On τ -extending modules

Y. Talebi, R. Mohammadi

Abstract. In this paper we introduce the concept of τ -extending modules by τ -rational submodules and study some properties of such modules. It is shown that the set of all τ -rational left ideals of $_RR$ is a Gabriel filter. An R-module M is called τ -extending if every submodule of M is τ -rational in a direct summand of M. It is proved that M is τ -extending if and only if $M = Rej_M E(R/\tau(R)) \oplus N$, such that N is a τ -extending submodule of M. An example is given to show that the direct sum of τ -extending modules need not be τ -extending.

Keywords: torsion theory; τ -rational submodules; τ -closed submodules; τ -extending modules

Classification: 16D10, 16D80 16D99

1. Introduction

Throughout this paper, R is an associative ring with identity and M is a unital left R-module. A subfunctor ρ is called a preradical if it satisfies the following properties:

- (1) $\rho(M)$ is a submodule of an R-module M;
- (2) if $f: M \longrightarrow N$ is an R-homomorphism, then $f(\rho(M)) \subseteq \rho(N)$ and $\rho(f): f(M) \longrightarrow f(N)$ is the restriction of f to $\rho(M)$.

A preradical ρ is idempotent if $\rho(\rho(M)) = \rho(M)$, and radical when $\rho(M/\rho(M)) = 0$ for all $M \in R$ -Mod.

For a preradical ρ , let $\mathbb{T}_{\rho} = \{N|\rho(N) = N\}$ and $\mathbb{F}_{\rho} = \{N|\rho(N) = 0\}$, \mathbb{T}_{ρ} is called the torsion class of ρ and \mathbb{F}_{ρ} the torsion free class of ρ . ρ is called left exact if $\rho(N) = N \cap \rho(M)$ for every module M and every submodule N of M. A preradical ρ is left exact if and only if ρ is idempotent and \mathbb{T}_{ρ} is closed under submodules. A preradical ρ is called cohereditary if $\rho(M/N) = (\rho(M) + N)/N$ for every module M and every submodule N of M. ρ is cohereditary if and only if ρ is radical and \mathbb{F}_{ρ} is closed under homomorphic images.

A pair $(\mathcal{T}, \mathcal{F})$ of classes of modules is called a *torsion theory* if the following conditions hold:

- (i) $\operatorname{Hom}_R(A, B) = 0$ for every $A \in \mathcal{T}$ and every $B \in \mathcal{F}$;
- (ii) \mathcal{T} and \mathcal{F} are maximal classes having property (i).

The modules in \mathcal{T} are called torsion modules of τ and the modules in \mathcal{F} are torsion-free of τ . There is a 1-1 correspondence between torsion theories and idempotent radicals. In particular preradicals are connected to torsion theory as follows. If ρ is an idempotent radical in R-Mod, then $(\mathbb{T}_{\rho}, \mathbb{F}_{\rho})$ is a torsion theory, where $\mathbb{T}_{\rho} = \{M \in \mathbb{R} - \text{Mod} | \rho(M) = M\}$ and $\mathbb{F}_{\rho} = \{M \in \mathbb{R} - \text{Mod} | \rho(M) = 0\}$. Now for any torsion theory $(\mathcal{T}, \mathcal{F})$, there is an associated idempotent radical τ_t (simply denoted by τ), called the torsion radical associated to torsion theory $(\mathcal{T}, \mathcal{F})$. Here for every module N, $\tau(N)$ will be the unique maximal submodule of N such that $\tau(N) \in \mathcal{T}$. Then τ is uniquely determined and \mathcal{T} is exactly the set $\{M | \tau(M) = M\}$ and $\mathcal{F} = \{M | \tau(M) = 0\}$. Therefore we can denote this torsion theory by $\tau = (\mathcal{T}, \mathcal{F})$, where τ is an idempotent radical associative to $(\mathcal{T}, \mathcal{F})$. A torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ is called hereditary if \mathcal{T} is closed under submodules. A torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ is hereditary if and only if \mathcal{F} is closed under injective hulls if and only if t is a left exact radical. Thus there is a 1-1 correspondence between hereditary torsion theories and left exact radicals.

A module M is extending if every submodule of M is essential in a direct summand of M. In recent years, torsion-theoretic analogues of extending modules have been studied by many authors (see [4], [15], [5], [7], [16], [10], [8]).

