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Some remarks on the interpolation spaces Aθ, Aθ

Mohammad Daher

Abstract. Let (A0, A1) be a regular interpolation couple. Under several different
assumptions on a fixed Aβ , we show that Aθ = Aθ for every θ ∈ (0, 1). We also

deal with assumptions on A
β
, the closure of Aβ in the dual of (A∗

0
, A∗

1
)β .
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Introduction

We are looking for sufficient conditions on a regular interpolation couple (A0, A1)
implying that Aθ = Aθ for every θ ∈ (0, 1). We already considered such questions
in [Da1] and [Da2]. Unhappily, there was a mistake in a crucial lemma at the
beginning of [Da2]. A corrected version of this paper was put on arXiv as [Da3].
The present paper uses the same machinery, which we essentially reproduce in
part 2, with simplifications.

In the first part we recall the definitions and some known properties of Aθ

and Aθ. In the second part, we collect results about the mapping τ ∈ R →
g′(θ + iτ), where g ∈ G(A0, A1), and give in Theorem 5 a key abstract condition
on a fixed Aβ , stronger than Aβ = Aβ , implying that Aθ = Aθ for every θ ∈ (0, 1).
We also define and study the maps Rθ : Aθ → [(A∗

0, A
∗
1)θ]

∗.
In the third part we deduce that Aθ = Aθ for every θ ∈ (0, 1) under geometric

conditions on a fixed Aβ , or on A
β
, defined as the norm closure of Rβ(Aβ) in the

dual space of (A∗
0, A

∗
1)β .

1. Notation, definitions and properties of interpolation spaces

We denote by X∗ the dual of a Banach space X , by C0(R, X) the space of
X-valued continuous functions on R that tend to 0 at infinity. We denote by
B1(R, C) the space of first Baire class functions f : R → C. Let B be the σ-
algebra of Borel subsets of R, completed by sets with Lebesgue measure zero. An
a.s. defined map f : R → X is strongly measurable if there exists a sequence (fn)n

of finitely valued maps fn : R → X such that, for every open ball B in X and
n ∈ N, f−1

n (B) ∈ B, and a.s. ‖f − fn‖X →n→∞ 0.
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Let S = {z ∈ C | 0 ≤ Re(z) ≤ 1} and S0 its interior. Given a map f : S → X ,
we denote by f(θ + i·) : R → X the restriction of f to the line Re z = θ, θ ∈ [0, 1]
and by fτ the translated map fτ (z) = f(z + iτ), τ ∈ R.

Let C = (C0, C1) be a complex interpolation couple in the sense of [BL]. We
first recall the definition of the interpolation space Cθ, θ ∈ (0, 1) [BL, Chapter 4].
Let F(C) be the space of functions f with values in C0 + C1, which are bounded
and continuous on S, holomorphic on S0, such that, for j ∈ {0, 1}, the maps
f(j + i·) lie in C0(R, Cj). We equip F(C) with the norm

‖f‖F(C) = max
[
sup
τ∈R

‖f(iτ)‖C0
, sup
τ∈R

‖f(1 + iτ)‖C1

]
.

The space Cθ = (C0, C1)θ =
{
f(θ) | f ∈ F(C)

}
, 0 < θ < 1, is a Banach space

[BL, Theorem 4.1.2] for the norm defined by

‖a‖Cθ
= inf

{
‖f‖F(C) | f(θ) = a

}
.

We now recall the definition of the complex interpolation space Cθ [BL, Chap-
ter 4]. Let G(C) be the space of functions g with values in C0 +C1, which are con-
tinuous on S, holomorphic on S0, such that the map z → (1 + |z|)−1‖g(z)‖C0+C1

is bounded on S (this condition will be denoted by (C)), such that g(j + iτ) −
g(j+ iτ ′) ∈ Cj for every τ, τ ′ ∈ R, j ∈ {0, 1}, and such that the following quantity
is finite:

‖g.‖QG(C)

= max

[
sup

τ 6=τ ′∈R

∥∥∥
g(iτ) − g(iτ ′)

τ − τ ′

∥∥∥
C0

, sup
τ 6=τ ′∈R

∥∥∥
g(1 + iτ) − g(1 + iτ ′)

τ − τ ′

∥∥∥
C1

]
.

This defines a norm on the space QG(C), quotient of G(C) by the subspace of
constant functions with values in C0 + C1, and QG(C) is complete with respect
to this norm [BL, Lemma 4.1.3]. We recall [BL, proof of Lemma 4.1.3] that every
g ∈ G(C) satisfies

(1) ‖g′(z)‖C0+C1
≤ ‖g.‖QG(C), z ∈ S.

The space Cθ =
{
a ∈ C0 + C1 | ∃ g ∈ G(C), a = g′(θ)

}
is a Banach space [BL,

Theorem 4.1.4] with respect to the norm defined by:

‖a‖Cθ = inf
{
‖g.‖QG(C) | g′(θ) = a

}
.

By (1), the canonical map Cθ → C0 + C1 is a one to one contraction. By [B],
Cθ is isometrically identified with a subspace of Cθ, and by [BL, Theorem 4.2.2],
C0 ∩ C1 is dense in Cθ, 0 < θ < 1.
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Every function f ∈ F(C) admits an integral representation involving the har-
monic measure

(2) f(z) =

∫

R

f(it)Q0(z, t) dt +

∫

R

f(1 + it)Q1(z, t) dt, z ∈ S0,

where t → Q0(z,t)
1−Re z and Q1(z,t)

Re z , z ∈ S0, t ∈ R are probability densities. By [BL,

Lemma 4.3.2], every f ∈ F(C) satisfies

(3) ‖f(θ)‖Cθ
≤

(∫

R

‖f(it)‖C0

Q0(θ, t)

1 − θ
dt

)1−θ(∫

R

‖f(1 + it)‖C1

Q1(θ, t)

θ
dt

)θ

.

