{β} has the Radon-Nikodym property, Lipschitz maps: $\mathbb{R} \to A_{\beta}$ are a.s. differentiable [DU, Chapter IV, Theorem 2, p. 107]. Actually, the proof does not use the fact that the Lipschitz map f under consideration is valued in a Radon-Nikodym space, but only that the differences f(b) - f(a) are, for every $a, b \in \mathbb{R}$. So, for $g \in \mathcal{G}(\overline{A})$, by Lemma 2 ii), we may apply this result to $g(\beta + i \cdot)$: it is a.s. differentiable: $\mathbb{R} \to A_{\beta}$. The conclusion follows from Theorem 5.

Comment. Actually, for any interpolation couple \overline{C} and $g \in \mathcal{G}(\overline{C})$, there exists $c \in C_0 + C_1$ such that g(j+it) + c lies in C_j , $j \in \{0,1\}$, $t \in \mathbb{R}$, which, by Lemma 1 c), implies that $(g+c)(\theta+i\cdot)$ is valued in C_{θ} . Indeed, let $g(1) - g(0) = c_0 + c_1$, where $c_j \in C_j$ and where $\|c_0\|_{C_0} + \|c_1\|_{A_1} \leq \|g(1) - g(0)\|_{C_0+C_1} + \|g^{\cdot}\|_{Q\mathcal{G}(\overline{C})}$. By (1), $\|g(1) - g(0)\|_{C_0+C_1} \leq \|g^{\cdot}\|_{Q\mathcal{G}(\overline{C})}$, so that $\|c_0\|_{C_0} + \|c_1\|_{C_1} \leq 2\|g^{\cdot}\|_{Q\mathcal{G}(\overline{C})}$, and we then let

$$c = -g(0) - c_0 = c_1 - g(1).$$

Theorem 12. Let \overline{A} be a regular interpolation couple. Assume that, for some $\beta \in (0, 1)$,

- 1) A_{β} is weakly sequentially complete,
- 2) $(A_0^*, A_1^*)^\beta = (A_0^*, A_1^*)_\beta.$
- Then $A^{\theta} = A_{\theta}$, for every $\theta \in (0, 1)$.

PROOF: Let $g \in \mathcal{G}(\overline{A})$. We claim that $g'(\beta + i \cdot)$ is valued in a closed separable subspace of A_{β} . Indeed by Lemma 2 ii), the associated function $F_{1/n}(\beta + i \cdot) : \mathbb{R} \to \mathbb{R}$

 A_{β} is bounded and continuous, hence valued in a separable subspace E_n of A_{β} . By Remark 8, for every $t \in \mathbb{R}$ and $a^* \in (A_0^*, A_1^*)_{\beta}$, the sequence $((F_{1/n}(\beta + it), a^*))_n$ is Cauchy. By assumption 2), $(A_0^*, A_1^*)_{\beta} = (A_{\beta})^*$. So, for every $t \in \mathbb{R}$, $(F_{1/n}(\beta + it))_n$ is weak Cauchy in A_{β} , hence in E, the norm closure of $\bigcup_n E_n$ in A_{β} . By assumption 1) it converges weakly in E. Since the canonical map $A_{\beta} \to A_0 + A_1$ is one to one, the limit point is $ig'(\beta + it)$, which thus lies in the separable space E. Then Lemma 4, c) \Rightarrow a) and Theorem 5 end the proof.

In [Da1] we showed that if A^{β} is a weakly compactly generated Banach space (in short WCG, see [DU, Chapter VIII, p. 251]) for some $\beta \in (0, 1)$, then $A^{\theta} = A_{\theta}$, for every $\theta \in (0, 1)$. The next theorem weakens the assumption. Two properties of a WCG space X will be used:

(P₁) if a convex set Z is w^* -dense in the unit ball B_{X^*} , then every $x^* \in B_{X^*}$ is the w^* -limit of a sequence in Z (see e.g. [FHHMZ]),

(P₂) if $\phi : \mathbb{R} \to X$ is a weakly measurable function, then there exists a strongly measurable function $\varphi : \mathbb{R} \to X$ such that, for every $a^* \in X^*$, $\langle \phi(.), a^* \rangle = \langle \varphi(.), a^* \rangle$ a.s. [DU, p. 642].