In 2007, Charalambides and Clark [5] generalized extending modules to torsion theories. They defined that a module M is τ -extending if every τ -dense, closed submodule of M is a direct summand of M. In 2008, [15] the authors also studied τ -CS (extending) modules under the name of type 2- τ -extending modules. In [8] s-t-CS modules and CS modules were studied under the name of type 1 τ -extending modules and type 2 τ -extending modules respectively.

Following J. L. Gomez Pardo [10], a submodule N of an R-module M is called τ -large in M if, for $W \leq M$, $N \cap W \subseteq \tau(M)$ implies $W \subseteq \tau(M)$.

In [4] the authors say that M is τ -extending module if every submodule is τ -large in a direct summand of M. They showed that every τ -torsion module is τ -extending and they also proved that a τ -torsion free module is τ -extending if and only if it is extending. In this paper, we generalize extending modules by using hereditary torsion theories. We say that a submodule N of M is τ -rational in M if $Hom(M/N, E(R/\tau(R))) = 0$, where $E(R/\tau(R))$ is the injective hull of $R/\tau(R)$. We say that an R-module M is τ -extending if for every submodule X, there exists a direct summand D of M such that X is τ -rational in D, i.e, $Hom(D/X, E(R/\tau(R))) = 0$. We prove that a module M is τ -extending if and only if every τ -closed submodule of M is a direct summand of M. We show that M is τ -extending if and only if $M = Rej_M E(R/\tau(R)) \oplus N$, and N is a τ -extending submodule of M. We also prove that the class of τ -extending modules is closed under direct summands. It is proved that if M is a τ -extending module and $Rej_T(E(R/\tau(R))) = T$ for a module T, then $M \oplus T$ is τ -extending. Moreover, we prove that $M=M_1\oplus M_2$ is τ -extending if and only if M_i are τ -extending and every τ -closed submodule K of $N_1 \oplus N_2$ with $K \cap N_1 K \cap N_2 = 0$ is a direct summand of M, where $M_i = Rej_{M_i}(E(R/\tau(R))) \oplus N_i$.

2. τ -rational modules

Throughout this paper τ is a hereditary preradical associative to a hereditary torsion theory.

Definition 2.1. We say that a submodule N of an R-module M is τ -rational in M, denoted by $N \leq_{\tau-r} M$, if $Hom(M/N, E(R/\tau(R))) = 0$. If $M \in \mathbb{T}_{\tau}$, then every submodule of M is τ -rational.

Let \mathcal{U} be a class of modules. A module M is (finitely) cogenerated by \mathcal{U} (or \mathcal{U} (finitely) cogenerates M), in case there is an (a finite) indexed set $(U_{\alpha})_{\alpha \in A}$ in \mathcal{U} and a monomorphism

$$0 \longrightarrow M \longrightarrow \prod_A U_\alpha.$$

An R-module R is said to be a cogenerator if R cogenerates every R-module.

It is recalled that a submodule N of M is dense in M if $Hom_R(M/N, E(M)) = 0$, where E(M) denotes the injective envelope of M.

Lemma 2.2. Let $R/\tau(R)$ be an injective cogenerator in ${}_{R}\mathcal{M}$ and $N \leq_{\tau-r} M$. Then N is dense in M.

PROOF: As $N \leq_{\tau-r} M$, then $Hom_R(M/N, E(R/\tau(R))) = 0$. Since $R/\tau(R)$ is an injective cogenerator, there is a set A for which E(M) can be embedded in $\prod_A R/\tau(R)$.

Thus $\prod_A Hom_R(M/N, R/\tau(R)) \simeq Hom_R(M/N, \prod_A R/\tau(R)) = 0$. It follows that Hom(M/N, E(M)) = 0 and so N is dense in M.

A ring R is called a left Kasch ring (or simply left Kasch) if every simple left module K embeds in R, equivalently if R cogenerates K. Every semisimple artinian ring is right and left Kasch, and a local ring R is left Kasch if and only if $Soc_l(R) \neq 0$, because R has only one simple left module up to isomorphism.

Corollary 2.3. Consider the trivial torsion theory $\tau = 0$. If R is a left Kasch ring and $N \leq_{\tau-r} M$, for R-modules M and N, then N is a dense submodule of M.

PROOF: This follows from the fact that $_RR$ is a left Kasch ring if and only if $E(_RR)$ is a cogenerator in $_R\mathcal{M}$ and applying Lemma 2.2.