For x ∈ C0 ∩ C1, taking f = ϕ ⊗ x for a suitable ϕ, (3) implies

(4) ‖x‖Cθ
≤ ‖x‖1−θ

C0
‖x‖θ

C1
.

Let A = (A0, A1) be an interpolation couple. If A0∩A1 is dense in A0 and A1,
A is called a regular interpolation couple. Then we have [BL, Theorem 2.7.1]

(5) (A0 ∩ A1)
∗ = A∗

0 + A∗
1, A∗

0 ∩ A∗
1 = (A0 + A1)

∗

(in general, there is only a canonical contraction A∗
0+A∗

1 → (A0∩A1)
∗). Moreover

we may apply the reiteration theorem [BL, Theorem 4.6.1] and the dual of Aθ is
the space (A∗

0, A
∗
1)

θ, 0 < θ < 1 [BL, Theorem 4.5.1].
When A is a regular interpolation couple, let Bj be the closure of A∗

0 ∩ A∗
1 in

A∗
j , j = 0, 1. It is clear that

(6) B0 ∩ B1 = A∗
0 ∩ A∗

1

isometrically and the couple B = (B0, B1) is regular. By (5) and (6), isometrically,

(7) B∗
0 + B∗

1 = (B0 ∩ B1)
∗ = (A∗

0 ∩ A∗
1)

∗ = (A0 + A1)
∗∗.

By [BL, Theorem 4.2.2 b] we have isometrically, for 0 < θ < 1,

(8) Bθ = (A∗
0, A

∗
1)θ.

Since B is regular, for 0 < θ < 1,

(9) (Bθ)
∗ = (B∗

0 , B∗
1)θ.

We now define maps ρ̃ : G(A0, A1) → G(B∗
0 , B∗

1) and R : QG(A0, A1) →
QG(B∗

0 , B∗
1). Let ρ be the canonical isometry A0 +A1 → (A0 +A1)

∗∗. By (7), ρ is
also an isometry A0 +A1 → B∗

0 +B∗
1 . Since Aj , j ∈ {0, 1}, embeds in A0 +A1, for

aj ∈ Aj , ρ(aj) is well defined as a continuous linear form on B0 ∩ B1 = A∗
0 ∩ A∗

1.
Let ij : Bj → A∗

j be the canonical isometry and let i∗j : A∗∗
j → B∗

j be the
conjugate onto contraction (which is not one to one in general). Note that B∗

j

embeds in B∗
0 +B∗

1 . If aj ∈ Aj , i∗j (aj) = ρ(aj) is in B∗
0 +B∗

1 (in particular i∗j is one
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to one on Aj), hence ρ is also a one to one contraction Aj → B∗
j . Consequently

the map g(z) → ρ(g(z)) defines a one to one map ρ̃ : G(A0, A1) → G(B∗
0 , B∗

1)
and a one to one contraction R : QG(A0, A1) → QG(B∗

0 , B∗
1). We shall see in

Lemma 6 below that R induces a one to one contraction Rθ : Aθ → (B∗
0 , B∗

1)θ,
0 < θ < 1.

2. Properties of g′(θ + i·), g ∈ G(C0, C1); the map Rθ

We first collect some basic properties.

Lemma 1. Let C = (C0, C1) be an interpolation couple.

a) Let f ∈ F(C). Then, for every θ ∈ (0, 1), τ ∈ R, we have that ‖f(θ +
iτ)‖Cθ

≤ ‖f‖F(C) and f(θ + i·) : R → Cθ is continuous.

b) If moreover f(β + i·) lies in C0(R, Cβ) and f(γ + i·) in C0(R, Cγ) for some
β, γ ∈ [0, 1], then the map F : z → f((γ − β)z + β) belongs to F(Cβ , Cγ),
with norm less than ‖f‖F(C).

c) Let G ∈ G(C) be such that G(j + i·) is valued in Cj , j ∈ {0, 1}. Let

δ ∈ (0, 1]. Then the map fδ(z) = eδz2

G(z), z ∈ S, lies in F(C). In
particular, for every θ ∈ (0, 1), G(θ + i·) : R → Cθ is continuous.

Proof: a) Since ‖f‖F(C) = ‖fτ‖F(C) for every τ ∈ R, the first assertion follows

from the definition of Cθ. By (3), for τ, τ ′ ∈ R,

‖fτ (θ) − fτ ′(θ)‖Cθ
≤

(∫

R

‖fτ(it) − fτ ′(it)‖C0

Q0(θ, t)

1 − θ
dt

)1−θ

(2‖f‖F(C))
θ.

Since functions in C0(R, C0) are uniformly continuous, this implies the (uniform)
continuity of f(θ + i·) : R → Cθ.

b) The function F has on S0 the integral representation, with values in C0+C1:

(10) F (z) =

∫

R

F (iτ)Q0(z, τ) dτ +

∫

R

F (1 + iτ)Q1(z, τ) dτ.

Indeed, since F (j + i·) lies in C0(R, C0 + C1), the RHS of (10) is well defined,
harmonic, bounded: S0 → C0 + C1 and extends as a continuous function: S →
C0 +C1 (by conformal mapping this follows from the well known analogous result
on the unit disk). It coincides with F on the boundary of S, hence on S0 since
F : S0 → C0 + C1 is holomorphic (harmonic). Since F (i·) lies in C0(R, Cβ)
and F (1 + i·) in C0(R, Cγ), with norm less than ‖f‖F(C), the RHS of (10) lies

in Cβ + Cγ , with norm less than ‖f‖F(C) and, as before, extends as a bounded

continuous function: S → Cβ + Cγ .
Let us verify that F : S0 → Cβ + Cγ is holomorphic. More generally, if a

function F : S0 → X is holomorphic, bounded by K as mapping: S0 → Y
where Y continuously embeds in X , then F : S0 → Y is holomorphic. Indeed
let D(z0, r) ⊂ S0 be a closed disk, with 0 < r < 1. Since F is holomorphic with
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values in X , we have F (z) =
∑

k≥0 ck(z − z0)
k in X for z ∈ D(z0, r). Since

‖ck‖Y =
∥∥∥
∫ 2π

0

F (z0 + reit)e−ikt dt

2π

∥∥∥
Y
≤ K,

the series converges normally in Y on D(z0, r), hence its sum F : D(z0, r) → Y
is holomorphic. Taking Y = Cβ + Cγ , X = C0 + C1, K = ‖f‖F(C) ends the

verification.
c) In order to show that fδ lies in F(C) we only have to verify that fδ(j+i·) lies

in C0(R, Cj), j ∈ {0, 1}, and that fδ : S → C0 + C1 is bounded. By assumption
G(j + i·) is valued and Lipschitz in Cj , hence continuous: R → Cj . Moreover