For the convenience of the reader we give a direct proof of (P₁): Since X is WCG, there exists, by the Davis–Figiel–Johnson–Pelczynski theorem (see e.g. [FHHMZ, Corollary 13.24]), a reflexive space E and an injection with dense range $J: E \to X$. Let x^* be in the unit ball of X^* . By assumption there is a net (z_{α}) in Z such that $z_{\alpha} \to x^*$ in the w^* -topology of X^* . Then $J^*(z_{\alpha}) \to J^*(x^*)$ weakly in E. So there is a sequence (y_n) in Z such that $J^*(y_n) \to_{n\to\infty} J^*(x^*)$ in the norm of E^* . Then $y_n \to_{n\to\infty} x^*$ in the w^* -topology of X^* because J(E) is dense in X.

Theorem 13. Let \overline{A} be a regular couple and let $\beta \in (0, 1)$. Assume that \overline{A}^{β} is WCG. Then $A^{\theta} = A_{\theta}$ for every $\theta \in (0, 1)$.

The proof needs the following lemma:

Lemma 14. Let \overline{A} be a regular couple, let $\beta \in (0,1)$ and assume that \overline{A}^{β} is WCG. Let $g \in \mathcal{G}(\overline{A})$. Then the map $R^{\beta} \circ g'(\beta + i \cdot) = R^{\beta} \circ \phi_{\beta} : \mathbb{R} \to \overline{A}^{\beta}$ is strongly measurable. Moreover, for every $x^* \in (\overline{A}^{\beta})^*$, $\langle R^{\beta} \circ \phi_{\beta}(.), x^* \rangle$ lies in $\mathcal{B}_1(\mathbb{R}, \mathbb{C})$.

PROOF: By assumption \overline{A}^{β} satisfies (P₁) and (P₂). We first claim that $R^{\beta} \circ \phi_{\beta}$: $\mathbb{R} \to \overline{A}^{\beta}$ is weakly measurable. Let U be the closed unit ball of $(\overline{A}^{\beta})^*$ and U_0 be the closed unit ball of B_{β} . Let $Z = U_0 \cap (A_0^* \cap A_1^*)$. By (14), Z is w^* -dense in U. Since $g'(\beta + i \cdot)$ is continuous: $\mathbb{R} \to A_0 + A_1$, for every $a^* \in A_0^* \cap A_1^* = B_0 \cap B_1$, $\langle R^{\beta} \circ \phi_{\beta}(.), a^* \rangle = \langle \phi_{\beta}(.), a^* \rangle$ is continuous. By (P₁), every $x^* \in U$ is the w^* -limit of a sequence in Z, hence $\langle R^{\beta} \circ \phi_{\beta}(.), x^* \rangle$ is in $\mathcal{B}_1(\mathbb{R}, \mathbb{C})$, which proves the claim and the last assertion of the lemma.

So, by (P₂), there exists a strongly measurable function $\varphi : \mathbb{R} \to \overline{A}^{\beta}$ such that, for every $x^* \in (\overline{A}^{\beta})^*$, $\langle R^{\beta} \circ \phi_{\beta}(.), x^* \rangle = \langle \varphi(.), a^* \rangle$ a.s. In particular this holds for

every $a^* \in B_0 \cap B_1 = A_0^* \cap A_1^*$. By Lemma 10 b), $R^\beta \circ \phi_\beta = \varphi$ a.s., which ends the proof.

PROOF OF THEOREM 13: Let $g \in \mathcal{G}(\overline{A})$. By Lemma 14 and Lemma 9, $g'(\beta + i \cdot)$: $\mathbb{R} \to A_{\beta}$ is strongly measurable. Lemma 4, b) \Rightarrow a) and Theorem 5 end the proof.

Definition 15. A Banach space X is weakly Lindelöf if every weakly open covering of X has a countable subcovering.

For example a WCG space is weakly Lindelöf [FHHMZ, Theorem 14.31]. We shall only use the fact that weakly Lindelöf spaces have Property (P_2) [E, Proposition 5.4 and (4), p. 671].

Proposition 16. Let \overline{A} be a regular couple. Assume that $A^{\beta} = A_{\beta}$ and that A_{β} is weakly Lindelöf for some $\beta \in (0, 1)$. Then $A^{\theta} = A_{\theta}$ for every $\theta \in (0, 1)$.