Definition 2.4. A non-empty set $\mathfrak{D}(R)$ of left ideals of R is called a filter radical if the following hold:

- (i) for every $I \in \mathfrak{D}(R)$ and every $a \in R$, we have $(I : a) \in \mathfrak{D}(R)$, where (I : a) is the ideal $\{r \in R | ra \in I\}$;
- (ii) for every $J \in \mathfrak{D}(R)$ and every left ideal I of R with $(I : a) \in \mathfrak{D}(R)$ for each $a \in J$, we have $I \in \mathfrak{D}(R)$.

Proposition 2.5. Let $\mathfrak{F}(R)$ be the set of all left ideals I such that ${}_RI$ is τ -rational in ${}_RR$. Then $\mathfrak{F}(R)$ is a filter radical.

PROOF: (i) Let $I \in \mathfrak{F}(R)$ and $a \in R$. Then $Hom_R(R/I, E(R/\tau(R))) = 0$ and by the injectivity of $E(R/\tau(R))$, $Hom_R((Ra+I)/I, E(R/\tau(R))) = 0$. As $R/(I:a) \simeq (Ra+I)/I$ then we get $Hom_R(R/(I:a), E(R/\tau(R))) = 0$. Hence for every $I \in \mathfrak{F}(R)$ and $a \in R$, we get $(I:a) \in \mathfrak{F}(R)$.

(ii) Assume that $J \in \mathfrak{F}(R)$ and there exists a left ideal I of R, such that $(I:a) \in \mathfrak{F}(R)$ for every $a \in J$, so that, $Hom_R(R/(I:a), E(R/\tau(R))) = 0$. If $f \in Hom_R(R/I, E(R/\tau(R)))$ then $(Ra+I)/I \simeq R/(I:a) \subseteq ker(f)$ for every $a \in J$. Hence $Hom_R((Ra+I)/I, E(R/\tau(R))) = 0$ for every $a \in J$ and so $Hom_R((J+I)/I, E(R/\tau(R))) = 0$. Thus f factors through $\overline{f} \in Hom_R(R/(I+J), E(R/\tau(R)))$. However $J \in \mathfrak{F}(R)$ implies $I+J \in \mathfrak{F}(R)$. Hence $\overline{f} = 0$ and so f = 0. This shows that $I \in \mathfrak{F}(R)$.

Corollary 2.6. Let I, J be left ideals of R. Then

- (i) if $J \in \mathfrak{F}(R)$ and $J \subseteq I$, then $I \in \mathfrak{F}(R)$;
- (ii) if $I, J \in \mathfrak{F}(R)$, then $I \cap J \in \mathfrak{F}(R)$;
- (iii) if $I, J \in \mathfrak{F}(R)$, then $IJ \in \mathfrak{F}(R)$.

PROOF: This follows by [3].

Lemma 2.7. If RI is τ -rational in RI, then $(I + \tau(R))/\tau(R) \leq_{es} R/\tau(R)$.

PROOF: Suppose that there exists a nonzero left ideal $L/\tau(R)$ of $R/\tau(R)$ such that $L/\tau(R) \cap (I+\tau(R))/\tau(R) = 0$. As $I \subseteq I+L$, by Corollary 2.6(i), we have $I+L \in \mathfrak{F}(R)$. Hence $Hom_R(R/(L+I), E(R/\tau(R))) = 0$.

Since $Hom_R(R/I, E(R/\tau(R))) = 0$, then $Hom_R((L+I)/I, E(R/\tau(R))) = 0$. Thus $Hom(L/(L \cap I), E(R/\tau(R))) = 0$, and since $I \cap L \subseteq \tau(R)$,

$$Hom(L/\tau(R), E(R/\tau(R))) = 0,$$

a contradiction. $\hfill\Box$

The following examples show that Lemma 2.7 need not be true, for R-modules.

Example 2.8. Consider the torsion theory $(0,_R \mathcal{M})$ with associative radical $\tau = 0$, where $R = \mathbb{Z}$. Let $M = \mathbb{Z}_6$ and $N = 3\mathbb{Z}_6$, then $3\mathbb{Z}_6 \nleq_e \mathbb{Z}_6$, however $N \leq_{\tau-r} M$ because $Hom_{\mathbb{Z}}(\mathbb{Z}_6/3\mathbb{Z}_6,\mathbb{Q}) = 0$.

Example 2.9. Consider the torsion theory $({}_{R}\mathcal{M},0)$ with associative radical $\tau=id$, where $R=\mathbb{Z}$. Then for every R-module M, we have $Hom_{\mathbb{Z}}(M/N,0)=0$, for every \mathbb{Z} -submodule N of M, which implies that $N\leq_{\tau-r}M$.