‖fδ(j + iτ)‖Cj
≤ e1−τ2

(‖G(j + iτ) − G(j)‖Cj
+ ‖G(j)‖Cj

)

≤ e1−τ2

(|τ |‖G .‖QG(C) + ‖G(j)‖Cj
),

which proves the first assertion. Condition (C) gives the desired boundedness
since, for z = θ + iτ ∈ S,

‖fδ(θ + iτ)‖C0+C1
≤ K(G)e1−τ2

(1 +
√

1 + τ2).

By a), fδ(θ + i·) : R → Cθ is continuous, hence so is G(θ + i·). �

Lemma 2. Let C = (C0, C1) be an interpolation couple and let g ∈ G(C). Let
Fh(z) = 1

h [g(z + ih) − g(z)], z ∈ S0 and h 6= 0. Then, for every 0 < θ < 1, for
every τ ∈ R,

i) in C0 + C1, one has that

(11) hFh(θ + iτ) = g(θ + iτ + ih) − g(θ + iτ) = i

∫ τ+h

τ

g′(θ + it) dt,

and letting n be in N∗,

(12) F 1

n
(θ + iτ) →n ig′(θ + iτ).

ii) Fh(θ+ i·) : R → Cθ is continuous (hence (11) holds in Cθ) and is bounded
by ‖g.‖QG(C).

iii) ‖g′(θ + iτ)‖Cθ ≤ ‖g.‖QG(C).

Note that in general the map g′(θ + i·) : R → Cθ is not strongly measurable.

Proof: i) The function g : S0 → C0 +C1 is holomorphic, which implies (11) and
the continuity of t → g′(θ + it) : R → C0 + C1, hence (12).

ii) The map Fh lies in G(C); on Re z = j its values in Cj are bounded by
‖g.‖QG(C), j ∈ {0, 1}. Lemma 1 c) applied to G = Fh gives the first assertion.
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Let fh,δ(z) = eδz2

Fh(z), z ∈ S, δ > 0. By Lemma 1 c) again

‖Fh(θ)‖Cθ
= ‖e−δθ2

fh,δ(θ)‖Cθ
≤ ‖fh,δ‖F(C)

≤ max
(
sup
τ∈R

‖Fh(it)‖C0
, eδ sup

τ∈R

‖Fh(1 + it)‖C1

)
(13)

≤ eδ‖g.‖QG(C).

Let gτ (z) = g(z+iτ), so that ‖g.

τ‖QG(C) = ‖g.‖QG(C), and (gτ (z+ih)−gτ(z))/h =

Fh(z + iτ). By (13) applied to gτ we get

‖Fh(θ + iτ)‖Cθ
≤ eδ‖g.‖QG(C).

Taking δ → 0 ends the proof.
iii) Keeping the notation of ii), by definition,

‖g′(θ + it)‖Cθ ≤ ‖g.

t‖QG(C) = ‖g.‖QG(C). �

Lemma 3. Let A be a regular interpolation couple.

a) Every x∗ in the unit ball of (Aθ)
∗, 0 < θ < 1, is w∗-limit of a sequence in

the unit ball of (A∗
0, A

∗
1)θ.

b) Let g ∈ G(A) and assume that, for some β ∈ (0, 1), for every t ∈ R, g′(β +
it) ∈ Aβ . Then, for every x∗ ∈ (Aβ)∗, 〈g′(β + i·), x∗〉 lies in B1(R, C). In
particular the function g′(β + i·) : R → Aβ is weakly measurable.

Proof: a) Let x∗ be in the open unit ball of (Aθ)
∗ = (A∗

0, A
∗
1)

θ and let h ∈
G(A∗

0, A
∗
1) be such that h′(θ) = x∗ and ‖h.‖QG(A∗

0
,A∗

1
) ≤ 1. Let H1/n be associated

to h as in Lemma 2. By Lemma 2 ii), i), the sequence (H1/n(θ))n lies in the closed

unit ball of (A∗
0, A

∗
1)θ, hence of (A∗

0, A
∗
1)

θ and converges to h′(θ) in A∗
0 +A∗

1, hence
w∗ on A0 ∩ A1. Since A0 ∩ A1 is dense in Aθ, (H1/n(θ))n converges w∗ in (Aθ)

∗

to h′(θ) = x∗.
b) The map φβ = g′(β + i·) : R → A0 + A1 is continuous, bounded: R → Aβ

by Lemma 2 iii), hence by assumption it is bounded: R → Aβ . Hence 〈φβ(.), a∗〉
is continuous on R for every a∗ ∈ A∗

0 ∩ A∗
1 and even for every a∗ ∈ (A∗

0, A
∗
1)β ,

since (A∗
0, A

∗
1)β is the closure of A∗

0 ∩ A∗
1 in (Aβ)∗ = (A∗

0, A
∗
1)

β . Let x∗ be in the
open unit ball of (Aβ)∗. By a) there exists a sequence (b∗n)n in the unit ball of
(A∗

0, A
∗
1)β such that

∀t ∈ R 〈φβ(t), b∗n〉 →n
〈φβ(t), x∗〉 .