PROOF: The second assumption implies (P₂). Let $g \in \mathcal{G}(\overline{A})$. By the first assumption and Lemma 3 b), $\phi_{\beta} = g'(\beta + i \cdot) : \mathbb{R} \to A_{\beta}$ is weakly measurable. So, by (P₂), there exists a strongly measurable function $\varphi : \mathbb{R} \to A_{\beta}$ such that, for every $x^* \in (A_{\beta})^*$, $\langle \phi_{\beta}(.), x^* \rangle = \langle \varphi(.), x^* \rangle$ a.s. This holds in particular for every $a^* \in A_0^* \cap A_1^* = (A_0 + A_1)^*$. By Lemma 7, $A_{\beta} = A^{\beta}$ implies $A_{\beta} = \overline{A}_{\beta}$. So, by Lemma 10, $\phi_{\beta} = \varphi$ a.s., i.e. $\phi_{\beta} : \mathbb{R} \to A_{\beta}$ is strongly measurable. Lemma 4, b) \Rightarrow a) and Theorem 5 end the proof.

The next theorem extends Proposition 16.

Theorem 17. Let \overline{A} be a regular couple such that A_{β} is weakly Lindelöf for some $\beta \in (0, 1)$. Assume that

- 1) there exists a continuous projection $P: \overline{A}^{\beta} \to A_{\beta}$,
- 2) for every $g \in \mathcal{G}(\overline{A})$ and $y^* \in (\overline{A}^{\beta})^*$, the map $\langle R^{\beta} \circ g'(\beta + i \cdot), y^* \rangle$ lies in $\mathcal{B}_1(\mathbb{R}, \mathbb{C})$.

Then $A_{\theta} = A^{\theta}$ for every $\theta \in (0, 1)$.

Comment. Assumption 1) is consistent by Lemma 7. The conclusion of 2) is always true for $y^* \in (A_0^*, A_1^*)_\beta$ by Remark 8. By the proof of Lemma 14, assumption 2) is verified if $(\overline{A}^\beta)^*$ satisfies (P₁).

Remark 18. Assume that A_{β} is a weakly Lindelöf space. Then assumptions 1) and 2) in Theorem 17 are equivalent to $A^{\beta} = A_{\beta}$.

Indeed Theorem 17 gives one implication. Conversely, if $A^{\beta} = A_{\beta}$, then $\overline{A}^{\beta} = A_{\beta}$ by Lemma 7, and 2) follows from Lemma 3 b).

PROOF OF THEOREM 17: Let $g \in \mathcal{G}(\overline{A})$ and let us denote $g'(\beta + i \cdot) = \phi_{\beta}$.

Step 1: By both assumptions $P \circ R^{\beta} \circ \phi_{\beta}(.) : \mathbb{R} \to A_{\beta}$ is weakly measurable. Since A_{β} is weakly Lindelöf, there exists by (P₂) a strongly measurable function $\varphi : \mathbb{R} \to A_\beta$ such that

(16)
$$\forall x^* \in (A_\beta)^* \quad \langle P[R^\beta \circ \phi_\beta(.)], x^* \rangle = \langle \varphi(.), x^* \rangle$$
 a.s.

We shall apply this only to $x^* = a^* \in A_0^* \cap A_1^*$. Note that $a^* \in (\overline{A}^\beta)^*$ (see (14)), but we do not know a priori whether $P^*a^* = a^*$. If we get

(17)
$$\forall a^* \in A_0^* \cap A_1^* = B_0 \cap B_1 \quad \langle \phi_\beta(.), a^* \rangle = \langle \varphi(.), a^* \rangle \quad \text{a.s.},$$

Lemma 10 implies $R^{\beta} \circ \phi_{\beta} = \varphi$ a.s., i.e. $\phi_{\beta} : \mathbb{R} \to A_{\beta}$ is strongly measurable. Then Lemma 4, b) \Rightarrow a) and Theorem 5 will end the proof.

Step 2: We now show that (16) implies (17). Let y^* be in the unit ball U of $(\overline{A}^{\beta})^*$. By (14) there is a net $(a_{\alpha}^*)_{\alpha}$ in $U_0 \cap (A_0^* \cap A_1^*)$ such that $a_{\alpha}^* \to y^*$ in the w^* -topology of $(\overline{A}^{\beta})^*$. Let $F_{\frac{1}{n}}(\beta + i \cdot)$ be associated to g as in Lemma 2 (and valued in A_{β}). By (11), for every $\tau \in \mathbb{R}$ and every integer n,

(18)
$$\int_{\tau}^{\tau+1/n} \langle \phi_{\beta}(t), a_{\alpha}^{*} \rangle \, dt = -\frac{i}{n} \langle F_{\frac{1}{n}}(\beta+i\tau), a_{\alpha}^{*} \rangle \to_{\alpha} -\frac{i}{n} \langle F_{\frac{1}{n}}(\beta+i\tau), y^{*} \rangle.$$