For each $M \in R$ -Mod we define

$$\delta_{\tau}(M) = \{x \in M | (0:x) \text{ is a } \tau\text{-rational left ideal in } R\}.$$

Proposition 2.10. For an arbitrary ring R and a left R-module M the following assertions hold:

(1) $\delta_{\tau}(M)$ is a submodule of M;

- (2) $\delta_{\tau}(M/\delta_{\tau}(M)) = 0;$
- (3) for every R-homomorphism $f: M \longrightarrow N$, $f(\delta_{\tau}(M)) \subseteq \delta_{\tau}(N)$;
- (4) for every $K \leq M$ we have $\delta_{\tau}(K) = \delta_{\tau}(M) \cap K$.

PROOF: (1) This is clear.

- (2) Let $\overline{m} = m + \delta_{\tau}(M) \in M/\delta_{\tau}(M)$. Then $\overline{m} \in \delta_{\tau}(M/\delta_{\tau}(M))$ iff $(0:\overline{m})$ is τ -rational in R. As $(0:\overline{m}) = \{r \in R | rm \in \delta_{\tau}(M)\}$ and (0:rm) = ((0:m):r), then $(0:\overline{m}) = \{r \in R | ((0:m):r) \leq_{\tau_r} R\}$ is τ -rational in R. Since the set of all τ -rational left ideals of R is a Gabriel filter, we get $(0:m) \leq_{\tau_r} R$ and this shows that $m \in \delta_{\tau}(M)$, i.e; $\overline{m} = 0$.
- (3) Let $m \in \delta_{\tau}(M)$. Then $(0:m) \leq_{\tau_r} R$. As $(0:m) \subseteq (0:f(m))$ we get $(0:f(m)) \leq_{\tau_r} R$.

(4) This is clear.
$$\Box$$

Corollary 2.11. Let (\mathbb{T}, \mathbb{F}) , where $\mathbb{T} = \{M | \delta_{\tau}(M) = M\}$, $\mathbb{F} = \{M | \delta_{\tau}(M) = 0\}$. Then (\mathbb{T}, \mathbb{F}) is a hereditary torsion theory.

Proposition 2.12. If $\delta_{\tau}(M/N) = M/N$ then N is τ -rational in M.

PROOF: To the contrary assume that $\delta_{\tau}(M/N) = M/N$ but

$$Hom(M/N, E(R/\tau(R))) \neq 0.$$

Then we have $Hom((Rm+N)/N, E(R/\tau(R))) \neq 0$, for some $m \in M$. As $R/(N:m) \simeq (Rm+N)/N$ for any $m \in M$, this gives

$$Hom(R/(N:m), E(R/\tau(R))) \neq 0,$$

a contradiction to the fact that $(N:m) \leq_{\tau-r} R$.

Corollary 2.13. Let $N \leq_{\tau-r} M$ and K a submodule of M. Then $N \cap K \leq_{\tau-r} K$.

Corollary 2.14. $\delta_{\tau}(M) = M$ iff $Hom_R(M, E(R/\tau(R))) = 0$.

Proposition 2.15. Let M be an R-module and $N, L \leq M$. If $N \subseteq L \subseteq M$, then $N \leq_{\tau-r} L \leq_{\tau-r} M$ iff $N \leq_{\tau-r} M$.

PROOF: If $N \leq_{\tau-r} M$, then obviously $N \leq_{\tau-r} L \leq_{\tau-r} M$.

Conversely, let $N \leq_{\tau-r} L \leq_{\tau-r} M$. Consider the exact sequence

$$0 \longrightarrow L/N \longrightarrow M/N \longrightarrow M/L \longrightarrow 0.$$

Then, since $Hom(-, E(R/\tau(R)))$ is an exact functor we get the exact sequence

$$0 \longrightarrow Hom(M/N, E(R/\tau(R))) \longrightarrow 0.$$

Thus
$$Hom(M/N, E(R/\tau(R))) = 0$$
 and so $N \leq_{\tau-r} M$.

Corollary 2.16. N is τ -rational in M if and only if C is τ -rational in M, where $C/N = \tau(M/N)$.

Lemma 2.17. Let N be a submodule of M and suppose that every homomorphic image of M has a non-zero τ -torsion submodule. Then $N \leq_{\tau-r} M$.

PROOF: On the contrary, assume $0 \neq f \in Hom(M/N, E(R/\tau(R)))$. Then f factors through a monomorphism $0 \neq \overline{f} : M/kerf \longrightarrow E(R/\tau(R))$. As $\tau(M/ker(f)) \neq 0$ we get $0 \neq \tau(M/kerf) \subseteq ker\overline{f}$, a contradiction.