The functions 〈φβ(.), b∗n〉 are continuous and uniformly bounded on R, hence
〈φβ(.), x∗〉 belongs to B1(R, C). �

Lemma 4. Let C be an interpolation couple, g ∈ G(C), let F 1

n
be associated to

g as in Lemma 2, 0 < β < 1. Let us consider the following properties:
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a) for almost every τ the sequence (F 1

n
(β + iτ)) converges in Cβ ,

b) g′(β + i·) : R → Cβ is strongly measurable,
c) there is a closed separable subspace E of Cβ such that g′(β + it) ∈ E for

every t ∈ R.
Then b) ⇔ a). If C is a regular couple, then c) ⇒ b).

Let a’), b’) be analogous to a), b) with Cβ instead of Cβ . Then we have that
b’) ⇔ b) ⇔ a’) ⇔ a).

Comments. We shall prove in Theorem 5 that a) implies c) if C is regular.
The sequence (F 1

n
(β + iτ)) always lies in Cβ by Lemma 2 ii). Condition b)

obviously implies that g′(β + i·) is a.s. valued in a closed separable subspace E
of Cβ , but b) ⇒ c) is less obvious. In the proof of c) ⇒ b) we actually use that
g′(β + it) ∈ Cβ for every t ∈ R and g′(β + i·) is a.s. valued in a closed separable
subspace of Cβ . In the appendix we shall remove the regularity assumption in
c) ⇒ b) and the same proof will give c’) ⇒ b’), where in c’) F is a closed subspace
of Cβ .

Proof: b) ⇒ b’) and a) ⇒ a’) are obvious.
b’) ⇒ a): By Lemma 2 iii), φβ = g′(β + i·) is uniformly bounded in Cβ . Hence,

by assumption, φβ : R → Cβ is locally Bochner integrable. By the Lebesgue
differentiation theorem [DU, Chapter II, Theorem 9, p. 49] in Cβ ,

lim
n

n

∫ τ+ 1

n

τ

φβ(t) dt = φβ(τ), a.s. in τ.

By Lemma 2 i) and ii), the integral lies in Cβ for every τ and coincides with

− i
nF 1

n
(β + iτ). Since Cβ is closed in Cβ , the limit holds in Cβ , implying a).

a) ⇒ b): The a.s. limit coincides a.s. with ig′(β + i·) by (12). By Lemma 2 ii),
F 1

n
(β + i·) : R → Cβ is continuous, hence the a.s. limit is strongly measurable:

R → Cβ . The same argument shows that a’) ⇒ b’).
c) ⇒ b): By assumption and Lemma 3 the map g′(β + i·) : R → Cβ is weakly

measurable and a.s. valued in a closed separable subspace of Cβ . By Pettis’
theorem [DU, Chapter II, p. 42] it is strongly measurable. �

By the equivalence a) ⇔ b) in Lemma 4, the next theorem was proved in [Da3],
in a more intricate way. The proof below closely follows the proof of [BL,
Lemma 4.3.3].

Theorem 5. Let β ∈ (0, 1). Let A be a regular interpolation couple.

a) Let g ∈ G(A), let F 1

n
be associated to g as in Lemma 2. Assume that

for almost every τ , the sequence (F 1

n
(β + iτ))n, which is valued in Aβ by

Lemma 2 ii), converges in Aβ (necessarily to ig′(β + iτ) by Lemma 2 i)).
Then, for every θ ∈ (0, 1) and every τ ∈ R, the sequence (F 1

n
(θ + iτ))n

converges in Aθ (necessarily to ig′(θ+iτ), which thus lies in Aθ). Moreover
g′(θ + i·) is valued in a closed separable subspace of Aθ.
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b) If the assumption of a) holds for every g ∈ G(A), then Aθ = Aθ for every
θ ∈ (0, 1).

Proof: a) By Lemma 2 ii), the sequence (F 1

n
(β + i·))n is uniformly bounded

by ‖g.‖QG(A) and it is continuous: R → Aβ . Let f 1

n
(z) = ez2

F 1

n
(z). Then

f 1

n
(β + i·) = e(β+i·)2F 1

n
(β + i·) lies in C0(R, Aβ). Let γ ∈ {0, 1}. By Lemma 1,

f 1

n
((γ−β)z+β) lies in F(Aβ , Aγ), with norm less than e‖g.‖QG(A). By (3) applied

in F(Aβ , Aγ), for η ∈ (0, 1),

‖(f 1

n
− f 1

m
)((γ − β)η + β)‖(Aβ ,Aγ)η

≤
(∫

R

‖(f 1

n
− f 1

m
)((γ − β)it + β)‖Aβ

Q0(η, t)

1 − η
dt

)1−η

(2e‖g.‖QG(A))
η.

By the assumption and Lebesgue’s convergence theorem the above integral tends
to 0 as n, m → ∞, hence so does the LHS. Let θ = (1 − η)β + ηγ ∈ (β, γ) (so
θ runs through (0, β) ∪ (β, 1)). By the reiteration theorem [BL, Theorem 4.6.1]

(Aβ , Aγ)η = Aθ, and the LHS is eθ2

‖(F 1

n
− F 1

m
)(θ)‖Aθ

. Hence (F 1

n
(θ))n is a

Cauchy sequence in Aθ, so it converges in Aθ, to ig′(θ) by Lemma 2 i). Applying
this to gτ , τ ∈ R, instead of g, one gets F 1

n
(θ+iτ) → ig′(θ+iτ) in Aθ. In particular

the assumption of a) also holds at θ instead of β. Since F 1

n
(θ + i·) : R → Aθ is

continuous by Lemma 2 ii), it takes values in a closed separable subspace En of
Aθ and g′(θ+i·) is valued in the (separable) closure of ∪nEn in Aθ. This proves a)
for θ 6= β. Since the assumption of a) holds at θ, the conclusion also holds at β.

b) is obvious from a). �

Lemma 6. Let A be a regular interpolation couple. Then the mapping R :
QG(A0, A1) → QG(B∗

0 , B∗
1 ) (defined in part 1) induces a one to one contraction

Rθ : Aθ → (B∗
0 , B∗

1)θ, for θ ∈ (0, 1).