We shall prove in Step 3 that, for every τ , n, and $y^* \in (\overline{A}^{\beta})^*$,

(19)
$$\int_{\tau}^{\tau+1/n} \langle \phi_{\beta}(t), a_{\alpha}^* \rangle dt \to_{\alpha} \int_{\tau}^{\tau+1/n} \langle R^{\beta} \circ \phi_{\beta}(t), y^* \rangle dt.$$

Note that $R^{\beta} \circ \phi_{\beta}(.)$ is bounded in \overline{A}^{β} by Lemma 2 iii), weakly measurable by assumption 2, hence $\langle R^{\beta} \circ \phi_{\beta}(.), y^* \rangle$ is locally integrable). By (18) and (19),

(20)
$$\int_{\tau}^{\tau+1/n} \left\langle R^{\beta} \circ \phi_{\beta}(t), y^{*} \right\rangle \, dt = -\frac{i}{n} \left\langle F_{\frac{1}{n}}(\beta+i\tau), y^{*} \right\rangle.$$

By (16) and (20) applied to $y^* = P^*a^*$, for $a^* \in A_0^* \cap A_1^*$,

$$\begin{split} in \int_{\tau}^{\tau+1/n} \langle \varphi(t), a^* \rangle \ dt &= in \int_{\tau}^{\tau+1/n} \left\langle R^{\beta} \circ \phi_{\beta}(t), P^* a^* \right\rangle \ dt \\ &= \left\langle F_{\frac{1}{n}}(\beta+i\tau), P^* a^* \right\rangle = \left\langle F_{\frac{1}{n}}(\beta+i\tau), a^* \right\rangle. \end{split}$$

Note that $\langle \varphi(t), a^* \rangle$ is locally integrable since $\langle R^\beta \circ \phi_\beta(t), P^*a^* \rangle$ is. Taking limits when $n \to \infty$ (by Lebesgue's differentiation theorem on the LHS, by (12) on the RHS), we get (17), as desired.

Step 3: We prove the claim (19). Let U, U_0 be respectively the closed unit balls of $(\overline{A}^{\beta})^*$ and $(A_0^*, A_1^*)_{\beta}$. By (14), $U_0 \cap (A_0^* \cap A_1^*)$ is w^* -dense in U. The map $y^* \to \langle R^{\beta} \circ \phi_{\beta}(.), y^* \rangle$ is continuous from (U, w^*) into the space of complex valued functions on \mathbb{R} equipped with the topology of pointwise convergence. The image K of U is compact for this topology and the image K_0 of $U_0 \cap (A_0^* \cap A_1^*)$

is dense in K. Moreover K is bounded in $\ell^{\infty}(\mathbb{R})$ (see Step 2). By assumption 2), K actually lies in $\mathcal{B}_1(\mathbb{R}, \mathbb{C})$. Hence (19) follows from [R, Main Theorem b)]. \Box

Our last result does not deal with the equality between A_{θ} and A^{θ} , but uses some of the machinery from part 2.

Proposition 19. Let (A_0, A_1) be a regular couple such that A_0 is a subspace of A_1 , and let $0 < \theta < \beta < 1$. Assume that the embedding $i : A_0 \to A_1$ is compact. Then i extends as a compact embedding $A_\theta \to A_\beta$.

PROOF: Step 1: Since $A_0 = A_0 \cap A_1$ and $A_1 = A_0 + A_1$ we know that *i* factors through A_β . We claim that the embedding $i_\beta : A_0 \to A_\beta$ is compact. Indeed let $(x_n)_{n\geq 0}$ be a bounded sequence in A_0 . Since $i : A_0 \to A_1$ is compact, there exists a subsequence $(x_{n_k})_{k\geq 0}$ such that $i(x_{n_k})$ has a limit in A_1 , hence $(x_{n_k})_{k\geq 0}$ is a Cauchy sequence in A_1 . By (4), for every $k, k' \in \mathbb{N}$, we have

$$\|x_{n_k} - x_{n_{k'}}\|_{A_{\beta}} \le \|x_{n_k} - x_{n_{k'}}\|_{A_0}^{1-\beta} \|x_{n_k} - x_{n_{k'}}\|_{A_1}^{\beta},$$

so that the sequence $(i(x_{n_k}))_{k\geq 0}$ is Cauchy in A_β . (This step does not need the regularity of the couple (A_0, A_1)).