Corollary 2.18. If M/N is a τ -torsion module, then N is τ -rational in M.

The following example shows that the converse of Corollary 2.18 need not be true.

Example 2.19. Consider the trivial torsion theory $(0,_R \mathcal{M})$ on $\mathbb{Z}\mathcal{M}$. Then $Hom_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z},\mathbb{Q}) = 0$ while $\tau(\mathbb{Z}/4\mathbb{Z}) \neq \mathbb{Z}/4\mathbb{Z}$.

Definition 2.20. Let M be a module and $K \leq M$. We say that K is a τ -closed submodule of M, denoted by $K \leq_{\tau c} M$, if whenever for any submodule L of M, $Hom(L/K, E(R/\tau(R))) = 0$ implies K = L. If N is a submodule of M such that $K \leq_{\tau-r} N$ and N is τ -closed in M then N is called a τ -closure of K in M. Note that $N \leq_{\tau c} M$ if and only if for all $N < K \leq M$, $Rej_{K/N}(E(R/\tau(R))) = 0$.

Proposition 2.21. Let $N' \leq N \leq M$. Then the following are true:

- (1) if N' is τ -closed in M, then N' is τ -closed in N;
- (2) $Rej_M(E(R/\tau(R))) \leq_{\tau c} M$ and $N \leq_{\tau c} M$, moreover $Rej_M(E(R/\tau(R))) \subseteq N$. Besides, $Rej_M(E(R/\tau(R)))$ is the intersection of all τ -closed submodules of M:
- (3) if $K \leq_{\tau c} M$, then M/K is a τ -torsion free module. Clearly the converse is not true;
- (4) if N' is τ -closed in N and N is τ -closed in M, then N' is τ -closed in M;
- (5) the class of τ -closed submodules of M is closed under intersections.

PROOF: (1) This is clear.

(2) Clearly $Rej_M(E(R/\tau(R))) \leq_{\tau c} M$. Now, on the contrary, assume that $N \leq_{\tau c} M$ and $N \not\supseteq Rej_M(E(R/\tau(R)))$. Then there is an

$$x \in Rej_M(E(R/\tau(R))) \backslash N$$

and so $Hom((Rx+N)/N, E(R/\tau(R))) \simeq Hom(Rx/(Rx\cap N), E(R/\tau(R))) = 0$, a contradiction.

- (3) Assume that $K \leq_{\tau c} M$ and $\tau(M/K) = C/K \neq 0$. Then since $C/K \in \mathbb{T}_{\tau}$ and $E(R/\tau(R)) \in \mathbb{F}_{\tau}$, we get $Hom(C/K, E(R/\tau(R))) = 0$, a contradiction. Thus C/K = 0.
- (4) If $Hom(L/N', E(R/\tau(R))) = 0$ for some $N' \leq L \leq M$, then we have $L \not\subseteq N$ and $N' \subseteq L \cap N$. Therefore, $Hom_R((L \cap N)/N', E(R/\tau(R))) = 0$. Since N' is τ -closed in N, we get $(L \cap N) = N'$. Hence $Hom((L + N)/N, E(R/\tau(R))) = 0$ and so N = N + L because $N \leq_{\tau c} M$. From N = N + L we have $L \subseteq N$, a contradiction.

(5) Let $N_i \leq_{\tau c} M$ for every $i \in I$. Then $Rej_{M/N_i}(E(R/\tau(R))) = 0$, for every $i \in I$. Thus we have $\bigoplus_{i \in I} Rej_{M/N_i}(E(R/\tau(R))) = Rej_{\bigoplus_{i \in I} M/N_i}(E(R/\tau(R))) = 0$. Since there is a monomorphism $f: M/\cap_{i \in I} N_i \longrightarrow \bigoplus_{i \in I} M/N_i$, the injectivity of $E(R/\tau(R))$ implies $Rej_{M/\cap_{i \in I} N_i}(E(R/\tau(R))) = 0$ and so $\cap_{i \in I} N_i \leq_{\tau c} M$. \square

Proposition 2.22. For a module M, every submodule N of M has a τ -closure.

PROOF: If $Hom(M/N, E(R/\tau(R))) = 0$, then there is nothing to prove. Hence suppose that $Hom(M/N, E(R/\tau(R))) \neq 0$, $D/N = Rej_{M/N}(E(R/\tau(R)))$, for some submodule N of M. Then $Hom(D/N, E(R/\tau(R))) = 0$ and

$$Hom(D'/D, E(R/\tau(R))) \neq 0$$

for every $D < D' \le M$. In this case D is a τ -closure of N in M.