Proof: We identify Aθ and (B∗
0 , B∗

1)θ with quotients of

QG(A0, A1) and QG(B∗
0 , B∗

1)

respectively. We define Rθ by Rθ(g′(θ)) = (R(g.))′(θ). Since R is a contraction:
QG(A0, A1) → QG(B∗

0 , B∗
1), Rθ is a contraction: Aθ → (B∗

0 , B∗
1)θ. Let us verify

that it is one to one. For a ∈ Aθ and b ∈ B0 ∩ B1 = A∗
0 ∩ A∗

1 = (A0 + A1)
∗, we

have
〈
Rθ(a), b

〉
= 〈a, b〉 .

If Rθ(a) = 0 in (B∗
0 , B∗

1 )θ = (Bθ)
∗, then 〈a, b〉 = 0 for every b as above, thus a = 0

in A0 + A1, hence in Aθ. �

We denote by A
θ

the norm closure of Rθ(Aθ) in (B∗
0 , B∗

1)θ. Note that A
θ

embeds in A0+A1 since Aθ does, and (B∗
0 , B∗

1)θ embeds in B∗
0 +B∗

1 = (A0+A1)
∗∗.

Thus A∗
0 ∩ A∗

1 is a subspace of (A
θ
)∗.
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Let σθ : A
θ
→ (B∗

0 , B∗
1)θ = (Bθ)

∗ be the isometric inclusion map. Its adjoint is

onto, i.e. (A
θ
)∗ = σ∗

θ [(Bθ)
∗∗]. Let U , respectively U0, be the unit balls of (A

θ
)∗,

respectively Bθ. Since B0 ∩B1 is dense in Bθ, it follows that σ∗
θ(U0 ∩ (B0 ∩ B1))

is w∗-dense in U . Since σ∗
θ coincides with the identity on B0 ∩ B1 = A∗

0 ∩ A∗
1, we

get that

(14) U0 ∩ (A∗
0 ∩ A∗

1) is w∗ dense in U ⊂ (A
θ
)∗.

Lemma 7. Let A be a regular interpolation couple. For every θ ∈ (0, 1), Rθ :

Aθ → (B∗
0 , B∗

1)θ = [(A∗
0, A

∗
1)θ]

∗ is an isometry. In particular Aθ is closed in A
θ
.

Proof: By Lemma 3 the unit ball of (A∗
0, A

∗
1)θ = Bθ is w∗-dense in the unit ball

of (Aθ)
∗. Hence, for a ∈ A0 ∩ A1,

‖a‖Aθ
= sup{| 〈a, b〉 | | ‖b‖Bθ

≤ 1} = ‖Rθ(a)‖(Bθ)∗ . �

Comment. Though we shall not use it, note that by Lemma 7, Bθ may be iso-

metrically identified with a (closed) subspace of (A
θ
)∗, hence, with the notation

of (14), U0 ∩ (A∗
0 ∩ A∗

1) = U ∩ (A∗
0 ∩ A∗

1). Indeed, for b ∈ B0 ∩ B1, by (8) for the
first equality and Lemma 7 for the first inequality,

‖b‖Bθ
= ‖b‖(Aθ)∗ ≤ ‖b‖

(A
θ
)∗

≤ ‖b‖(Bθ)∗∗ = ‖b‖Bθ
.

Remark 8. Let g ∈ G(A) and let F 1

n
be associated to g as in Lemma 2. Then,

for every t ∈ R and b ∈ (A∗
0, A

∗
1)θ = Bθ

(15)
〈
F 1

n
(θ + it), b

〉
→n i

〈
Rθ ◦ g′(θ + it), b

〉
.

In particular the RHS of (15) lies in B1(R, C).

Indeed, by (12), (15) holds for every t ∈ R, a∗ ∈ A∗
0 ∩ A∗

1. By Lemma 2 ii) and
Lemma 7, ‖F 1

n
(θ + it)‖(Bθ)∗ ≤ ‖g.‖QG(C). By Lemma 6 and Lemma 2 iii)

‖Rθ ◦ g′(θ + it)‖(Bθ)∗ ≤ ‖g′(θ + it)‖Aθ ≤ ‖g.‖QG(C).

Then a 3ε argument proves the first claim since A∗
0 ∩ A∗

1 is norm dense in Bθ.
Lemma 2 ii) proves the second claim. �

Lemma 9. Let A be a regular interpolation couple and let g ∈ G(A). If, for some

β, Rβ ◦φβ = Rβ ◦ g′(β + i·) : R → A
β

is strongly measurable: , then φβ : R → Aβ

is strongly measurable.

Proof: It is similar to the proof of b’) ⇒ a) in Lemma 4, replacing Aβ by A
β
,

since Aβ is closed in A
β

by Lemma 7. �

The following lemma completes Lemma 9.
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Lemma 10. a) Let ϕ : R → X∗ be a strongly measurable function such
that for every x ∈ X , 〈ϕ(.), x〉 = 0 a.s.. Then ϕ = 0 a.s..

b) In particular, let ϕ : R → A
β

be a strongly measurable function and
g ∈ G(A). Then Rβ ◦ φβ = ϕ a.s. as soon as, for every a∗ ∈ A∗

0 ∩ A∗
1,

〈ϕ(.), a∗〉 =
〈
Rβ ◦ φβ(.), a∗

〉
a.s.