Step 2: By assumption A_0 is dense in A_1 and in A_β . Hence $i^* : A_1^* \to A_0^*$ is an injection which factors through $(A_\beta)^*$. Let B_j be the closure of $A_0^* \cap A_1^* = A_1^*$ in A_j^* , so that $i^* : B_1 = A_1^* \to B_0$. By the regularity of (A_0, A_1) and by Step 1, $i_\beta^* : (A_\beta)^* = (A_0^*, A_1^*)^\beta \to A_0^*$ is a compact embedding. Hence so is its restriction $(A_0^*, A_1^*)_\beta = B_\beta \to A_0^*$, which is actually an embedding $B_\beta \to B_0$.

Applying Step 1 to the regular couple (B_{β}, B_0) , we get a compact embedding with dense range $j : B_{\beta} \to (B_{\beta}, B_0)_{\eta}, \eta \in (0, 1)$. By [BL, Theorem 4.2.1] and the reiteration theorem [BL, Theorem 2.7.1], $(B_{\beta}, B_0)_{\eta} = (B_0, B_{\beta})_{1-\eta} = B_{\theta}$ if $\theta = (1 - \eta)\beta$.

Hence the adjoint $j^* : B^*_{\theta} \to B^*_{\beta}$ is a compact embedding. By Lemma 7, A_{θ} and A_{β} are respectively isometric subspaces of B^*_{θ} and B^*_{β} . The restriction of j^* to A_{θ} is a compact embedding which is identity on A_0 , hence sends A_{θ} into A_{β} and coincides with i_{β} on A_0 .

Appendix: We give a variant of Lemma 4, which does not need regularity for $c) \Rightarrow b$ and proves $c') \Rightarrow b'$. Lemma 3 is replaced by the following:

Lemma 20. Let F be a separable Banach space which is a (non closed in general) subspace of a Banach space E, let $J : F \to E$ be the canonical map, and assume that J is continuous. Let $\varphi : \mathbb{R} \to F$ be a function such that $J \circ \varphi : \mathbb{R} \to E$ is continuous. Then $\varphi : \mathbb{R} \to F$ is strongly measurable.

PROOF: Since F is separable, F and $\overline{J(F)}$ (the closed subspace of E spanned by J(F)) are Polish spaces and $J : F \to \overline{J(F)}$ is one to one and continuous. By Souslin's theorem (see e.g. [A, Theorem 3.2.3 and its corollary]) the map $J^{-1}: J(F) \to F$ is Borel measurable. Since $\varphi = J^{-1} \circ J \circ \varphi$ and $J \circ \varphi : \mathbb{R} \to \overline{J(F)}$ is continuous, $\varphi : \mathbb{R} \to F$ is Borel measurable. Since F is separable, φ is strongly measurable by Pettis' theorem [DU, Chapter II, p. 42].

Lemma 21. Let \overline{C} be an interpolation couple, $g \in \mathcal{G}(\overline{C})$, $0 < \beta < 1$. With the notation of Lemma 4, c) \Rightarrow b) and c') \Rightarrow b').

PROOF: This follows from Lemma 20 since $F = C_{\beta}$ or C^{β} embeds in $E = C_0 + C_1$ and $g'(\beta + i \cdot) : \mathbb{R} \to C_0 + C_1$ is continuous.

References

- [A] Arveson W., An Invitation to C*-algebra, Graduate Texts in Math., 39, Springer, New York-Heidelberg, 1976.
- [BL] Bergh J., Lofström J., Interpolation Spaces. An Introduction, Springer, Berlin-Heidelberg-New York, 1976.
- [B] Bergh J., On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775–777.
- [Da1] Daher M., Une remarque sur l'espace A^{θ} , C.R.Acad. Sci. Paris Ser. I Math. **322** (1996), no. 7, 641–644.
- [Da2] Daher M., Une remarque sur les espaces d'interpolation A^{θ} qui sont LUR, Colloq. Math. **123** (2011), no. 2, 197–204.
- [Da3] Daher M., Une remarque sur les espaces d'interpolation faiblement localement uniformément convexes, arXiv:1206.4848.
- [DU] Diestel J., Uhl J.J., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, Rhode Island, 1977.
- [E] Edgar G.A., Measurability in a Banach space, Indiana Univ. Math. J. 26 (1977), no. 4, 663–677.
- [FHHMZ] Fabian M., Habala P., Hajek P., Montesinos V., Zizler V., Banach Space Theory, CMS Books in Mathematics, Springer, New York, 2011.
- [R] Rosenthal H.P., Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), no. 2, 362–378.

DEPARTMENT OF MATHS, PARIS VII UNIVERSITY

E-mail: m.daher@orange.fr

(Received October 2, 2014, revised February 17, 2016)