Example 2.23. Consider the Goldie torsion theory, where $\mathbb{T} = \{M | \mathcal{Z}_2(M) = M\}$, $\mathbb{F} = \{M | \mathcal{Z}_2(M) = 0\}$. It is not hard to see that the idempotent radical associated to Goldie torsion theory is \mathcal{Z}_2 . If we take \mathbb{Z} as a \mathbb{Z} -module, then we can easily check that $\mathcal{Z}_2(\mathbb{Z}) = 0$ and $E(\mathbb{Z}) = \mathbb{Q}$. Since $Hom_{\mathbb{Z}}(n\mathbb{Z}, \mathbb{Q}) \neq 0$, for every nonzero integer n, the \mathcal{Z}_2 -closure of zero submodule is itself. Since for every nonzero integer m we have $Hom_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Q}) = 0$, the \mathcal{Z}_2 -closure of every nonzero \mathbb{Z} -submodule is \mathbb{Z} .

3. τ -extending modules

In this section we introduce the concept of τ -extending modules and give an example to show that the direct sum of τ -extending modules may not be τ -extending.

Definition 3.1. A module M is called τ -extending if every submodule of M is τ -rational in a direct summand of M.

From Example 2.23, it follows that \mathbb{Z} is \mathcal{Z}_2 -extending module.

Proposition 3.2. A module M is τ -extending if and only if every τ -closed submodule of M is a direct summand of M.

PROOF: Suppose that M is τ -extending and N a τ -closed submodule of M. By hypothesis, N is τ -rational in a direct summand D of M, so D=N.

Conversely, assume that every τ -closed submodule of M is a direct summand of M. Let N be a submodule of M. Also, let $Rej_{M/N}(E(R/\tau(R))) = C/N$. Since C is τ -closed in M, then by assumption C is a direct summand of M. As N is τ -rational in C, M is τ -extending. \square

Lemma 3.3. The class of τ -extending modules is closed under direct summands.

PROOF: Let $M=M_1\oplus M_2$ and $N_1\leq_{\tau c}M_1$. We show that $N_1\oplus M_2\leq_{\tau c}M_1\oplus M_2$. Let there be a submodule K such that $N_1\oplus M_2\leq K\leq M$ and $Hom(K/(N_1\oplus M_2),E(R/\tau(R)))=0$. By modularity $K=M_2\oplus (K\cap M_1)$ and so $Hom((K\cap M_1)/N_1,E(R/\tau(R)))=0$. This gives $K\cap M_1=N_1$, because

 $N_1 \leq_{\tau c} M_1$. Thus $K = N_1 \oplus M_2$ and so $N_1 \oplus M_2 \leq_{\tau c} M$. As M is τ -extending, then $N_1 \oplus M_2 \oplus L = M$. Therefore $M_1 = N_1 \oplus (M_1 \cap (M_2 \oplus L))$, so M_1 is τ -extending.

Lemma 3.4. Let M be τ -extending and K a module for which $Rej_K(E(R/\tau(R))) = K$. Then $M \oplus K$ is τ -extending.

PROOF: We may assume that $Rej_M(E(R/\tau(R))) = 0$. Let D be a τ -closed submodule of $M \oplus K$. Then $Rej_{M \oplus K}(E(R/\tau(R))) = Rej_K(E(R/\tau(R))) = K$ and by Proposition 2.21, we get $K \subseteq D$. This shows that $D = (M \cap D) \oplus K$. If $Hom(L/(M \cap D), E(R/\tau(R))) = 0$, for some submodule L of M that contains $M \cap D$, then $Hom((L+K)/D, E(R/\tau(R))) = 0$. Since D is τ -closed in $M \oplus K$, we get L + K = D and so $M \cap D = L$. This shows that $M \cap D$ is τ -closed in M and since M is τ -extending $M = (M \cap D) \oplus N$, for some $N \leq M$. Thus $M \oplus K = (M \cap D) \oplus N \oplus K = D \oplus N$, which implies that D is a direct summand of $M \oplus K$.

Corollary 3.5. Let M be a τ -extending module and K a τ -torsion module. Then $M \oplus K$ is τ -extending.

Lemma 3.6. The following statements are equivalent for a module M:

- (i) M is τ -extending;
- (ii) $M = Rej_M E(R/\tau(R)) \oplus N$, and N is a τ -extending submodule of M.