Proof: a) Since ϕ is strongly measurable, ϕ is a.s. valued in a closed separable
subspace E ⊂ X∗. Then the closed unit ball of E∗ = X∗∗/E⊥, being compact
and metrizable for its w∗-topology, is separable for this topology. Hence there
exists a countable set (xk) in the unit ball of X whose image is w∗-dense in X∗.
By assumption, a.s. in t, 〈ϕ(t), xk〉 = 0 for every k. For such a t, ϕ(t) = 0.

b) Since Rβ and the canonical map (B∗
0 , B∗

1 )β → B∗
0 + B∗

1 are one to one, it is
enough to show that Rβ ◦ φβ = ϕ a.s. as functions with values in B∗

0 + B∗
1 . Note

that Rβ ◦ φβ = φβ is continuous: R → B∗
0 + B∗

1 = (B0 ∩ B1)
∗ = (A0 + A1)

∗∗

(see (7)). The claim follows from the assumption and from a) applied to X =
B0 ∩ B1 = A∗

0 ∩ A∗
1 and Rβ ◦ φβ − ϕ. �

3. Conditions implying Aθ = Aθ for every θ

Proposition 11. Let A be a regular interpolation couple. Assume that Aβ has
the Radon-Nikodym property [DU] for some 0 < β < 1. Then Aθ = Aθ for every
0 < θ < 1.

Proof: Since Aβ has the Radon-Nikodym property, Lipschitz maps: R → Aβ

are a.s. differentiable [DU, Chapter IV, Theorem 2, p. 107]. Actually, the proof
does not use the fact that the Lipschitz map f under consideration is valued in
a Radon-Nikodym space, but only that the differences f(b) − f(a) are, for every
a, b ∈ R. So, for g ∈ G(A), by Lemma 2 ii), we may apply this result to g(β + i·):
it is a.s. differentiable: R → Aβ . The conclusion follows from Theorem 5. �

Comment. Actually, for any interpolation couple C and g ∈ G(C), there exists c ∈
C0 +C1 such that g(j + it)+ c lies in Cj , j ∈ {0, 1}, t ∈ R, which, by Lemma 1 c),
implies that (g + c)(θ+ i·) is valued in Cθ. Indeed, let g(1)−g(0) = c0 + c1, where
cj ∈ Cj and where ‖c0‖C0

+ ‖c1‖A1
≤ ‖g(1) − g(0)‖C0+C1

+ ‖g.‖QG(C). By (1),

‖g(1) − g(0)‖C0+C1
≤ ‖g.‖QG(C), so that ‖c0‖C0

+ ‖c1‖C1
≤ 2‖g.‖QG(C), and we

then let

c = −g(0)− c0 = c1 − g(1).

Theorem 12. Let A be a regular interpolation couple. Assume that, for some
β ∈ (0, 1),

1) Aβ is weakly sequentially complete,
2) (A∗

0, A
∗
1)

β = (A∗
0, A

∗
1)β .

Then Aθ = Aθ, for every θ ∈ (0, 1).

Proof: Let g ∈ G(A). We claim that g′(β + i·) is valued in a closed separable
subspace of Aβ . Indeed by Lemma 2 ii), the associated function F1/n(β+i·) : R →
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Aβ is bounded and continuous, hence valued in a separable subspace En of Aβ . By
Remark 8, for every t ∈ R and a∗ ∈ (A∗

0, A
∗
1)β , the sequence ((F1/n(β + it), a∗))n

is Cauchy. By assumption 2), (A∗
0, A

∗
1)β = (Aβ)∗. So, for every t ∈ R, (F1/n(β +

it))n is weak Cauchy in Aβ , hence in E, the norm closure of ∪nEn in Aβ . By
assumption 1) it converges weakly in E. Since the canonical map Aβ → A0 + A1

is one to one, the limit point is ig′(β + it), which thus lies in the separable space
E. Then Lemma 4, c) ⇒ a) and Theorem 5 end the proof. �

In [Da1] we showed that if Aβ is a weakly compactly generated Banach space
(in short WCG, see [DU, Chapter VIII, p. 251]) for some β ∈ (0, 1), then Aθ = Aθ,
for every θ ∈ (0, 1). The next theorem weakens the assumption. Two properties
of a WCG space X will be used:

(P1) if a convex set Z is w∗-dense in the unit ball BX∗ , then every x∗ ∈ BX∗

is the w∗-limit of a sequence in Z (see e.g. [FHHMZ]),
(P2) if φ : R → X is a weakly measurable function, then there exists a strongly

measurable function ϕ : R → X such that, for every a∗ ∈ X∗, 〈φ(.), a∗〉 =
〈ϕ(.), a∗〉 a.s. [DU, p. 642].

For the convenience of the reader we give a direct proof of (P1): Since X
is WCG, there exists, by the Davis–Figiel–Johnson–Pelczynski theorem (see e.g.
[FHHMZ, Corollary 13.24]), a reflexive space E and an injection with dense range
J : E → X . Let x∗ be in the unit ball of X∗. By assumption there is a net (zα)
in Z such that zα → x∗ in the w∗-topology of X∗. Then J∗(zα) → J∗(x∗) weakly
in E. So there is a sequence (yn) in Z such that J∗(yn) →n→∞ J∗(x∗) in the
norm of E∗. Then yn →n→∞ x∗ in the w∗-topology of X∗ because J(E) is dense
in X .

Theorem 13. Let A be a regular couple and let β ∈ (0, 1). Assume that A
β

is
WCG. Then Aθ = Aθ for every θ ∈ (0, 1).

The proof needs the following lemma:

Lemma 14. Let A be a regular couple, let β ∈ (0, 1) and assume that A
β

is

WCG. Let g ∈ G(A). Then the map Rβ ◦ g′(β + i·) = Rβ ◦ φβ : R → A
β

is

strongly measurable. Moreover, for every x∗ ∈ (A
β
)∗,

〈
Rβ ◦ φβ(.), x∗

〉
lies in

B1(R, C).