PROOF: (i) \Longrightarrow (ii). As $Rej_M E(R/\tau(R)) \leq_{\tau c} M$ and M is τ -extending, we get $M = Rej_M E(R/\tau(R)) \oplus N$, where N is a τ -extending submodule of M, by Lemma 3.3.

(ii)
$$\Longrightarrow$$
(i). This follows by Lemma 3.4. \Box

The following example shows that a direct sum of τ -extending modules need not be τ -extending.

Example 3.7. Let $R = \mathbb{Z}$ and $\tau = 0$. Then $M_1 = M_2 = \mathbb{Z}$ are τ -extending, because $Hom_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Q}) = 0$, for every nonzero ideal $m\mathbb{Z}$ of \mathbb{Z} . Next we show that $M_1 \oplus M_2$ is not τ -extending. For, let K be the \mathbb{Z} -submodule of $\mathbb{Z} \oplus \mathbb{Z}$ generated by (2,3), i.e, $K = \{(2n,3n)| n \in \mathbb{Z}\}$. Then $f: \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Q}$ defined by f(1,0) = 1/2, f(0,1) = -1/3, is a \mathbb{Z} -homomorphism with $ker(f) = \{(m,n)| f(m,n) = f(m,0) + f(0,n) = mf(1,0) + nf(0,1) = m/2 - n/3 = 0\}$. Therefore K = ker(f) and so $Hom_{\mathbb{Z}}((\mathbb{Z} \oplus \mathbb{Z})/K, \mathbb{Q}) \neq 0$. This shows that $\mathbb{Z} \oplus \mathbb{Z}$ is not τ -extending.

Theorem 3.8. Let M_i (i=1,2) be τ -extending modules and N_i a submodule of M_i such that $M_i = Rej_{M_i}E(R/\tau(R)) \oplus N_i$ for each i=1,2. Then $M=M_1 \oplus M_2$ is τ -extending if and only if every τ -closed submodule K of $N_1 \oplus N_2$ with $K \cap N_1 = K \cap N_2 = 0$ is a direct summand of M.

PROOF: Assume that $M = M_1 \oplus M_2$ is τ -extending. Then

$$Rej_{M_1 \oplus M_2}(E(R/\tau(R))) = Rej_{M_1}(E(R/\tau(R))) \oplus Rej_{M_2}(E(R/\tau(R)))$$

is a direct summand of M, by Lemma 3.6. Thus there exists $N \leq M_1 \oplus M_2$ such that

$$M_1 \oplus M_2 = Rej_{M_1}(E(R/\tau(R))) \oplus Rej_{M_2}(E(R/\tau(R))) \oplus N.$$

By modularity we get

$$M_i = Rej_{M_i}(E(R/\tau(R))) \oplus ((N \oplus Rej_{M_j}(E(R/\tau(R)))) \cap M_i)$$

for i, j = 1, 2 with $i \neq j$. Suppose that $N_i = (N \oplus Rej_{M_j}(E(R/\tau(R)))) \cap M_i$. Then $N = N_1 \oplus N_2$ is τ -extending, and hence every τ -closed submodule of N is a direct summand of N and so a direct summand of M.

Conversely, assume that for each i=1,2, the module $M_i=Rej_{M_i}E(R/\tau(R))\oplus N_i$ is τ -extending, such that every τ -closed submodule K of $N_1\oplus N_2$ with $K\cap N_1=K\cap N_2=0$ is a direct summand of M. We will show that every τ -closed submodule of $M_1\oplus M_2$ is a direct summand of $M_1\oplus M_2$. Let K be a τ -closed submodule of $M_1\oplus M_2$ and $K\cap M_i=K_i$, for i=1,2.

Note that $Hom((M_i+K)/K, E(R/\tau(R)))=0$ iff $M_i\subseteq K$, for i=1,2. Thus $Hom(M_i/K_i, E(R/\tau(R)))=0$ iff $M_i=K_i$, for i=1,2. It follows that K_i are τ -closed submodule of M_i , for i=1,2 and by Proposition 2.21(2), $Rej_{M_i}E(R/\tau(R))\subseteq K_i$. Hence $K_i=Rej_{M_i}E(R/\tau(R))\oplus (K_i\cap N_i)$. It is not hard to see that $K_i\cap N_i$ is a τ -closed submodule of N_i , for i=1,2.

Since N_1 and N_2 are τ -extending, $N_i = (K_i \cap N_i) \oplus L_i$, for some $L_i \subseteq N_i$. This shows that $K = K_1 \oplus K_2 \oplus (K \cap (L_1 \oplus L_2))$. We can easily check that $K \cap (L_1 \oplus L_2)$ is a τ -closed submodule of $N_1 \oplus N_2$ with $K \cap (L_1 \oplus L_2) \cap N_i = 0$, for i = 1, 2. By assumption $K \cap (L_1 \oplus L_2)$ is a direct summand of M. Assume that $(K \cap (L_1 \oplus L_2)) \oplus S = M$. Then $L_1 \oplus L_2 = (K \cap (L_1 \oplus L_2)) \oplus ((L_1 \oplus L_2) \cap S)$. It follows that $M = K_1 \oplus K_2 \oplus (K \cap (L_1 \oplus L_2)) \oplus ((L_1 \oplus L_2) \cap S) = K \oplus ((L_1 \oplus L_2) \cap S)$, which implies that every τ -closed submodule of M is a direct summand of M. Thus M is a τ -extending module, by Proposition 3.2.

Lemma 3.9. Let M_1 be an M_2 -injective module. Then $M=M_1\oplus M_2$ is τ -extending if and only if M_1, M_2 are τ -extending.

PROOF: Let M_i be τ -extending, for i=1,2. Then by Lemma 3.6, there exist $L_i \leq M_i$ such that $M_i = Rej_{M_i}(E(R/\tau(R))) \oplus L_i$. Applying Theorem 3.8, it suffices to show that every τ -closed submodule K of $L_1 \oplus L_2$, with $K \cap L_1 = K \cap L_2 = 0$, is a direct summand of $L_1 \oplus L_2$. As M_1 is an M_2 -injective, then by [9, Lemma 7.5], there exists a submodule L' of $L_1 \oplus L_2$ for which $K \subseteq L'$ and $L_1 \oplus L' = L_1 \oplus L_2$. As L_2 is τ -extending and $L' \simeq L_2$, then by Proposition 3.2, L' is τ -extending. Hence K is a direct summand of L' and so a direct summand of $L_1 \oplus L_2$. By Proposition 3.2, $M_1 \oplus M_2$ is τ -extending.

Corollary 3.10. Let $M = M_1 \oplus M_2$ be an injective module. Then M is τ -extending if and only if M_1, M_2 are τ -extending modules.

References

- [1] Anderson F.W., Fuller K.R., Rings and Categories of Modules, Springer, New York, 1992.
- [2] Bland P.E., Topics in Torsion Theory, Wiley-VCH Verlag, Berlin, 1998.
- [3] Bican L., Kepka T., Němec P., Rings, Modules, and Preradicals, Marcel Dekker, New York, 1982.
- [4] Çeken S., Alkan M., On τ -extending modules, Mediterr. J. Math. 9 (2012), 129–142.
- [5] Charalambides S., Clark J., CS modules relative to a torsion theory, Mediterr. J. Math. 4 (2007), 291–308.
- [6] Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting Modules, Birkhäuser, Basel, 2006.
- [7] Crivei S., On τ -complemented modules, Mathematica (Cluj) **45(68)** (2003), no. 2, 127–136.
- [8] Dogruöz S., Extending modules relative to a torsion theory, Czechoslovak Math. J. 58(133) (2008), 381–393.
- [9] Dung N.V., Huynh D.V., Smith P.F., Wisbauer R., Extending Modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific and Technical, Harlow, 1994.
- [10] Gomez Pardo J.L., Spectral Gabriel topologies and relative singular functors, Comm. Algebra 13 (1985), no. 1, 21–57.
- [11] Lam T.Y., A First Course in Noncommutative Rings, Springer, New York, 1990.
- [12] Lam T.Y., Lectures on Modules and Rings, Springer, New York, 1998.
- [13] Mohamed S.H., Müller B.J., Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series, 147, Cambridge Univ. Press, Cambridge, 1990.
- [14] Mohamed S., Müller B., Singh S., A note on the decomposition of σ-injective modules, Comm. Algebra 12 (1984), 663–672.
- [15] Smith P.F., Tercan A., Generalizations of CS-modules, Comm. Algebra 21 (1993), no. 6, 1809–1847.
- [16] Smith P.F., Viola-Prioli A.M., Viola-Prioli J.E., Modules complemented with respect to a torsion theory, Comm. Algebra 25 (1997), 1307–1326.
- [17] Stenström B., Rings of Quotients, Springer, Berlin, 1975.

DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF MAZANDARAN, BABOLSAR, IRAN

E-mail: talebi@umz.ac.ir mohamadi.rasul@yahoo.com

(Received December 15, 2015, revised February 8, 2016)