Proof: By assumption A
β

satisfies (P1) and (P2). We first claim that Rβ ◦ φβ :

R → A
β

is weakly measurable. Let U be the closed unit ball of (A
β
)∗ and U0 be

the closed unit ball of Bβ . Let Z = U0 ∩ (A∗
0 ∩A∗

1). By (14), Z is w∗-dense in U .
Since g′(β + i·) is continuous: R → A0 + A1, for every a∗ ∈ A∗

0 ∩ A∗
1 = B0 ∩ B1,〈

Rβ ◦ φβ(.), a∗
〉

= 〈φβ(.), a∗〉 is continuous. By (P1), every x∗ ∈ U is the w∗-limit

of a sequence in Z, hence
〈
Rβ ◦ φβ(.), x∗

〉
is in B1(R, C), which proves the claim

and the last assertion of the lemma.
So, by (P2), there exists a strongly measurable function ϕ : R → A

β
such that,

for every x∗ ∈ (A
β
)∗,

〈
Rβ ◦ φβ(.), x∗

〉
= 〈ϕ(.), a∗〉 a.s. In particular this holds for
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every a∗ ∈ B0 ∩ B1 = A∗
0 ∩ A∗

1. By Lemma 10 b), Rβ ◦ φβ = ϕ a.s., which ends
the proof. �

Proof of Theorem 13: Let g ∈ G(A). By Lemma 14 and Lemma 9, g′(β+i·) :
R → Aβ is strongly measurable. Lemma 4, b) ⇒ a) and Theorem 5 end the
proof. �

Definition 15. A Banach space X is weakly Lindelöf if every weakly open cove-
ring of X has a countable subcovering.

For example a WCG space is weakly Lindelöf [FHHMZ, Theorem 14.31]. We
shall only use the fact that weakly Lindelöf spaces have Property (P2) [E, Propo-
sition 5.4 and (4), p. 671].

Proposition 16. Let A be a regular couple. Assume that Aβ = Aβ and that Aβ

is weakly Lindelöf for some β ∈ (0, 1). Then Aθ = Aθ for every θ ∈ (0, 1).

Proof: The second assumption implies (P2). Let g ∈ G(A). By the first as-
sumption and Lemma 3 b), φβ = g′(β + i·) : R → Aβ is weakly measurable. So,
by (P2), there exists a strongly measurable function ϕ : R → Aβ such that, for
every x∗ ∈ (Aβ)∗, 〈φβ(.), x∗〉 = 〈ϕ(.), x∗〉 a.s. This holds in particular for every

a∗ ∈ A∗
0 ∩ A∗

1 = (A0 + A1)
∗. By Lemma 7, Aβ = Aβ implies Aβ = Aβ . So, by

Lemma 10, φβ = ϕ a.s., i.e. φβ : R → Aβ is strongly measurable. Lemma 4,
b) ⇒ a) and Theorem 5 end the proof. �

The next theorem extends Proposition 16.

Theorem 17. Let A be a regular couple such that Aβ is weakly Lindelöf for
some β ∈ (0, 1). Assume that

1) there exists a continuous projection P : A
β
→ Aβ ,

2) for every g ∈ G(A) and y∗ ∈ (A
β
)∗, the map

〈
Rβ ◦ g′(β + i·), y∗

〉
lies in

B1(R, C).

Then Aθ = Aθ for every θ ∈ (0, 1).

Comment. Assumption 1) is consistent by Lemma 7. The conclusion of 2) is
always true for y∗ ∈ (A∗

0, A
∗
1)β by Remark 8. By the proof of Lemma 14, assump-

tion 2) is verified if (A
β
)∗ satisfies (P1).

Remark 18. Assume that Aβ is a weakly Lindelöf space. Then assumptions 1)
and 2) in Theorem 17 are equivalent to Aβ = Aβ .

Indeed Theorem 17 gives one implication. Conversely, if Aβ = Aβ , then A
β

= Aβ

by Lemma 7, and 2) follows from Lemma 3 b).

Proof of Theorem 17: Let g ∈ G(A) and let us denote g′(β + i·) = φβ .
Step 1: By both assumptions P ◦ Rβ ◦ φβ(.) : R → Aβ is weakly measurable.

Since Aβ is weakly Lindelöf, there exists by (P2) a strongly measurable function
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ϕ : R → Aβ such that

(16) ∀ x∗ ∈ (Aβ)∗
〈
P [Rβ ◦ φβ(.)], x∗

〉
= 〈ϕ(.), x∗〉 a.s..

We shall apply this only to x∗ = a∗ ∈ A∗
0 ∩ A∗

1. Note that a∗ ∈ (A
β
)∗ (see (14)),

but we do not know a priori whether P ∗a∗ = a∗. If we get

(17) ∀ a∗ ∈ A∗
0 ∩ A∗

1 = B0 ∩ B1 〈φβ(.), a∗〉 = 〈ϕ(.), a∗〉 a.s.,

Lemma 10 implies Rβ ◦ φβ = ϕ a.s., i.e. φβ : R → Aβ is strongly measurable.
Then Lemma 4, b) ⇒ a) and Theorem 5 will end the proof.

Step 2: We now show that (16) implies (17). Let y∗ be in the unit ball U of

(A
β
)∗. By (14) there is a net (a∗

α)α in U0 ∩ (A∗
0 ∩ A∗

1) such that a∗
α → y∗ in the

w∗-topology of (A
β
)∗. Let F 1

n
(β + i·) be associated to g as in Lemma 2 (and

valued in Aβ). By (11), for every τ ∈ R and every integer n,

(18)

∫ τ+1/n

τ

〈φβ(t), a∗
α〉 dt = −

i

n

〈
F 1

n
(β + iτ), a∗

α

〉
→α −

i

n

〈
F 1

n
(β + iτ), y∗

〉
.

We shall prove in Step 3 that, for every τ , n, and y∗ ∈ (A
β
)∗,

(19)

∫ τ+1/n

τ

〈
φβ(t), a∗

α

〉
dt →α

∫ τ+1/n

τ

〈
Rβ ◦ φβ(t), y∗

〉
dt.

Note that Rβ ◦ φβ(.) is bounded in A
β

by Lemma 2 iii), weakly measurable by
assumption 2, hence

〈
Rβ ◦ φβ(.), y∗

〉
is locally integrable). By (18) and (19),

(20)

∫ τ+1/n

τ

〈
Rβ ◦ φβ(t), y∗

〉
dt = −

i

n

〈
F 1

n
(β + iτ), y∗

〉
.

By (16) and (20) applied to y∗ = P ∗a∗, for a∗ ∈ A∗
0 ∩ A∗

1,

in

∫ τ+1/n

τ

〈ϕ(t), a∗〉 dt = in

∫ τ+1/n

τ

〈
Rβ ◦ φβ(t), P ∗a∗

〉
dt

=
〈
F 1

n
(β + iτ), P ∗a∗

〉
=

〈
F 1

n
(β + iτ), a∗

〉
.

Note that 〈ϕ(t), a∗〉 is locally integrable since
〈
Rβ ◦ φβ(t), P ∗a∗

〉
is. Taking limits

when n → ∞ (by Lebesgue’s differentiation theorem on the LHS, by (12) on the
RHS), we get (17), as desired.

Step 3: We prove the claim (19). Let U, U0 be respectively the closed unit

balls of (A
β
)∗ and (A∗

0, A
∗
1)β . By (14), U0 ∩ (A∗

0 ∩ A∗
1) is w∗-dense in U . The

map y∗ →
〈
Rβ ◦ φβ(.), y∗

〉
is continuous from (U, w∗) into the space of complex

valued functions on R equipped with the topology of pointwise convergence. The
image K of U is compact for this topology and the image K0 of U0 ∩ (A∗

0 ∩ A∗
1)
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is dense in K. Moreover K is bounded in ℓ∞(R) (see Step 2). By assumption 2),
K actually lies in B1(R, C). Hence (19) follows from [R, Main Theorem b)]. �

Our last result does not deal with the equality between Aθ and Aθ, but uses
some of the machinery from part 2.

Proposition 19. Let (A0, A1) be a regular couple such that A0 is a subspace of
A1, and let 0 < θ < β < 1. Assume that the embedding i : A0 → A1 is compact.
Then i extends as a compact embedding Aθ → Aβ .

Proof: Step 1: Since A0 = A0 ∩ A1 and A1 = A0 + A1 we know that i factors
through Aβ . We claim that the embedding iβ : A0 → Aβ is compact. Indeed let
(xn)n≥0 be a bounded sequence in A0. Since i : A0 → A1 is compact, there exists
a subsequence (xnk

)k≥0 such that i(xnk
) has a limit in A1, hence (xnk

)k≥0 is a
Cauchy sequence in A1. By (4), for every k, k′ ∈ N, we have

‖xnk
− xnk′

‖Aβ
≤ ‖xnk

− xnk′
‖1−β

A0
‖xnk

− xnk′
‖β

A1
,

so that the sequence (i(xnk
))k≥0 is Cauchy in Aβ . (This step does not need the

regularity of the couple (A0, A1)).

Step 2: By assumption A0 is dense in A1 and in Aβ . Hence i∗ : A∗
1 → A∗

0 is
an injection which factors through (Aβ)∗. Let Bj be the closure of A∗

0 ∩A∗
1 = A∗

1

in A∗
j , so that i∗ : B1 = A∗

1 → B0. By the regularity of (A0, A1) and by Step 1,

i∗β : (Aβ)∗ = (A∗
0, A

∗
1)

β → A∗
0 is a compact embedding. Hence so is its restriction

(A∗
0, A

∗
1)β = Bβ → A∗

0, which is actually an embedding Bβ → B0.

Applying Step 1 to the regular couple (Bβ , B0), we get a compact embedding
with dense range j : Bβ → (Bβ , B0)η, η ∈ (0, 1). By [BL, Theorem 4.2.1] and
the reiteration theorem [BL, Theorem 2.7.1], (Bβ , B0)η = (B0, Bβ)1−η = Bθ if
θ = (1 − η)β.

Hence the adjoint j∗ : B∗
θ → B∗

β is a compact embedding. By Lemma 7, Aθ

and Aβ are respectively isometric subspaces of B∗
θ and B∗

β . The restriction of j∗

to Aθ is a compact embedding which is identity on A0, hence sends Aθ into Aβ

and coincides with iβ on A0. �

Appendix : We give a variant of Lemma 4, which does not need regularity for
c) ⇒ b) and proves c’) ⇒ b’). Lemma 3 is replaced by the following:

Lemma 20. Let F be a separable Banach space which is a (non closed in general)
subspace of a Banach space E, let J : F → E be the canonical map, and assume
that J is continuous. Let ϕ : R → F be a function such that J ◦ ϕ : R → E is
continuous. Then ϕ : R → F is strongly measurable.

Proof: Since F is separable, F and J(F ) (the closed subspace of E spanned

by J(F )) are Polish spaces and J : F → J(F ) is one to one and continuous.
By Souslin’s theorem (see e.g. [A, Theorem 3.2.3 and its corollary]) the map

J−1 : J(F ) → F is Borel measurable. Since ϕ = J−1 ◦J ◦ϕ and J ◦ϕ : R → J(F )
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is continuous, ϕ : R → F is Borel measurable. Since F is separable, ϕ is strongly
measurable by Pettis’ theorem [DU, Chapter II, p. 42]. �

Lemma 21. Let C be an interpolation couple, g ∈ G(C), 0 < β < 1. With the
notation of Lemma 4, c) ⇒ b) and c’) ⇒ b’).

Proof: This follows from Lemma 20 since F = Cβ or Cβ embeds in E = C0+C1

and g′(β + i·) : R → C0 + C1 is continuous. �
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